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AN INDEPENDENT SYSTEM OF UNITS IN CERTAIN
ALGEBRAIC NUMBER FIELDS

CLAUDE LEVESQUE

0. Introduction. For K, = Q(w) a real algebraic number field of degree
n over Q such that

n . .
o=m = B[0TI () e
i=0

with D € N, d € Z,d|D?, and D* + 4d > 0, we proved in [5] (by using the
approach of Halter-Koch and Stender [6] ) that if

M 2
€ = 1 — kkwk + d A
(—d) (—d)
with
S[(k—1-i k — i i
Y (C R o) P
= i — 1 i
then

Sy = {4k € N, kln, k # n}

is an independent system of units of K.
Noting that

W"=M, =ao" + B,
where

a = %(D + VD? + 4d), B = %(D — VD? + 4d),

and that in the quadratic extension L, = K, ( VD? + 4d) of K,, we
have the factorization

€k = Cnknk

with
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o — o ok — gk
ek = 3 and  u, = &

we also proved in [5] that
S, = B k
1= Ve Upo — |k € N, kln, k # n
a

is an independent system of units of

L, = Q(VD? + 4d, w);

the proof was by induction on the number of prime divisors of »n including
multiplicity and rested on the fact that S is independent.
The field L,, may be viewed as the field

L, = Q(VD? + 4d, Vo' + B).

A natural problem is then to exhibit an independent system of units in the
field

F,, = QWD + 4d, Vo' — ).
A solution to this problem is given by the following result.

MAIN THEOREM. Let F,, = Q(0) be a real algebraic number field of
degree 2n over Q such that

6 = /M, — 2A—dy' = ¥ — 'Y > 1,

where
2 (on—1—i In — i .
g B[00 (e
=0 i— 1 i
with D € N, d € Z, d|D?* D* + 4d > 0 and where
1 1
a = E(D + VD* + 4d) B = E(D — VD? + 4d).

For any positive divisor t of n and for any positive divisor k of n with n/k odd,
define &, {,, and n by
0[ —a ok + ,Bk B
gm =~'—Bt——,\l/nk =———a—k—— and n =;.
Then

S = {ﬁm, \Ixnk,n)t,k € N, t|n, kln, t # n, k # n,2!£}

is an independent system of units of F,,.
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Examples. For 1 = n = 6, here are the values of §*" and S:

n=1:D"+ 4d, S = {n};

n=2:D%+4D% S = {0;“,71};

n=3:D°%+ 6D% + 9D*d* + 4d°,

{0—a 0+ B }
B b a 7”’

n = 4: D%+ 8D% + 20D%* + 16D*d>,

0 —a 6> — &
NS

n=>5:D" 4+ 10D% + 35D%* + 50D*® + 25D%d* + 4d°,
S = {0—a,0+3,n};
B a
n=6:D"+ 12D'% + 54D8* + 1120°d* + 105D*d*
+ 36D*d°,

S

)
I

0 —a > — o 6 — o 6> + B
S = ’ 2 9 3 ’ 2 b n -
B B B o
Let us recall that if K is an algebraic extension of degree m = r + 2s
over the rationals Q with r real (resp. 2s complex) embeddings in the field

C of complex numbers, then by Dirichlet’s theorem, the unit group % of
K is a direct product of cyclic groups,

U = Wy X C; X ... X Crpyeys

where Wy is the finite group of roots of unity in K and where the C;’s are
copies of Z. A fundamental system of units of K is a set of r + 5 — 1
generators of the C’s. Finally, a finite set S = {¢, €5, ..., ¢, } of £ units of
K is said to be an independent system of units if

Il ¢4 =1 (with a, € Z) implies a, = 0 for all i.
i=1

After a section of preliminaries, we obtain in Section 2 the units §,,, ¢,
and calculate relative norms of these units.
Then supposing » odd, we obtain in Section 3 the independence of

(& uulk € N, kln, k # n},

a fact which will prove useful, as can be seen just before formula (4.2).
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Sections 4 and 5 are devoted to the proof of the main theorem for n odd
and for n even respectively. The proof is by induction on the number
of prime divisors of n including multiplicity: we assume that n > 1is not a
prime number and that the result holds true for all divisors m of n with
m # n. Starting with a linear relation of the form

(II £:$'))( H W’)

n#*tln n#*kln
n/k odd

and taking the relative norm Ne,/F,, with respect to some subfields, we
obtain linear relations among certain units for which we are able to apply
the induction hypothesis or some previous results.

In short, we have to prove the independence of a system of units for F,,.
We consider in Section 4 the case where n is odd, so the induction
hypothesis can be used for the subfields F,, with m|n because m is still
odd. In Section 5, we suppose n even, so when we come across the
subfields F,,, with m|n, either we apply the induction hypothesis when m is
still even, or we apply the results of Section 4 when m is odd.

Some parts of the paper may be skipped on a first reading: for instance,
the technical lemmas 3.2, 4.1 and 5.2.

1. Preliminaries. Let us recall the definitions and properties of certain

recursive sequences of second order defined in [S]. For m,n € Z, 0! = 1
and
n!
—ifn=m =0,
(n) _ o= mym!
m lifn=—-1=

0 otherwise.

Definition 1.1. For n 2 0,
-1 = — n—2i 4i
M, = M (D, d) = 2 (” . ’) + (” i ’)]D g,
Definition 1.2. For n = —1,

n .
Gpiy = Gy (D, d) = 2 (n ; I)D"_Zidi-
i=0
ProposITION 1.3. For all r, s € N,

(1) M (D, d) = M (M,, —(—d)"),
(i) G, (D, d) = G(D, d)G,(M,, —(—d)").
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1 P S
PROPOSITION 1.4. If & = 5(D+ VD* + 4d), and B = %(D—\/Dz + 4d)

(witha + B=D,a — B = VD*+ 4d # 0 and af = —d), then for any
k € N,

(i) M, = o* + B,
ak—,Bk ak—,Bk
«=B D +ad

(i) M7 = (D? + 4d)Gi + 4(—d),

1
(iv) &k = S+ G, VD + 4d),

(i) G, =

and
W) g = %(Mk - G, VD* + 4d).

Both of these propositions were proven in [S] and we will use them
without explicitly referring to them.

Throughout this paper, u stands for the Mobius function defined for a
positive integer n by the rules

1 ifn =1,
wn) = {0 if p?ln for some prime p,
(—1)" if n is square-free with r prime factors.

2. Some units in F,,. Let F,, = Q(0) be a real algebraic number field of
degree 2n over Q such that

0" = M, (D, d) — 2(—d)" > 1
with D € N, d € Z, d|D?, and D* + 4d > 0. Then
@D 0" = My, — A=d) = M, — 4—dY'
= (D* + 4d)G) = («" — B"),

where

n
a=%(D+ \/D2+4d)=%(D+0—)

G

n

and

=
I

%(D + VD? + 4d) = %(D ~ —g—)

n
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Assume that n = mt, and consider the subfields F,, = Q(#") and
E, = Q(6*) where

22 @)Y = M, (M, —(—d)) — 2A—d)"
= ((a)™ — (B
so that F,, = Q(#') is a field of degree 2m over Q.

F,, = Q(0)
2
! E = Q)
F,,, = Q") t
2
m \Fm = Q(6%)
F, = Q") = Q(VD? + 4d) m
2 Q
Figure 1
ProrosiTioN 2.1. For any positive divisor t of n with n = mu, the algebraic
numbers
_B
n=-,
a
0! — al
g"( = b
'BI
and

Y = IB if mis odd,
44

are units in F,, < F, .

Proof. (i) We saw in [5] that 7 is a unit of

Q(VD? + 4d) = F,.
(i1) Proceeding as in page 134 of [5] and noting that
(0t)m — aml _ 'Bml
we see that £ is a root of the polynomial

m—1

= (’,'.')(n“)"'z'""' + 1

i=0
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with coefficients in the ring of algebraic integers of F, = Q( VD? + 4d ).
(iii) Similarly, when m = n/t is odd, ¥, is a root of the polynomial

EI (T)(—n)"’zm"‘ - 1.

=0

PropPosITION 2.2. Let m, k be positive divisors of n with

k t
n=mtyr =(k,t),h=—,andl = -.
r r

(1) Then

Np, py E) = (D78 = (=D g
(1) If n/k is odd, then

Nan/Fz,,,(‘I’nk) = ‘l’;,k/ = ‘I’fnh
(iii) If m is odd, then

Nk, &) = (S & kb = (D E b
(iv) If m and n/k are odd, then

Ne, 5, (ni) = (D& i = (D&

Proof. (i) Let ¢ be a primitive ¢-th root of unity. Then ¢¥ is a primitive

[-th root of unity and
0" \k
o — (9 + )
2 2G,

Nan/Fzm(énk) = NFZn/Flm (D 9" )k

2 26,
) D {ﬂian k
kipk
L [ - (24 £7)
" ¢ 2 26,
o\ (2 f'“'e")k
2 26,
[—1 (g'k)iok _ (lk r " akl _ okl r
= — ) =D\
i=0 B B

=(=D)"rE = ()T

(i1) Let n/k be odd and let { be a primitive ¢-th root of unity. Then / is
odd and
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(s”")’ﬂk + .8")

(l

NFQ,,/FZ,,,(‘Pnk) = ; (

0/(/ + .Bk[ r . ,
= (_T—) = ll/n,k[ = ll/mh
o

(iii) Whenever m is odd, we have 4 odd and

NFZ,,/F,,,(‘fnk) = NFZ,,,/F,,,(NFZ,,/FZ m(gnk))

o (@Y

_ (% N M)” ‘
2 2G,

(Mt B G[(et)m)h

2 26,

(M ey

__0[ h
(=) 2 2G,

(_1\_4_, B G,(ﬁﬂ’)'")h
2 2G,

_( z;h) (= 2y

= (- 1)’€Z,k1¢2,k1~
We used here the facts that

1
o E(M, + G,VD* + 4d),

(%

I

B 1(M, - G, VD? + 4d),
2
VD? + 4d = 6"/G,,

and ht = kl.
(iv) Similarly, if m and n/k are odd, we have that

ohl + Bhl r
Nfz,,/F,,,(‘l’nk) = NFZ,,,/F,,,(T)

(B ey

= ( - ])r‘lln,hlgn.ht‘

https://doi.org/10.4153/CJM-1985-034-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-034-x

652 CLAUDE LEVESQUE

Note. In Proposition 3.1.3 of [5], (= 1)"**D should be replaced by
(—1)'*". This does not change the proof, because in Lemma 3.3.1 of [5],
we consider absolute values.

Whenever n is odd, we have from Proposition 2.1 that for any divisor
k of n,

0k _ ak 0k + Bk
- T
is a unit of Q(6X) C F,,. More precisely,
G m G o

n

(23) Mk = £nk¢nk =

02k

is a unit of Q(#%), because
0l1+k _ 0k(n/k+l)

We shall now evaluate the norm Ngg) @, Of these units n,, for
n = mt.

ProposITION 2.3. Let n be odd and let m, k be positive divisors of n
with
k t
n=mtyr =(k,t),h =—,andl = -.
r r
Then
Ne s r, () = Mkt = Mot
Proof. Let { be a primitive t-th root of unity. Then

— < _dk + %(§i02)(n+k)/2 _(§i02)k>

NF,,/F,,,(nnk) = H :

i=0 a

Now, since # is odd, {? is also a primitive z-th root of unity.
Moreover ¢¥ is a primitive /-th root of unity. Therefore

]<_dk " %g(n+k)i0n+k§2k102k>

t

N _ n
F,,/Fm(ﬂnk) Pl P
t—1 <_ dk + Gk \/DZ + 4d gkiok' _ §2ki02k>
= K
=0 d

t.—l (g—kiekﬁk_ ak ) ({kiak :_ :Bk)

o

Il
S

r r _ r _ r
= gn,k/‘l’n,kl = Mnkt = Mmn-
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3. A secondary result. In this section, we assume that n is always odd.
For any positive divisor ¢ of n, we defined 7,, by

0t — at 0! + Bt

BI o :
We plan to show that {5, |r € N, 7ln, t #* n} is an independent system of
units of Q(#%) € F,,,. This result will prove useful in the proof of the main
theorem.

We need two lemmas which we shall prove under the hypotheses of
Theorem 3.3.

LeEMMA 3.1. Let n be odd. Then
(i) a > 8 if and only if d < 0;
(i) a« > 2|Bl;

(iii) |8 < 6.

Proof. (i) " = " — B" < " if and only if 8§ > 0 if and only if
d < 0.

(i1) See part (ii1) of Lemma 2.3.1 in [5].

(iii) For d < 0, we have 8" = " — B" > B" from part (ii).
Ifd > 0,06 > —pB, because §" = o" — B" > —fB".

(3.1 M = gnt‘l’m =

LEMMA 3.2. Let v = p,...p,, where p,, ..., p, are the distinct prime
factors of n. Then

IT "> II "
tlv tlv
wey=—1 wey=1
Proof. We shall consider two cases separately.

Case A: d > 0. The previous lemma yields
32 f6>a>-2>-—-8>0;

hence
@ — &) + BYH 0\ 6 \'
|77,,J| = 1 ot = - - 1 _— - 1 .
o'|B @ -8B
Let
6 /)
33 1+4§ =A=~-andl +§,=4,=—.
« -8
Since
< (1+8) =A=1+ <—_B)"<1+ (l)"
a 2
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by Lemma 3.1, we conclude that 0 < §, < 1. In addition, § > a« > —28
implies §/(—fB) > 2, i.e.,

=8 1 - 1>,

Proceeding as in page 129 of [5], we will have the conclusion if we can
prove

(3.4) 1T @880 > 1 @8,a%4%)"" .
1¥2 | 1212

tly

wr)y=—1 wWry=1

(1) Suppose s = 2. As in page 130 of [5], we see that it suffices to
prove

2
(8,8,)"

(B35 A =1+8<1+

1
Since — 8 < 3 a and n > 1, we have

n ny\2 _Bn22” 1 22n 2n
@ — By =1+ |— a<l+?a<2a,

a
from which we conclude

1 2a"

_— < —.
o (an _ IBn)2
This last inequality leads to

Ay SRy 2R <(1+ 2 )

o (an _ :Bn )2
from which we can obtain inequality (3.5).

(i) Suppose s = 1, i.e., n = p for p a prime. Then the inequality which
corresponds to (3.4) and which we want to prove is

p8,85 > (8,A,4,)7, ie., pd5 > & 'APAL.
Since pd4 > 2 and

8,(8,4,)" = &7 1(A4,)7,
it suffices to prove

3| < _2_'1’
(4,4,)

which follows from inequality (3.5).
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Case B: d < 0. From the preceeding lemma, we have
3.6) a>6>pB>0anda > 28,

hence

1 t
g @ e ]
ke of (—dy '
Let

(B7) 1 +8 = A, =%andA2=§.

Here 0 < A, < 1 and a > 28 implies
ot < 2a" — 287,

ie.,

Al = <2,

1.€.,
6, <L

Proceeding as in page 131 of [5], we need only to prove

(3.8) II @) > 11 @s,a02))""
tlv

tlv

Wr)y=-—1 wry=1
(1) Suppose s = 2. Then it suffices to prove
o 2n(a" — B7)

an_Bn<l+ M

3.9

i.e.,

2na®" > (2" + 4n)(—d)" — 2nB*".
We will show

2na®" > (2" + 4n)(—d)".

Here d < 0 and D*> + 4d > 0 imply D > 2\/—d, and d| (D* + 4d)
implies D* + 4d > —d. Hence

(D + VD* + 4d) > %(2\/‘—71 + V—d) = g\/—_d,

a =

0| —

from which we conclude that
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oF > —2 d> —2d,
4
and that
2o > 2n(—=2d)" = 2" 'n(—d)" > (2" + 4dn)(—d)".

(ii) Suppose s = 1, i.e., n = p' for p a prime. Then the inequality which
corresponds to (3.8) and which we want to prove is

P8, > (28,A)7, e, p > 8 '(24))".
Since p = 2 and §,(24))" = 8’]’~l(2A|)”, it is sufficient to prove

2 n
8,<——%—’—,,i.e.,A'{=(l+8,)"<(l - n),
(24) (24)

which follows from inequality (3.9).

Lemma 3.2 will be used in the last part of the proof of the following
result.

TueorEM 3.3. Let F,, = Q(0) be a real algebraic number field of degree
2n over Q with n > 1 odd such that

6 — X/M,, — 2(—dy" > 1,

where
2 2n — 1 — i 2n — i In—2i i
= S (77 () e
with D € N, d € Z, d|D* and D* + 4d > 0. For any positive divisor t of n,
define m,, by
G 0
My = —1 + jmﬂ’ b
where
6-'S (’ - i)D’—1’2id’.
S i

Then
So = {n,lt € N, tln, 1 # n}
is an independent system of units of F, = Q(6%) € F,,.

Proof. Since we have seen that S is a set of units of F,, so it remains to
show the independence; this will be achieved by induction on the number
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of prime divisors of n including multiplicity. We shall use the factorisation
of n,, in (3.1) and proceed as in [5].

If n is a prime number, the proof is immediate. We now assume that » is
not a prime number and that the theorem holds for all divisors m of n such
that m # n. Suppose that there exists a linear relation

3100 I1 2’ =1 with »(t) € Z.
nt

n#tn
By applying the norm N , F, with respect to the field ;, = Q(6%) where
n = mp for p a prime divisor of n, we obtain from Proposition 2.3

Tﬁn t/ lf Plt,
= p
NFn/Fm(n"') {T’m' lf p{t

Proceeding as in page 127 of [5], we conclude that either S, is independent
or (3.10) reduces to

(3.11) ( 11 n},{')( II n,;“') =+ 1

n#tlv n#*tly
Mry=1 mry=-—1
In (3.11), we can omit the condition ¢ # n since it is superfluous

whenever n # v, and it adds the factor ,, = —1 for n = v. So (3.11)
implies
(3.12) l—lI Ml = * l!_[ ',

1444 v

mry=1 Mey=—1

which contradicts Lemma 3.2.

4. Proof of the main theorem for n odd. In this section, » is always odd.
Under the hypotheses of the main theorem, we shall first prove a lemma
which will be used in the last part of the proof of the fact that

S = {gnka 11/,,/(,7) k € N, kln, k # n}

is an independent system of units of F,,.

LEmMA 4.1. Let v = p,...p,, where p,,..., p; are the distinct prime
factors of n. Then

(1T ) ( I W)

tly thv

wry=—1 wWry=1

> (11 ) ( T ).
tlv tly
=1 wry=-—1

Proof. We shall use the same notation as that used in the proof of
Lemma 3.2.
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Case A. d > 0. We must prove

( IT @ —1)”')( II (Ag—l)”“)

tly tlv

wWry=-—1 wWry=1

-~ ( Il_I (Atl _l)v/t)( I!_I (Atz __l)v/t)
;A(tt)v=l u(t)l=v—l

and we see that this follows directly from inequality (3.4).
Case B. d < 0. We need to prove

( I @ —1)”')( IT (A’2+1)““)

tly tly
wWr)y=-—1 wWry=1
> ( II @] —1)”')( T @ +1)V”),
lv v
#(tt)=l M!),=—I

which follows from (3.8).

Let us show that S is independent when nis odd. If n = 1, then § = {7}
is independent. Assume that » # 1 and that there exists a linear
relation

(4.1) (H &:‘,f’)( I1 W")

n*kln n#kln

with »(k), A(k) and a € Z. Using Proposition 2.2, we apply the norm
Ng, /, to obtain ™ = =1, i.e., a = 0. Applying now the norm N, and
using Theorem 3.3, we find

k) + NMk) =

whereupon relation (4.1) becomes

(42) (H s”‘k’)( II xp,,‘k”"") =1

n#kln n*kln

The proof is again by induction on the number of prime divisors of n
including multiplicity. If » is a prime number p, then (4.2) becomes

i.e.,

ie.,
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ie.,
0P*'/Gp =D*4+2d or 0= /G,

since this is impossible, S is independent whenever n = p.

Applying the norm Ne, /Fy where n = mp for p a prime divisor of n and
proceeding as in [5], we "have that either S is independent or that (4.2)
implies

(1 en)(Im w) - =( 11 ex)( I w)
Mk)-~| mk)=1 y{k)—l u(k)k|=v—|

which contradicts Lemma 4.1.

5. Proof of the main theorem for n even. Throughout this section, n is
always even. In order to show that

S = {gm’ \I/nk’ n

is an independent system of units of F, , we shall need two lemmas which
we shall prove under the hypotheses of the main theorem.

t,keN,tIn,kIn,t#n,k#n,2{£}

LEMMA 5.1. Let n be even. Then
1) 0 < a;

(i) a > 2|8l;

(i) |8] < 6.

Proof. This is similar to that of Lemma 3.1.

LEMMA 5.2. Let v = p,...p,, where p|, ..., p, are the distinct prime
factors of n. Then

IT 10> III &,
M')r__f_] p(tt)v=l
Proof. Lemma 5.1 yields

5.1) a>60>|B and a > 2|B| > 0;

6, = %(% -1).

hence

Let

52) 1+8=A=

K
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Here

n
An="7—[)m<2,
o’ —

because 28" << o”. Hence 0 < § < 1. As in [4], we have the inequalities
(5.3) BB< A — 1< 8.

Proceeding as in [4], we see that it suffices to prove

¢4  II @y > II @ay”
lv |
mr)’= -1 wr)=1
Since A" = A" < 2, we need only to prove

655 II @y =22 '( 11 (za)”/'),

thv tly
wry=—1 we)y=-—1
which is inequality (15) of [4].

Let us prove the independence of S when # is even. Suppose there exists
a linear relation

(5.6) (H 5""’)( II W’)

n#*tln n#*kln
n/k odd

with »(2), A(k), and a € Z. When we apply the norm Nr,/Fp W€ obtain

7" = =*1, i.e., a = 0, whereupon relation (5.6) becomes
(5.7) (H 5”"’)( IT xpﬁi“) =1
n#*tln n#kln
n/k odd
Suppose that n is a prime number. Since » is even, n = 2. So
S = {§,,, n}. Now a = 0 implies »(1) = 0, since
0 —_
§n = x4,
B
i.e.,
0+ a = B,
i.e.,

9 =D and 0 # 6*/G,.

The proof is once more by induction on the number of prime divisors of
n including multiplicity. Assume that n is not a prime number and that the
theorem holds for all divisors m of n with m # n. Therefore, whenever
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n = mt, with m # n,
= {gmt, \pmk,n't, k € N, tlm, klm, t + m, k * m, 2{%}

is an independent system of units of F, = Q(6"); in fact, if m is even, this
is the induction hypothesis and if m is odd, this is a result we proved in
Section 4.

If we start with the linear relation (5.6), we saw that it reduces to
relation (5.7).

We now apply the norm N, with respect to the field F,, = Q(6”)
where n = pm for p a prime divisor of n. From Proposition 2.2, we have

NesrFanlond) = {('—"'i)”ﬂ*lgm, ifple

when n/k is odd (so k is even) and when plk, we have

NFZ"/FZm(¢ﬂk) = Mn’k/p'
Let us first take p = 2. We then obtain

U= (IT M@ )(IT a6

2!: 2]1
A(k)
X (n!.‘_{ln NFZn/F2m(¢ ) )
n/k odd
_ 1) 20(1) 2u(1) 2M(k)
- (11 &) (I ) ( I e, )( 1T 42¢)
n#*tn n#tln n#tn n#kin
2t 2lr 4t n/k odd
4l
+21(2 212 2A(2k
(I ewrreo)( I ) I 2e).
m#*tm m#tlm m#*klm
2t 2lr m/k odd

(As usual, an empty product is 1.) Whatever the parity of m, we conclude
that A(2k) = 0 for any k # n/2 with k|(n/2) and n/2k odd, i.e.,

(5.8) A(k) = O for any k # n with k|n and n/k odd.

It seems amazing that we eliminated all the integers A(k). This is best
explained by the fact that if n = 2m and if

A

{k e N|kln, k # n,ZIz},

B = {k c lelm,k " m,2l-’£},
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then 4 and B have the same cardinality.
Next, we apply the norm N . with respect to the field F,, = Q(&#)
where n = mp for p a prime divisor of n. Thus, we obtain

1 = H NF2"/F2",(5:§I))

n#tln
+
_ i( H g;’r(li) p"(tp))( H 1::{(1;7)),
m#*tlm m#*tlm
plt ple

whereupon

(5.9) () = 0 for any ¢t # n with pzltln,
n . n
(5.10) »(t) = —pu(tp) for any ¢ # — with p | 1]-.
p p

From (5.9) and (5.10), we conclude that by applying this procedure to
all primes p|n, we obtain »(¢) = 0 for all proper divisors ¢ of n containing a
non-linear prime factor.

For all divisors ¢ of n (¢ # n) that are products of r distinct prime
factors, we obtain from (5.10) that

G111 w(1) = (= 1Y1(2).

If »(1) = 0, then »(t) = 0 and the theorem is proven. Let »(1) # 0. Then
(5.11) implies

(1)1t )

n*tly n#tly
wry=1 mry=-—1

which contradicts Lemma 5.2.

6. Conclusion. It is obvious that instead of n in the independent
system S of units of F,,, we can take 7, the fundamental unit of

Q(VD? + 4d).

For n = 1, 2, 3, § is a maximal independent system of units of
F,, = Q(#), in the sense that the cardinality of S is equal to the rank of
%,/ W,. For n = 1, the fundamental unit of Q(f) is known from a result
of Degert [7].

In a forthcoming paper, we will show that for n = 2, 3, S can be taken,
under certain hypotheses, as a fundamental system of units of F,, .

For n = 2, it will suffice to show, according to the method of Ljunggren
described in [7], that &,, is the smallest unit (>1) of F, such that

NF4/FZ(£21) =1
and that £, 7, is not a square of F,.
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In the case where n = 3, we will use Stender’s method: starting with
ny (>1) the fundamental unit of F,, we will show that n; = &y,
is the fundamental unit of F;; then we will prove that £, = —§3_llz,b3] 1S
the smallest unit >1 of F, such that

Neor(Eo) = £, N, = £ l;

once it is established that neither Eym, nor Eon% is a cube of F,, the
conclusion will be drawn from the fact that the group generated by

{&51, Y31, Mo} 1s equal to the group generated by {Ej, 15, 1y}

REFERENCES

1. L. Bernstein, Periodical continued fractions of degree n by Jacobi’s algorithm, J. reine
angew. Math. 213 (1964), 31-38.

2. Representation of v D" —d as a periodic continued fraction by Jacobi's al-
gorithm, Math. Nachr. 29 (1965), 179-200.
3. Guining units from units, Can. J. Math. 29 (1977), 93-106.

4. G. Frei and C. Levesque, On an independent system of units in the field K =
Q(\/n D" *d) where d|D", Abh. Math. Sem. Univ. Hamburg 5/ (1980), 160-163.

Independent systems of units in certain algebraic number fields, J. reine angew.
Math. 3771/312 (1979), 116-144.

6. F. Halter-Koch und H.-J. Stender, Unabhingige Einheiten fir die Kiorper K =

QA/D" = d) mit dID", Abh. Math. Sem. Univ. Hamburg 42 (1974), 33-40.

7. H.-J. Stender, Lisbare Gleichungen ax" — by" = ¢ und Grundeinheiten fiir einige
algebraische Zahlkorper vom Grade n = 3, 4, 6, J. reine angew. Math. 290 (1977),
24-62.

Université, Laval,
Québec, Québec

https://doi.org/10.4153/CJM-1985-034-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-034-x

