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Summary 

An estimator is proposed for the parameter C = 4Nc. where N is the population size and c is the 
recombination rate. The estimator is appropriate for use with sequence or restriction site data from 
random samples from within populations. Properties of the estimator are investigated for an 
infinite-sites neutral model using Monte Carlo simulations. The median and mode of the 
distribution of the estimator are close to the true value for all parameter values examined, but 
large data sets are required to obtain reliable estimates. 

1. Introduction 

In the neutral theory of molecular evolution one 
parameter plays a dominant role when considering 
within-population molecular variation. That para­
meter is 6 = 4Nu, where TV is the population size and 
u is the neutral mutation rate. Methods of estimating 
this parameter and statistical properties of the 
estimates are well known under the neutral model 
(Ewens, 1979; Tajima, 1983). With intermediate levels 
of recombination (as in most nuclear genes) there is 
another parameter which plays a prominent role in 
this model, namely, C = 4Nc, where c is the recom­
bination rate. This parameter affects, among other 
things, the distribution of linkage disequilibrium 
between sites and the variance of the number of 
segregating sites in samples. Unfortunately, relatively 
little is known about estimating C. A number of 
authors have considered the related problem of 
estimating TV when c is known (Langley, 1977; Laurie-
Ahlberg & Weir, 1979; Hill, 1981). Chakravarti et al. 
(1984) presented a method for estimating C that is 
appropriate for nucleotide data, but the statistical 
properties of their estimate are not known (Weir & 
Hill, 1986). Hudson & Kaplan (1985) proposed a 
method of estimating C with nucleotide data, but the 
method is difficult to apply, requiring simulations 
even to obtain an estimate, and the error bounds on 
the estimate are wide. In summary, no estimator of C 
is known that is well characterized statistically. In this 
note I present a new estimator of C which is relatively 
easy to calculate and that is appropriate for D N A 
sequence and restriction map data. Analytical results 

concerning the statistical properties of this estimate 
are not obtained, but Monte Carlo simulation results 
are presented which characterize the statistical pro­
perties of the estimator. 

The estimator is based on the statistic S\, the 
variance of the number of site differences between 
pairs of sequences in a sample. This quantity was first 
suggested by Sved (1968) as a measure of multilocus 
association. Its use for that purpose has been examined 
by Brown, Nevo & Feldman (1980), and by Cha-
kraborty (1981, 1984). 

2. The estimator 

Consider a sample of n gametes, labelled from 1 to n, 
each of which has been sequenced at a homologous 
region (a locus) that is m nucleotide sites long. Let 
ktj denote the number of sites at which gamete / and 
gamete j differ at the locus. Let S\ denote the variance 
of the sample distribution of k(f: 

s* = s s(*„-£)7»a (i) 
i-ii-i 

where k ( = ZS&^/w2) is the average of all the kip 

including / = j . Brown, Feldman & Nevo (1980) found 
that S\ can also be written as a function of the 
pairwise linkage disequilibria between the sites: 

m 771 771 771 

5 j = S A , - S A i

, + 2 S S S S [2pjtPlk + 
j j } l>] i k 

(2) 
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where pn is the sample frequency of the rth allele at 
site j , h} ( = 1 — ) is the sample estimate of the 
heterozygosity at site j , and Z^jj. is the sample estimate 
of the linkage disequilibrium between the z'th allele at 
site j and kth allele at site /, that is, 

Dik = Stk PjiPlk 

where is the sample frequency of the gamete with 
allele i at site j and allele k at site /. 

The first two sums on the right-hand side of (2) are 
just sums of single-locus quantities, and their expec­
tations do not depend on the recombination rates 
between the sites. In the appendix the expectation of 
the quadruple sum on the right-hand side of (2) is 
calculated for an infinite-site neutral model described 
by Hudson (1983). It is assumed that the population 
is panmictic and at statistical equilibrium under the 
neutral model. In this model each of the m sites 
evolves according to an infinite-allele model with 
neutral mutation rate u/m. Also, if the m sites are 
labelled in order from 1 to m, the recombination rate 
between sites i and j is assumed to be c | /(m — 1). 
If m is large and u/m small the expectation of the 
quadruple sum in (2) is a function of 9( = 4Nu), 
C( = 4Nc) and n. It is shown in the appendix that the 
expectation can be written as the product of 92 and a 
function of C and n, that is, 

E(Sl - Zh} + zZh2) = 92 g(C, ii). (3) 

This suggests the estimator, C, which is defined as the 
solution of the following equation: 

(SI (4) 2Zhj + 2Zh2)/92 =g(C,ri), 

where 6 = Tih}[n/(n — l)], which is a nearly unbiased 
estimate of 9 if 6/m <̂  1. The function g(C, n) is given 
in the appendix and is plotted in Fig. 1 for several 
values of n. The solution of equation (4) for any 
observed value of the left-hand side can be obtained 
approximately directly from Fig. 1, or the solution 
can be obtained easily numerically. 

To investigate the statistical properties of C, the 
Monte Carlo method of Hudson (1983) was used to 
generate random samples of gametes which were used 
to calculate C. In Fig. 2 are shown estimates of the 
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Fig. 2. The estimated distribution of C/C for three 
different sample sizes and values of 9 and C. In each 
case, 2000 independent samples were generated to obtain 
the distribution. 
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Fig. 3. Estimated percentiles of C as a function of C for 
samples of size 11 and 40. Estimates of the 5, 50 and 95 
percentiles of the distribution of C were obtained at C 
equal to 15, 25, 50 and 100. The estimated median values 
are shown with circles. All estimates are based on 2000 
samples. 

distribution of C for three different cases. It is clear 
that, for n = 11 and C = 6 = 25, the estimate is likely 
to be very poor. Note especially the long and 
substantial tail to the right. With n = 20 and C = 9 = 
50, the estimator is better but not likely to be very 
precise. In this case there is still a substantial 
probability that C differs from the true value by more 
than a factor of two, but the tail to the right is 
considerably reduced from the previous case. If the 
sample size is increased to 40 and the size of the region 
examined is increased so that C = 9 = 100, the 
distribution of C is fairly tightly centred about the 
true value, indicating that a fairly reliable estimate can 
be obtained in this case. In all three cases the mode of 
the distribution is near the true value. 
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Fig. 4. Estimated percentiles of C as a function of 0 for 
samples of size 11 and 40. 
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Fig. 5. Estimated percentiles of C as a function of C for 
samples of size 20 and four different levels of mutation, 
9 = C, C/2, C/4 and C/8. 

In Fig. 3, estimated percentiles of C are shown as a 
function of C, for the case of C = 9 and for n = 11 
and n = 40. The figure clearly shows that increasing 
the sample size from 11 to 40 substantially improves 
the estimate, especially for large values of C. Also, the 
estimate improves as C and 8 increase, as one would 
expect. Note also that for these parameter values the 
median of the distribution of C is near the true 
value. 

In Fig. 4 estimated percentiles of C are plotted as a 
function of 9, for C fixed at 50. For n = 11, the 
estimate deteriorates rapidly as 6 decreases below 20. 
For n = 40, the estimate is better down to somewhat 
lower values of 6. For either sample size, the reliability 
of the estimator is essentially no better with 9 = 50 
than with 9 = 25. 

In Fig. 5, estimated percentiles of C are plotted as 
in Fig. 3, but for n = 20 and for several different 
mutation rates, namely 9 = C, 9 = C/2, 6 = C/4 and 
9 = C/8. Clearly, lower mutation rates result in much 
poorer estimates if C is small enough, but if C is 
sufficiently large, then even if 9 = C/8 reliable 
estimates can be obtained. 

3. An application 

The Drosophila melanogaster sequence data obtained 
by Kreitman (1983) can be used to obtain an estimate 
of C, although it should be noted that his sample of 
flies was not a random sample. These data consist of 
a eleven sequences, 2-7 kilobases long, encompassing 
the Adh locus. There are 43 polymorphic nucleotide 
sites and 6 sites of length polymorphism. At two of the 
sites of length polymorphism, there are more than two 
length variants present in the sample. These two sites 
were ignored in the following calculations. For these 
data 77 = 11, and we calculate that 0 ~ \6, S\ = 83-6 
and C ~ 25. Additional simulations show, for n = 11, 
9 = 16 and C = 80, that the probability of C being less 
than or equal to 25 is about 0-025. We conclude that 
C is very likely less than 80. Since the tail of the 
distribution of C is so large for small values of C, no 
small value of C is incompatible with the observation 
C = 25. Using the same data but a different method, 
Hudson & Kaplan (1985) estimated C to be ap­
proximately 35, and they were able to conclude that C 
was likely to be between 5 and 150. Thus their 
estimate is similar to ours, their upper bound on C is 
higher, but they are able to establish a lower bound as 
well. 

Note that we can estimate c/u by C/9, and that for 
the Kreitman data this is approximately 25/16 ~ 1-6. 
This ratio can be estimated from completely inde­
pendent empirical data. The average recombination 
rate per base pair in D. melanogaster females has 
been estimated to be 1-7 x 10"8 (Chovnick, Gelbart & 
McCarron, 1977). Since there is essentially no re­
combination in males and the sequences are 2-7 
kilobases long, we estimate 

c si (1-7 x 10-8) (0-5) (2-7 x 103) = 2-3 x 10"5 

for the Adh region sequenced by Kreitman. (In­
cidentally, we can with this information estimate TV by 
C/4c ~ 3 x 10s.) The neutral mutation rate has been 
estimated for a variety of organisms to be in the range 
2 x 10"9 to 5 x 10~9 mutations per base pair per year 
(Li, Lou & Wu, 1985). If D. melanogaster averages 
four generations a year (probably an underestimate), 
then taking the neutral mutation rate to be 4 x 10~9, 
M ~ (2-7 x 1 0 3 ) 4 x 10- 9 /4 = 2-7 x 10"6, and c/u = 
( 2 - 3 x l 0 - 6 ) / ( 2 - 7 x l 0 - 6 ) ^ 8 . In this calculation we 
have assumed that all sites mutate at the rate of 
4 x 10~9, including the 765 sites that code for protein. 
This is likely to be an overestimate of the average 
mutation rate of these sites. Given the generation time 
and the mutation rate that we have assumed, c/u 
could very plausibly be more than twice our estimate 
of eight. This estimate contrasts sharply with our 
estimate C/9 ^ 1-6. Both of these estimates of c/u are 
subject to considerable error, but these calculations 
certainly suggest a problem. The problem may be due 
to the fact that our estimates of C and 9 rely on the 
assumption of a panmictic population at statistical 
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equilibrium under the neutral model. There is now 
strong evidence that the molecular variation at the 
Adh locus of D. melanogaster is not compatible with 
this assumption, and that the level of polymorphism 
in the Adh locus is greater than would be expected 
under the neutral model (Kreitman & Aguade, 19866; 
Hudson, Kreitman & Aguade, 1987). It is interesting 
to speculate that other regions of the D. melanogaster 
genome may not show such deviations from neutrality 
and may exhibit much larger c/u ratios, more in line 
with our expectations. It would also be very interesting 
to estimate the c/u ratio in species with long generation 
times such as humans. In these species the neutral 
mutation rate per generation may be considerably 
greater than in Drosophila but the recombination rate 
per generation may not be much different, in which 
case we would expect to see much smaller c/u ratios in 
these long-generation species than in short-generation 
species such as D. melanogaster. 

4. Discussion 

The estimator C is relatively easy to calculate and is a 
reliable estimator if a large enough data set is obtained. 
Unfortunately, such large data sets may require 
prohibitively large research efforts. We have seen that 
even with eleven sequences each 2-7 kilobases long, the 
estimate is not likely to be very precise. It appears that 
a sample four times as large and sequences four times 
as long would be needed to obtain a reliable estimate 
of C in Drosophila melanogaster. With current 
sequencing methods it appears that such large data 
sets are unlikely to be obtained. Intensive restriction-
site mapping may be a more efficient method for 
obtaining information about C. However, since 
restriction-site mapping typically detects only a small 
fraction of the variability that is present at the 
sequence level, the ratio C/0 is made effectively larger. 
As shown in Figs. 4 and 5, if C/0 is more than four, 
poor estimates of C are likely, except when C is quite 
large. As discussed in the previous section, C/0 may 
be larger than four even with sequence data. If 
restriction mapping techniques made it possible to 
examine much longer regions of the genome, the 
larger C/0 ratio might not prevent good estimates 
from being obtained. Kreitman & Aguade (19866) 
have recently examined the same 2-7-kilobase segment 
that was discussed above in 87 lines using a battery of 
four-cutter restriction enzymes. With this technique 
they were able to detect approximately 2 0 % of the 
polymorphisms that would have been detected by 
complete sequencing, resulting in an effective 9 of 
about three. Even with the use of many four-cutter 
enzymes as in this case, if C equals 25 the ratio of C 
to the effective 0 is about 8, and our results in Fig. 5 
(for n = 20) suggest that one would have to examine 
a region more than four times as long to obtain 
reasonably good estimate. 

In species with longer generation times, such as 

humans, the ratio of C/0 may be smaller and the use 
of restriction maps may be more efficient. Since such 
species may typically have smaller effective population 
sizes, it may be necessary to examine very long 
segments of D N A to obtain good estimates of C. For 
example, consider the question of how long a region 
must be examined in humans to make C equal to 100, 
a value which Figs. 3, 4 and 5 indicate is necessary to 
obtain a good estimate. If we take the effective 
population size of humans to be 104 and the 
recombination rate to be 2 x 10~8 per base pair, 
(C = 100) corresponds to about 100 kilobases. With 
this large a region, to obtain a reasonably reliable 
estimator of C one must still use a large number of 
restriction enzymes, so that the effective 0 is at least 
C/8 = 12-5 (see Fig. 5). If the effective 0 is 12-5 the 
number of polymorphic restriction sites in a sample of 
20 has expectation equal to approximately 12-5* log 
(20) ~ 37. To summarize, these calculations suggest 
that, in order to obtain a reliable estimate of C in the 
human population, one must examine about 100 
kilobases of D N A , in say twenty individuals, with 
enough different restriction enzymes so that about 40 
restriction-site polymorphisms are observed. 

Despite these difficulties, as demonstrated in Section 
3, useful approximate estimates can be obtained with 
available data. More work needs to be done to 
evaluate the sensitivity of the estimates to departures 
from the equilibrium neutral model. For example, it 
would be useful to know how recent bottlenecks, 
population expansions or population subdivision 
would affect the estimates. It is also important that 
methods of estimating C such as that used by 
Chakravarti et al. (1984) be thoroughly investigated. 
Though some improvements of the method of Cha­
kravarti et al. (1984) could certainly be made (Weir & 
Hill, 1986), the method uses information on the 
distances between the polymorphic sites, and therefore 
it may provide better estimates with smaller data sets 
than a method based on S\. 
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Appendix 

We outline here a method for obtaining the ex­
pectation of the quantity H = SI — 2Zh} + 2Zhf. We start 
by considering an ra-site model where each site evolves 
according to an infinite-alleles model with mutation 
rate per generation of u/m. We assume that the 
recombination rate between site j and site / is cn = 
c/l—j\ /(m— 1). For u and c small, the mutation rate 

for all w-sites together is u, and the recombination 
rate between the two most distant of the sites is c. We 
let C denote 4Nc, as before, and we let Cjt denote 
4Ncn. We also define the sample identity coefficients: 

* „ = £(SECg£) 2 ) and 

where gfk, pn and plk are as defined earlier in the body 
of this note. 

As Brown, Feldman & Nevo (1980) pointed out, it 
is clear from (2) that H can be written as: 

tf=2S2ZS [(*£)*-/>,?/>,?]. 
j l>j i k 

So obviously, 

£( / / ) = 2 S 2 [& , , -£ , , ] . ( A l )
i l>i 

The quantity <b}l — k}l is essentially what Ohta (1980) 
referred to as the identity excess. Therefore our 
estimator is actually based on the identity excess 
divided by an estimate of 62. The sample identity 
coefficients on the right-hand side of (A 1) are known 
under the neutral model, and as shown by Hudson 
(1985), can be written as: 

% = (l-l/n)%+l/n, (A2)

and 

A , L = » , v « 8 + 2 « , ( ^ + 2 r > L ) / I I » 

+ 2«1(2<D, + %)/ns+l/n\ (A3) 

where n( = (n-i)(n-i+1)...(« — 1) and <I>, = 1/ 
( 1 + 0 / m ) , and where An, r u and <bn are population 
identity coefficients whose values are known. Using 
the formulas for these population identity coefficients 
given by Strobeck & Morgan (1978) and assuming 
that the recombination rate between sites j and / is 
Cjl = c\j—l\/(m— 1) we find after a good deal of 
algebra that: 

E(H) = 2 S S [(02/m*)ACn) + 0(l/m3)] 
5 l>i 
m 

= 2 S [(82*m2)j\iC/m) (m- i) + 0(\/m2)], 

(A4) 

where 

f[z) = [(z + 14) + z(z + 12)In - (z + 2) (z + 13) /« 2 

+ 2(z + 6 ) / « 3 ] / A 

with D = z2 +13z + 18. This result can also be obtained 
from the results of Weir & Hill (1980). The limit as m 
tends to infinity of the right-hand site of (A 4) is just 
a Riemann integral, that is, for large m: 

E(H)^2(62/C2) \CAz)(C-z)dz 
Jo 

= e2g(C,n) 
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where 

g(C,ri) = (2/C2) I J\z)(C-z)dz 
Jo 

= ( 2 / C 2 ) { ( - C + ( C - l ) / 1 + 2 ( 7 C + 9 ) / 2 ) 
+ ( C 2 / 2 + C + (5 - O A - 18(C + 1) I2)/n 
+ (-C2/2 + 2C-2(C+9)I1-4(2C+9)Q/n2 

+ ( - 2 C + 2 ( C + 7 ) / 1 + 12(C+3) Q/n3}, 

Jo 
-dz 

z 2 + 1 3 z + 1 8 

= | l o g [ ( C 2 + 1 3 C + 1 8 ) / 1 8 ] - f 72 ; 

and 

Jo z 2 + 13z+18 

1 ( 2 C + 1 3 - V 9 7 ) ( 1 3 + V 9 7 ) 
V 9 7 "~" (2C + 13 + V97) ( l3 - V97) 

log 
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