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Constructions of Uniformly Convex
Functions

Jonathan M. Borwein and Jon Vanderwerff

Abstract. We give precise conditions under which the composition of a norm with a convex function

yields a uniformly convex function on a Banach space. Various applications are given to functions of

power type. The results are dualized to study uniform smoothness and several examples are provided.

1 Introduction and Preliminary Results

We work in a real Banach space X whose closed unit ball is denoted by BX and whose

unit sphere is denoted by SX . By a proper function f : X → (−∞,+∞] we mean a

function which is somewhere real-valued, in other words, its domain, dom f , is not

empty. A proper function f : X → (−∞,+∞] is convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ)y for all x, y ∈ dom f , 0 ≤ λ ≤ 1.

The conjugate function of f : X → (−∞,+∞] is defined for x∗ ∈ X∗ by

f ∗(x∗) := sup
x∈X

〈x∗, x〉 − f (x).

Relevant background material on convex analysis can be found in various mono-

graphs such as [5, 6, 14, 16].

In particular, we will frequently use, without mention, the elementary fact that

when f : R → (−∞,+∞] is convex and t0 is in the interior of the domain of f , then

f ′
+(t0) := lim

h→0+

f (t0 + h) − f (t0)

h

exists and is finite, and satisfies

f (t) ≥ f (t0) + f ′
+(t0)(t − t0)

for all t ∈ R. This is a particular instance of the more general max formula; see [5] or

[6, Corollary 2.1.3 and Theorem 4.1.10].

Received by the editors November 8, 2009; revised February 27, 2010.
Published electronically June 14, 2011.
The first author’s research was supported by the Australian Research Council.
AMS subject classification: 52A41, 46G05, 46N10, 49J50, 90C25.
Keywords: convex function, uniformly convex function, uniformly smooth function, power type,

Fenchel conjugate, composition, norm.

697

https://doi.org/10.4153/CMB-2011-049-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-049-2


698 J. W. Borwein and J. Vanderwerff

Let (X, ‖ · ‖) be a Banach space. The modulus of convexity δX is defined for 0 ≤
ε ≤ 2 by

δX(ε) := inf
{

1 −
∥

∥

∥

x + y

2

∥

∥

∥
: ‖x‖ = ‖y‖ = 1, and ‖x − y‖ ≥ ε

}

.

In the case δX(ε) > 0 for each ε > 0, we will say ‖ · ‖ is a uniformly convex norm.

If there exist C > 0 and p ≥ 2 such that δX(ε) ≥ Cεp for all 0 ≤ ε ≤ 2, then

δX is said to be of power type p. Further information can be found in the excellent

books [2, 3, 10], and various equivalent forms of the definition can be found in [9].

Although the terminology is standard, δX is not what is typically called a modulus;

see [1] for a nice development of relevant terminology.

Analogously, given a proper lower semicontinuous convex function f : X →
(−∞,+∞], we will say its modulus of convexity is the function δ f : [0,+∞) →
[0,+∞] defined by

δ f (t) := inf
{ 1

2
f (x) +

1

2
f (y) − f

( x + y

2

)

: ‖x − y‖ ≥ t, x, y ∈ dom f
}

,

where the infimum over the empty set is +∞. We say that f is uniformly convex when

δ f (t) > 0 for all t > 0, and f has modulus of convexity of power type p (or δ f is of

power type p) if there exists C > 0 so that δ f (t) ≥ Ct p for all t > 0. In [1, 15, 16],

uniformly convex functions are defined using a closely related notion called the gage

of uniform convexity, and it follows from [15, Remark 2.1] that the definition in those

sources is equivalent to the one used here. Some natural confusion may arise with

the terminology we use, because a uniformly convex norm is never uniformly convex

when considered as a function—it is uniformly convex on its sphere.

A systematic exposition of uniformly convex norms can be found in [10, §IV.4,

IV.5], and [16, §3.5] presents a thorough account of uniformly convex functions.

However, explicit constructions of such functions, especially those derived from a

uniformly convex norm, appear to be somewhat sparse. For example, when ‖ · ‖ is a

uniformly convex norm on X, it is easy to see that f := ‖ · ‖r with r > 1 is uniformly

convex on bounded sets, that is for each n ∈ N and ε > 0,

inf
{ 1

2
f (x) +

1

2
f (y) − f

( x + y

2

)

: ‖x − y‖ ≥ ε, x, y ∈ dom f ∩ nBX

}

> 0;

however, f is not necessarily uniformly convex. In fact, [4] shows when r ≥ 2, that

f is uniformly convex if and only if δX is of power type r. Our goal in this note

is provide precise conditions under which g ◦ ‖ · ‖ is uniformly convex when g is a

nondecreasing convex function on [0,+∞).

In many algorithms, uniform convexity on bounded sets and other weaker forms

of convexity suffice for their implementation, as can be seen, for example, in [7, 8].

Nonetheless, beyond their theoretical interest, uniformly convex functions are dual

under conjugation to uniformly smooth convex functions [1]. Also, when considered

with moduli of power type, there is a tight duality with Hölder continuity conditions

on the derivatives (see [1], [16, Theorem 3.5.10, Corollary 3.5.11, Theorem 3.5.12]).
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Because uniformly convex norms, and even those with some power type are (abun-

dantly) available on superreflexive spaces, as is discussed in the monographs [2, 10],

we believe it is important to find explicit conditions under which the composition

with a norm yields a uniformly convex function (or even better, one with modulus of

power type). Inter alia, we adumbrate the somewhat subtle relationship between no-

tions of uniform convexity for norms—based on behavior on the sphere—and those

for convex functions.

We will use the following simple examples of uniformly convex functions on the

real line recorded in [6, Exercise 5.4.2].

Fact 1.1 Suppose that a function f on R satisfies f (n) ≥ α > 0 on [a,+∞), where

n ≥ 2 is a fixed integer, and that f (k) ≥ 0 on [a,+∞) for k ∈ {2, . . . , n+1}. Define the

function g by g(x) := f (x) for x ≥ a and g(x) := +∞ for x < a. Then g is uniformly

convex with modulus of convexity of power type n.

In particular, for b > 1, let g(x) := bx for x ≥ 0, and g(x) := +∞ otherwise. Then

g is uniformly convex with modulus of convexity of power type p for any p ≥ 2.

Similarly, using Taylor series one can show that for p ≥ 2 and g(x) := xp for x ≥ 0

and g(x) := +∞ otherwise, g is uniformly convex with modulus of convexity of

power type p.

2 Constructions of Uniformly Convex Functions

Our first objective is to determine precisely when a composition with a norm yields

a (continuous) uniformly convex function.

Theorem 2.1 Suppose (X, ‖ · ‖) is a Banach space and f : [0,+∞) → [0,+∞) is

convex and nondecreasing. Then f ◦‖ · ‖ is uniformly convex if and only if f is uniformly

convex and ‖ · ‖ is a uniformly convex norm while

(2.1) lim inf
t→∞

f ′
+(t) · δX

( ε

t

)

· t > 0

for each ε > 0.

Proof (⇒): Clearly f is uniformly convex, because for fixed x0 ∈ SX , we have that

f (t) = f (‖tx0‖) and so f is a uniformly convex function. Similarly, ‖ · ‖ is a uni-

formly convex norm. Indeed, suppose ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ → 2. Then

1

2
f (‖xn‖) +

1

2
f (‖yn‖) − f

(
∥

∥

∥

xn + yn

2

∥

∥

∥

)

→ 0,

because f is continuous at 1. The uniform convexity of f ◦‖ · ‖ implies ‖xn−yn‖ → 0;

thus ‖ · ‖ is a uniformly convex norm.

Thence, suppose for some ε > 0 and tn → ∞, that limn→∞ f ′
+(tn) ·δX( ε

tn
) · tn = 0.

Now choose un, vn ∈ SX such that ‖un − vn‖ ≥ ε
tn

but

∥

∥

∥

un + vn

2

∥

∥

∥
≥ 1 − 2δX

( ε

tn

)

.
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Let xn := tnun and yn := tnvn. Then ‖xn − yn‖ ≥ ε for all n, but

f
(∥

∥

∥

tnun + tnvn

2

∥

∥

∥

)

≥ f (‖tnun‖) − 2tnδX

( ε

tn

)

· f ′
+(tn)

≥ f (‖tnun‖) − 2εn where εn = tnδX

( ε

tn

)

· f ′
+(tn) → 0,

which contradicts the uniform convexity of f ◦ ‖ · ‖.

(⇐): Suppose for each ε > 0, lim inft→∞ f ′
+(t) · δX( ε

t
) · t > 0, f is uniformly

convex and ‖ · ‖ is a uniformly convex norm. Suppose f ◦ ‖ · ‖ is not uniformly

convex. Then there exist (xn), (yn) ⊂ X and ε > 0 such that ‖xn − yn‖ ≥ ε for all

n ∈ N, but

(2.2)
1

2
f (‖xn‖) +

1

2
f (‖yn‖) − f

(
∥

∥

∥

xn + yn

2

∥

∥

∥

)

→ 0.

First suppose lim supn→∞

∣

∣‖xn‖ − ‖yn‖
∣

∣ > 0. By switching roles of xn and yn as

necessary, and passing to a subsequence, we may assume ‖xn‖ − ‖yn‖ ≥ η > 0 for

all n ∈ N. Thus using the fact f is nondecreasing and uniformly convex, we have

1

2
f (‖xn‖) +

1

2
f (‖yn‖) − f

(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≥
1

2
f (‖xn‖)

+
1

2
f (‖yn‖) − f

( ‖xn‖ + ‖yn‖

2

)

≥ δ f (η) > 0 for all n ∈ N.

This is a contradicion with (2.2). Thus, for the rest of the proof we may suppose

(‖xn‖ − ‖yn‖) → 0.

Case 1: Suppose (xn) is a bounded sequence. By passing to a subsequence as nec-

essary, we may assume ‖xn‖ → α and ‖yn‖ → α for some α ≥ 0. Because

‖xn − yn‖ ≥ ε, it is clear that α > 0, and because ‖ · ‖ is a uniformly convex norm,

we obtain

lim sup
n→∞

∥

∥

∥

xn + yn

2α

∥

∥

∥
≤ 1 − δX

( ε

α

)

.

Consequently, lim supn→∞ ‖ xn+yn

2
‖ ≤ α[1 − δX( ε

α )]. Using the fact that f is convex

and nondecreasing, we obtain

lim inf
n→∞

1

2
f (‖xn‖) +

1

2
f (‖yn‖) − f

(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≥ lim inf
n→∞

f
( ‖xn‖ + ‖yn‖

2

)

− f
(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≥ f (α) − f
(

α− αδX

( ε

α

))

> 0.

which contradicts (2.2).
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Case 2: It remains to consider the situation where (xn) is unbounded. In fact, any

bounded subsequence of (xn) would yield a contradiction as above, so we let αn :=

‖xn‖ and assume αn → ∞. Further, because we now know that (‖xn‖ − ‖yn‖) → 0,

interchanging xn and yn as necessary, we write ‖yn‖ = βn, where αn = βn + ηn,

ηn ≥ 0 and ηn → 0.

Now let x̃n := 1
αn

xn and ỹn := 1
βn

yn. Then ‖x̃n − ỹn‖ ≥ ε−ηn

αn
. Fix N ∈ N such that

‖x̃n − ỹn‖ ≥ ε
2βn

for n ≥ N. Then

∥

∥

∥

x̃n + ỹn

2

∥

∥

∥
≤ 1 − δX

( ε

2βn

)

for n ≥ N.

Let

β̃n :=
βn + αn

2
− δX

( ε

2βn

)

· βn.

Note that ‖xn+yn‖ ≤ βn‖x̃n+ ỹn‖+ηn, and that β̃n/βn → 1 (since βn → ∞, ηn → 0).

Then, for n ≥ N, the monotonicity of f ensures that

f
(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≤ f
(

βn

∥

∥

∥

x̃n + ỹn

2

∥

∥

∥
+
ηn

2

)

≤ f
(

βn − δX

( ε

2βn

)

· βn +
ηn

2

)

= f (β̃n).

The convexity of f guarantees that

1

2
f (αn) +

1

2
f (βn) ≥ f

( αn + βn

2

)

≥ f (β̃n) + δX

( ε

2βn

)

· βn · f ′
+(β̃n), for n ≥ N.

Hence

(2.3) f (β̃n) ≤
1

2
f (αn) +

1

2
f (βn) − δX

( ε

2βn

)

· βn · f ′
+(β̃n)

=

1

2
f (‖xn‖) +

1

2
f (‖yn‖) − δX

( ε

2βn

)

· βn · f ′
+(β̃n), for n ≥ N.

To complete the proof, it remains to verify that

(2.4) lim inf
n→∞

δX

( ε

2βn

)

· βn · f ′
+(β̃n) > 0,

and as a consequence it will follow that (2.3) contradicts (2.2). Indeed, since

β̃n/βn → 1, for sufficiently large n, β̃n ≥ 1
2
βn and because δX is nondecreasing on

[0, 2], this additionally ensures δX( ε
2βn

) ≥ δX(
ε
4

β̃n
) for such n. Consequently,

δX

( ε

2βn

)

· βn · f ′
+(β̃n) ≥

1

2
δX

( ε/4

β̃n

)

· β̃n · f ′
+(β̃n) for sufficiently large n.

Applying (2.1) with ε/4 replacing ε to the right-hand side of the previous inequality,

one deduces (2.4) as desired.
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We next construct continuous uniformly convex functions using any uniformly

convex norm on a superreflexive Banach space.

Example 2.2 Let X be a Banach space with uniformly convex norm ‖ · ‖. We define

f (t) := t2 for 0 ≤ t ≤ 1 while

f (t) := t2 +

∫ t

1

1

δX(u−2)
du when t > 1.

We may apply Theorem 2.1 to show f ◦ ‖ · ‖ is uniformly convex. We recall that δX

is continuous, positive, and nondecreasing on (0, 2] (see [12]), and so f ′ is positive

and increasing on [0,+∞). Thus f is convex and increasing on [0,+∞). Moreover,

t 7→ t2 is uniformly convex (hence so is its sum with another convex function), and

so f is uniformly convex. Now, for t > 1, f ′(t) = 2t + 1/δX(t−2). For fixed ε > 0

when t > ε−1, we then have

f ′
+(t) · δX

( ε

t

)

· t >
1

δX(t−2)
· δX

( ε

t

)

· t ≥ t

and so (2.1) holds.

Further examples will be given after the following more quantitative result con-

cerning moduli of power type.

Theorem 2.3 Let (X, ‖ · ‖) be a Banach space, let f : [0,+∞) → [0,+∞) be a convex

nondecreasing function and let p ≥ 2.

(i) Suppose δ f and δX are both of power type p and f ′
+(t) ≥ Ct p−1 for some C > 0

and for all t > 0. Then f ◦ ‖ · ‖ has modulus of convexity of power type p.

(ii) Conversely, if f ◦ ‖ · ‖ has modulus of convexity of power type p, then δ f and δX

are both of power type p. In the case that δX additionally satisfies

(2.5) 0 < lim inf
ε→0+

δX(ε)

εp
< ∞,

i.e., the modulus δX is no better than power type p, then there exists C > 0 such

that

f ′
+(t) ≥ Ct p−1 for all t > 0.

Proof (i) Let A, B, and C be positive constants such that

δ f (ε) ≥ Aεp for all ε > 0, δX(ε) ≥ Bεp for all 0 ≤ ε ≤ 2,

f ′
+(t) ≥ Ct p−1 for all t > 0.

Let ε > 0 be fixed, and suppose x, y ∈ X satisfy ‖x − y‖ ≥ ε. We may assume

‖y‖ ≤ ‖x‖. Suppose first that ‖y‖ + ε/2 ≤ ‖x‖. Using the modulus of convexity of
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f , we obtain

(2.6)
1

2
f (‖x‖) +

1

2
f (‖y‖) − f

(∥

∥

∥

x + y

2

∥

∥

∥

)

≥
1

2
f (‖x‖) +

1

2
f (‖y‖) − f

( ‖x‖ + ‖y‖

2

)

≥ A
( ε

2

) p

.

Thus, for the remainder of the proof we will assume ‖y‖ + ε/2 > ‖x‖.

Let a := ‖y‖ and x̃ := x/‖x‖, ỹ := y/‖y‖. Then ‖y − ax̃‖ > ε/2. Consequently,

‖ỹ − x̃‖ > ε
2a

. Because δX(t) ≥ Bt p for 0 ≤ t ≤ 2, we deduce that

∥

∥

∥

x̃ + ỹ

2

∥

∥

∥
≤ 1 − B

( ε

2a

) p

and so

(2.7)
∥

∥

∥

x + y

2

∥

∥

∥
≤ a

(∥

∥

∥

x̃ + ỹ

2

∥

∥

∥

)

+
‖x‖ − a

2
≤

1

2
‖x‖ +

1

2
‖y‖ − Ba

( ε

2a

) p

.

Case 1: We suppose Ba( ε
2a

)p ≥ a/2. Recalling that ‖x‖ + ‖y‖ ≥ ‖x − y‖ ≥ ε, we

have ‖y‖ ≥ ε/4 since ‖y‖ ≥ ‖x‖− ε/2. Because a = ‖y‖, it follows that a/2 ≥ ε/8.

Thus, letting t0 := (‖x‖ + ‖y‖)/2 − a/2, we have t0 ≥ a/2, and the nondecreasing

property of f ensures

f
(∥

∥

∥

x + y

2

∥

∥

∥

)

≤ f (t0).

Now we use this with the convexity of f to compute,

(2.8)
1

2
f (‖x‖) +

1

2
f (‖y‖) ≥ f

( ‖x‖ + ‖y‖

2

)

≥ f (t0) + f ′
+(t0) · (a/2)

≥ f (t0) + f ′
+(a/2) · (a/2) ≥ f (t0) + f ′

+(ε/8) · (ε/8)

≥ f
(∥

∥

∥

x + y

2

∥

∥

∥

)

+ C
( ε

8

) p

.

Case 2: It remains to address the situation when Ba( ε
2a

)p ≤ a/2. Then the right-

hand side of (2.7) is at least a/2. Now use the fact f ′
+(t) ≥ C(a/2)p−1 when t ≥ a/2

to compute

(2.9) f
(∥

∥

∥

x + y

2

∥

∥

∥

)

≤ f
( 1

2
‖x‖ +

1

2
‖y‖

)

− Ba
( ε

2a

) p

·C
( a

2

) p−1

≤
1

2
f (‖x‖) +

1

2
f (‖y‖) − BC

( ε

4

) p

.

Putting (2.6), (2.8), and (2.9) together, we see that f ◦ ‖ · ‖ has modulus of convexity

of power type p as desired.
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(ii) Because f ◦ ‖ · ‖ has modulus of convexity of power type p, one need only

fix x0 ∈ SX and consider f (t) = f (‖tx0‖) for t ≥ 0 to see that f has modulus of

convexity of power type p.

Also, let β := f ′
+(1) and let A > 0 be such that δ f◦‖ · ‖(ε) ≥ Aεp when ε > 0. Fix

ε ∈ (0, 2] and choose x, y ∈ SX with ‖x − y‖ ≥ ε and ‖ x+y
2
‖ ≥ 1 − 2δX(ε). Then

f (1) − Aεp
= f

( ‖x‖ + ‖y‖

2

)

− Aεp ≥ f
(∥

∥

∥

x + y

2

∥

∥

∥

)

≥ f (1) − 2βδX(ε)

and it follows δX(ε) ≥ A
2β ε

p. Thus δX is of power type p as desired.

It remains to verify f ′
+(t) ≥ Ct p−1 for some C > 0 and all t > 0 when (2.5) is

satisfied. Indeed, in this case, we find (un), (vn) ⊂ SX and M > 0 such that

εn := ‖un − vn‖ → 0+ and
∥

∥

∥

un + vn

2

∥

∥

∥
≥ 1 − Mεp

n .

Now fix t > 0, and let xn := tun and yn := tvn. Then

(2.10)
∥

∥

∥

xn + yn

2

∥

∥

∥
≥ t(1 − Mεp

n).

Then ‖xn − yn‖ = tεn and the modulus of convexity of f ◦ ‖ · ‖ ensures that

(2.11) f
(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≤
1

2
f (‖xn‖) +

1

2
f (‖yn‖) − A(tεn)p

= f (t) − At pεp
n .

The convexity of f implies that f (t − tMε
p
n) ≥ f (t)− f ′

+(t)(tMε
p
n). Using this along

with (2.10) and the fact f is nondecreasing, we obtain

(2.12) f
(∥

∥

∥

xn + yn

2

∥

∥

∥

)

≥ f (t − tMεp
n) ≥ f (t) − f ′

+(t)(tMεp
n).

Combining (2.11) and (2.12) implies f ′
+(t) ≥ A

M
t p−1, and so C := A

M
> 0 is as

desired.

The following corollary recovers a result from [4] whose proof proceeded via es-

tablishing uniform smoothness and invoking duality results from [1].

Corollary 2.4 ([4, Theorem 2.3]) Let (X, ‖ · ‖) be a Banach space, and suppose f :=

‖ · ‖p, where p ≥ 2. Then the following are equivalent:

(i) f is uniformly convex;

(ii) δX is of power type p;

(iii) f has modulus of convexity of power type p.

Proof (i) ⇒ (ii): Suppose f is uniformly convex, then (2.1) holds with ε = 1. Con-

sequently,

lim inf
t→∞

pt p δX(t−1) > 0,

and so there exist C > 0 and t0 > 0 such that p t p δX(t−1) > C when t > t0. In

particular, for 0 < ε < 1/t0, we have δX(ε) > Kεp where K := C p−1.

(ii) ⇒ (iii): This follows from Theorem 2.3(i) because the function t 7→ |t|p has

modulus of convexity of power type p (see the paragraph after Fact 1.1).

(iii) ⇒ (i): This is trivial.
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Example 2.5 Let (X, ‖ · ‖) be a Banach space and b > 1. Suppose δX is of power

type p, where p ≥ 2. Then f := b‖ · ‖ is uniformly convex with modulus of convexity

of power type p. However, even on R
2 there are uniformly convex norms ||| · ||| so that

h := b|||·||| is not uniformly convex.

Proof Let g(t) := bt for t ≥ 0. Then g ′(t) ≥ Ct p for some C > 0 and all t ≥ 0, and

g has modulus of convexity of power type p by Fact 1.1. According to Theorem 2.3,

f has modulus of convexity of power type p.

For the claim concerning h, we appeal to [11, Theorem 2.8] to obtain a uniformly

convex norm ||| · ||| on R
2 so that when Y := (R

2, ||| · |||), we have

lim inf
t→∞

t bt log(b)δY (t−1) = 0.

Then (2.1) fails, and so Theorem 2.1 ensures h is not uniformly convex.

One may view the above conditions dually. For this, let (X, ‖ · ‖) be a Banach

space. Then the modulus of smoothness, ρX , is defined for τ > 0 by

ρX(τ ) := sup
{ ‖x + τh‖ + ‖x − τh‖ − 2

2
: ‖x‖ = ‖h‖ = 1

}

.

Given 1 < q ≤ 2, we will say ρX is of power type q if there exists C > 0 so that

ρ‖ · ‖(τ ) ≤ Cτ q for τ > 0; see [2, 3, 10] for further information. Analogously, we

define the modulus of smoothness of a convex function f for τ > 0 by

ρ f (τ ) := sup
{ 1

2
f (x + τh) +

1

2
f (x − τh) − f (x) : x ∈ X, ‖h‖ = 1

}

;

and when ρ f (τ ) ≤ Cτ q for some C > 0 and all τ > 0, we will say ρ f is of power

type q. See [1], [16, p. 204ff] or [6, §5.4] for further information on this and related

topics. We note also that given h := f ◦ ‖ · ‖, then the conjugate is given by

h∗(φ) = sup
x∈X

φ(x) − f (‖x‖) = sup
x∈X

‖φ‖‖x‖ − f (‖x‖) = f ∗(‖φ‖).

We may now present the following as a sample dual version of Theorem 2.3.

Corollary 2.6 Let (X, ‖ · ‖) be a Banach space, 1 < q ≤ 2 and f : R → R be convex,

nondecreasing with [0,+∞) ⊂ dom f ∗.

(i) Suppose ρX is of power type q, f has modulus of smoothness of power type q while

f ′(t) ≤ Ctq−1 for some C > 0 and all t ≥ 0. Then f ◦ ‖ · ‖ has modulus of smoothness

of power type q.

(ii) Conversely, suppose f ◦ ‖ · ‖ has modulus of smoothness of power type q. Then

ρX is of power type q, f has modulus of smoothness of power type q, and if ρX is not

better than power type q, then f ′(t) ≤ Ctq−1 for some C > 0 and all t ≥ 0.

Proof (i) We may shift f vertically so that f (0) = 0. Because f is convex, nonde-

creasing, and f ′(t) ≤ Ctq−1 for t ≥ 0, it follows that f ′(0) = 0, and also f (t) = 0 for

t < 0. Consequently, f ∗ is nonnegative and nondecreasing on [0,+∞), which is its
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domain. Now let h := f ◦ ‖ · ‖ as above. According to [10, Proposition IV.1.12], the

dual norm ‖ · ‖ has modulus of convexity of power type p, where p is the conjugate

index of q, that is, p−1 + q−1
= 1. Now let t ∈ ∂ f ∗(y), where y ≥ 0. Then t ≥ 0,

y ∈ ∂ f (t), and so y ≤ Ctq−1. Thus t ≥ Ky1/(q−1), where K := C
1

1−q , or equivalently

t ≥ Ky p−1. This implies ( f ∗) ′ + (y) ≥ Ky p−1 for all y ≥ 0. Moreover, because

ρ f is of power type q, it follows that f ∗ has modulus of convexity of power type p

(see [16, Corollary 3.5.11]). Thus we may appeal to Theorem 2.3(i) to deduce h∗ has

modulus of convexity of power type p. Applying [16, Corollary 3.5.11] once again,

we conclude h has modulus of smoothness of power type q.

(ii) The details are analogous to (i). This part follows from Theorem 2.3(ii), again

by invoking duality results of [16, Corollary 3.5.11] and [10, Proposition IV.1.12].

Remark 2.7 (1) Although our primary focus centers on continuous uniformly

convex functions, one can deduce certain restricted domain cases from the observa-

tion that with f as in Theorem 2.1 or 2.3, one has δh1
≤ δh2

, with h1 := f ◦ ‖ · ‖ and

h2 := g ◦‖ · ‖, where for fixed a ≥ 0 we define g(t) := f (t) for t ≤ a and g(t) := +∞
otherwise. In the converse directions one additionally needs [0, a] ⊂ dom f for some

a > 0 to deduce properties about δX from those of δ f◦‖ · ‖.

(2) It follows from part (1) that the requirement [0,+∞) ⊂ dom f ∗ is not neces-

sary in Corollary 2.6(i). However, Corollary 2.6(ii) can fail when f is a constant func-

tion, so some growth requirement on f is needed (for example, to ensure [0, a] ⊂
dom f ∗ for some a > 0).

We used the definition for δX as in [3, 10]. However, if one defines δ(ε) := δX(2ε)

for 0 ≤ ε ≤ 1 (see [1, p. 724]), duality formulas such as [3, Proposition A.3(ii)] for

ρX∗ can then be naturally expressed in terms of the conjugate of δ. Along this line,

several neat duality relations for both norms and convex functions are derived in [1].

Because of the power of duality, it is often a matter of taste whether one prefers to

start, for example, with Corollary 2.6 or Theorem 2.3 and derive the other through

conjugation. As a final application of duality, we illustrate the restrictiveness of ob-

taining functions that are simultaneously uniformly convex and uniformly smooth.

Proposition 2.8 Suppose (X, ‖ · ‖) is a Banach space and f : X → R is both uniformly

convex and uniformly smooth. Then X is isomorphic to a Hilbert space. Moreover,

g := ‖ · ‖p is simultaneously uniformly convex and uniformly smooth if and only if

p = 2 and both δX and ρX are of power type 2.

Proof Let f be as given. Because f is uniformly convex, [16, Proposition 3.5.8]

implies that

lim inf
‖x‖→∞

f (x)

‖x‖2
> 0.

Because continuous convex functions are bounded below on bounded sets, we have

f ≥ 4a‖ · ‖2 + b for some a > 0 and b ∈ R. Thus by replacing f with f − b,

we may assume f ≥ 4a‖ · ‖2. Then f ∗ ≤ a‖ · ‖2. Additionally, f ∗ is uniformly

convex because f is uniformly smooth [1], [16, Theorem 3.5.12]. According to [4,

Theorem 3.7], X∗ admits a norm with modulus of convexity of power type 2.
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Proceeding similarly with f ∗, one can show that f − B ≤ A‖ · ‖2 for some A > 0

and constant B. Applying [4, Theorem 3.7] shows that X admits a norm with mod-

ulus of convexity of power type 2. It follows from [10, Propositions IV.1.12, IV.5.10,

IV.5.12] that X has type 2 and cotype 2, and so X is isomorphic to a Hilbert space by

Kwapien’s theorem [13].

For the “moreover” assertion, we note that the “only if” claim follows from Corol-

laries 2.4 and 2.6. For the “if” assertion, as in the previous paragraph, the duality re-

sults just cited imply that f and f ∗ are both uniformly convex and hence [16, Propo-

sition 3.5.8] implies that both p ≥ 2 and its conjugate index q ≥ 2; consequently,

p = 2 as claimed.
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