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( rece ived May 3, 1969) 

Let A be an H - s p a c e and K a s p a c e . It is wel l known 
that [K , A] is a loop. Suppose A has a comul t ip l i ca t ion 
a s wel l , tha t i s , ca t A < 2 . Then we sha l l p rove that 
[K , A] is a Moufang loop. This g e n e r a l i s e s a r e s u l t of 
C. W. N o r m a n who proved this for the c a s e w h e r e A is the 
c i r c l e , the 3 - s p h e r e or the 7 - s p h e r e . It a l so i m p r o v e s 
the known r e s u l t that [K , A] is a d i a s s o c i a t i v e loop if A 
has a comul t ip l i ca t ion as well , s ince Moufang loops a r e 
d i a s s o c i a t i v e . 

1. We sha l l work in the ca tegory of s p a c e s with b a s e points and 
having the homotopy type of countable C W - c o m p l e x e s . All m a p s and 
homotop ies a r e to r e s p e c t b a s e points which we sha l l usua l ly denote by 
the symbol * . F o r s impl ic i ty , we shal l f requent ly use the s a m e 
symbo l for a m a p and i ts homotopy c l a s s . Given s p a c e s X , Y , we 
denote the se t of homotopy c l a s s e s of m a p s f rom X to Y by [X , Y] . 
The symbol S sha l l stand for the suspens ion func tor . 

We r e c a l l b r ie f ly that a loop is a se t M toge ther with a b ina ry 
ope ra t i on (which we sha l l denote by + even if the ope ra t ion is not 
comm uta t i ve ) sat isfying the following a x i o m s : (1) t h e r e is an ident i ty 
0 in M sat isfying 0 + a = a = a + 0 for a l l a in M ; (2) the 
equat ions x + a = b , a + y = b admi t a unique pa i r of solut ions 
x , y in M w h e r e a , b a r e e l e m e n t s of M . We o b s e r v e that an 
a s s o c i a t i v e loop is a g roup . Given e l emen t s a , b , c of a loop M , we 
define the c o m m u t a t o r [a , b] and a s s o c i a t o r [a , b , c] by the equat ions 
a + b = (b + a) + [ a , b] and (a + b) + c = {a + (b + c)} + [a , b , c] . 

We now r e c a l l s o m e loop - theo re t i c no t ions . Accord ing to the ax ioms 
above, eve ry e l emen t of a loop has a unique left i n v e r s e and a unique 
r igh t i n v e r s e . A loop is cal led i n v e r s i v e if for eve ry e l emen t of the loop 
i ts left i n v e r s e co inc ides with i ts r igh t i n v e r s e . We denote the i n v e r s e 
of an e l e m e n t a of an i n v e r s i v e loop by - a . An i n v e r s i v e loop is cal led 
power a s s o c i a t i v e if for eve ry e l emen t a , we have 
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(a + a) + a = a + (a + a) , - a + (a + a) = a = (a + a) - a , that i s , 
[a , a , a] = 0 , [a , a , - a ] = 0 , [-a , a , a] = 0 for e v e r y e l e m e n t a . 
An i n v e r s i v e loop is cal led d i a s s o c i a t i v e if for e v e r y two e l e m e n t s a , b 
of the loop, we have [a , a , b] = 0 , [a , b , a] = 0 , [a , b , b] = 0 , 
[ - a , a , b ] = 0 , [ a , b , - b ] = 0 and [ - a , b , a ] = 0 . Thus , an i n v e r s i v e 
loop is power a s s o c i a t i v e if the subloop gene ra t ed by an e l e m e n t is a 
cyc l ic group, and an i n v e r s i v e loop is d i a s s o c i a t i v e if the subloop 
gene ra t ed by any two e l e m e n t s is a g r o u p . It is c l e a r that a d i a s s o c i a t i v e 
loop is power a s s o c i a t i v e . F ina l ly , we say that a loop is Moufang if it 
s a t i s f i e s the ident i ty (a + b) + (c + a) = {a + (b + c)} + a for a l l 
e l e m e n t s a , b , c of the loop. It is known that a Moufang loop is 
d i a s s o c i a t i v e ( see Moufang 's T h e o r e m [2, page 117]) . 

F o r the sake of c o m p l e t e n e s s , we b r i e f ly r e c a l l the def in i t ions of 
the coni lpotency, the c a t e g o r y and the weak c a t e g o r y of a s p a c e . Let 
X be a topo log ica l s p a c e and let SX be i ts s u s p e n s i o n . Le t 
<j> : SX -> SX V SX be the s u s p e n s i o n comul t i p l i ca t i on and u : 2 X -> S X 
the i n v e r s e . We define the b a s i c c o c o m m u t a t o r m a p c : S X -*• SX V SX 
by c = 7(1 V 1 V jJi V ji) (<(> V $)<\> w h e r e V : SX V SX V SX V SX -> 
SX V SX is the folding m a p . The c o c o m m u t a t o r m a p c of weight 1 

is the iden t i ty . Suppose the c o c o m m u t a t o r m a p c : SX -> SX V . . . V SX 
K 

(k t e r m s ) of weigh t k has been def ined. We then define the c o c o m m u t a t o r 
m a p of weight (k + 1) by c = (c V l ) c : SX -* SX V . . . V SX 

(k + 1 t e r m s ) . The coni lpo tency c l a s s of X , coni l X , is the l e a s t 
i n t ege r k _> 0 such that c ~ * • f̂ n o s u c n i n t ege r e x i s t s , we put 

coni l X = oo. 

Now for each in t ege r n _> 1 , let X denote the c a r t e s i a n 

p r o d u c t of n cop ies of X and let T (X ) be the s u b s p a c e of X 

cons i s t i ng of a l l po in t s with at l e a s t one c o o r d i n a t e at the b a s e point * 

of X . Le t j : T (Xn) -> X n be the inc lus ion and let A : X -> X n 

be the d iagona l m a p . Then we say tha t the c a t e g o r y of X is l e s s than 

n , ca t X < n , if t h e r e is a m a p <|> : X -> T (X ) such that j c|> ~ A . 

The weak c a t e g o r y of X , w c a t X , is the l e a s t i n t ege r k > 0 such that 
k+1 k+1 (k+1) 

qA ~ * w h e r e A : X -*• X is the d iagona l m a p and q : X -> X 
is the p r o j e c t i o n of the c a r t e s i a n p roduc t onto the s m a s h e d p r o d u c t . 

2 . We now r e c a l l some r e s u l t s f r o m [8] . Le t A be an H- space with 
m u l t i p l i c a t i o n c|> : A X A -> A . Le t K be a s p a c e . Then we have a 

loop [K, A] . F o r each in t ege r n > 1 , let T (K*1) denote the s u b s e t 
n 

of K cons i s t i ng of points with a t l e a s t one c o o r d i n a t e equa l to the b a s e 

point * of K . Le t j : T^K 1 1 ) ~+ K n be the inc lus ion , and q : K n -> K ( n ) 

be the p r o j e c t i o n w h e r e Kv deno tes the s m a s h e d p r o d u c t of n cop ies 
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of K. Then we have a cofibration T (Kn) -2 K*1 -? K . Let 
1 

A : K -»• K be the diagonal map. We have homomorphisms 
n 

j ^ : [Kn ,A] - [T (Kn) ,A] f A * : [Kn, A] - [K , A] . Then it is shown 

# # 
in [8] that A (ker j ) is a normal subloop of [K , A] . Let us denote 

A (ker j ) by G for each n > 1 . Then Ĝ  = [K , A] and 
n n n ~~ 1 

G , C G (see [8]) . It is also shown in [8] that G /G . C Z(G /G .) 
n+1 n n n-H 1 n+1 

where Z(G /G ) is the centre of the loop G /G . 
1 n+1 1 n+1 

Suppose conil K < n . Then we claim that G = 0 . For suppose 

f £ G . Then we have f = f .A where f, £ Ker j , that is, 
n 1 n 1 n 

j q / \ 
f j ^ * : T ,(Kn) -> A. From the cofibration T (Kn) 2- Kn -5 K[n) 

I n — 1 1 

it follows that f, ~ f q where f : K -> A . Hence we have 
1 — 2^n 2 

f = f q A ,. and hence Sf = Sf̂  2(q A ) . Since conil K < n, we 
2 n n 2 n n 

have that Z(q A ) ~ * by [3; 4; 6]. Hence 2f ~ * . Since A is an 
n n 

H-space, S : [K, A] -* [SK , SA] is one-to-one. Hence f ~ * • Thus 
we see that if conil K < n , we have an ascending chain of normal 

subloops 0 = G C G _ C . . . C G = [K, A] such that 

G./G. t C Z(G7G. J . Hence as in [8], we have that [K , A] is a loop 
l l+l 1 l+l 

which is centrally nilpotent of class <_ n - 1 and nuclearly nilpotent 
of class £ [|n] where [x] denotes the integral part of x . This 

improves [8, Theorem 1.1] by replacing the condition w cat K < n 
there by conil K < n . We have normalised w cat and cat in this 
paper so that our value is one less than in [8], and we observe that 
with the normalisation, conil K <C wcat K <C cat K (see [3]) . Strict 

inequalities can occur (see [3]). We state our result formally as the 
following theorem. 

THEOREM 1. Let A be an H-space and K a space. E 

conil K < n, then [K , A] is a loop which is centrally nilpotent of class 
<: n - 1 and nuclearly nilpotent of class <_ [f-n] . 

We now consider the normal subloops G. of [K , A] . With the 

same assumptions as in Theorem 1, we have the following result. 

THEOREM 2. Let f £ G , g £ G , h £ G . Then the associator 
r o g t 

[f , g , h ] £ G and h e n c e ( f + g ) + h = f + ( g + h ) j f r + s + t > n . 
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COROLLARY, if conil K < n, then G , is a group. Hence 

— [5±»j 

if conil K < 3 , then [K , A] is a group. 

The corollary follows immediately from Theorem 2. 

Proof of Theorem 2. Let cj> : A X A -> A be the H- structure on A. 

3 3 
Let j : T (A ) -> A be the inclusion. Then it can be checked that 

3 J3 3 q3 (3) 
<!>(<!> x 1 ) J o 2 : < t ) ( 1 X «W* • From the cofibration T (A ) -* A -* Av 

it follows that we can write §(§ X 1) = §(1 X §) + i|jq where 

(3) 3 
I|J : A •* A . We have the map (f X g X h) A : K -> A and hence 

we have (f + g) + h = {f + (g + h)} + ty q (f X g X h) A3 . We 

observe that ^cioU X g X h) A is the associator [f , g , h] . Since 

f e G , g e G , h e G we can write f = f,q A , g - g,q A , 
r s t l r r I s s 

h = h q A . Hence the associator [f , g , h] = i|j q (f X g X h) A 

= ^ 3 ^ x H x V K x qs x qt> A r + s + t 

= +tf4 A g4 A V ^ r X % X V Ar+s+t 
= ^ A g4 A h4) q r + s + t A r + s + t . Thus [ f . g . h ] e G ^ . If 

conil K < n and r + s + t > n we have 2(q , ti A , , ) = 0 . 
— ^r+s+t r+s+t 

Hence 2[f , g , h] = 0 . Since A is an H-space, 2 is one-to-one, and 
hence [f , g , h] = 0 . Thus (f + g) + h = f + (g + h) . This proves 
Theorem 2. 

THEOREM 3. Let f e G , g e G . Then the commutator 
r s 

[f , g] e G L 6 J r+s 

Proof. We have the H-structure <\> : A X A -> A . Let 
<(> : A X A -> A be any other H-structure on A. Then cj> j ~ V and 

cj) j ^ V where j : A V A - * A X A i s the inclusion and V : A V A -> A 

is the folding map. Hence we can write <\> = <\> + \\i q where 

2 (2) (2) 
q : A -> A is the projection and \\> : A -> A is a map and + is 

2 
the operation in [A , A] induced by cj> . Composing with (f X g) A we 
have f + g = (f © g) + \\i q (f X g) A where © is the operation in 

\K, Al induced by 6t . Now we can write f = f.q A , g = g,q A 
1 1 r r 1 s s 

and hence + q^t X g) A = * q^i± X g ^ («^ X q g ) A r + s 

= +(f4 A g4) q r + s A r + s . Thus f + g = (f © g) + + ( f l A g ^ q ^ A ^ . 
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Clearly d*(f A g,) q A e G , . If we take cbT for cb where 
1 T 1 1 ^r+s r+s r+s 1 

T : A X A -> A X A is the switching map, then f © g is just g + f , 
and hence we see that [f , gl e G , . This proves Theorem 3 . 

L OJ r + s 

We observe that in the general case if r + s >_ n, then our 

usual arguments will show that \\J q9(f X g) A = 0 and hence 

f + g = f © g . This gives us the following corollary. 

COROLLARY. Let f e G , g e G . Then if r + s > n, 
r s — 

f + g = f €> g where + , © are induced by H-structures cj) , <\> on_ 

A. Thus the loop structure on Grl , ,.-, is independent of the 
[j(n+l)J c 

H- structure on A and hence Gr1 . , . , is an abelian group. In particular, 
[2(n+l)J û ^ c 

i£ conil K < 2 , then the loop structure of [K , A] is independent of the 

H-structure on A and hence [K , A] is an abelian group. 

3. We now consider conilpotency and category conditions on the 
H-space. 

THEOREM 4. Let (A, <\>) be an H- space such that conil A < 3 . 
Then for any space K , [K , A] is a power associative loop. 

Proof. Since conil A < 3 , by the above .we see that [A , A] is a 

group. Hence there is an element -1 in [A , A] such that 

1 - 1 = 0 = - 1 + 1 . Let f be an element of [K , A] . Then 

0 = (1 - l)f = f + (-1) f and 0 = (-1 + 1) f = (-1) f + f . Thus [K, A] 

is inversive. Also (f + f) + f = (1 + 1) f + f = {(1 + 1 ) + 1} f = {1 + 

(1 + 1)} f = f + (f + f), (-f) + (f + f) = (-1) f + (1 + 1) f - {(-1) + 

( 1 + 1 ) } f = f = {(1 + 1) - 1} f = (f + f) -f . Thus [K,A] is a power 
associative loop. 

We now state a result from [8] that we shall need. 

THEOREM 5 (Norman [8]). Let̂  (A, <|>) be an H-space and K 
a space such that cat K < 4 . Then the associator in [K , A] satisfies 
the expansions 

[a + a , b , c] = [a , b , c] + [a , b , c] 

[a , b + b , c] = [a , b , c] + [a , b c] 

[ a , b , c + c ] = [ a , b , c ] + [a , b , c ] 

Finally, we recall another known result. 
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THEOREM 6 (O 'Nei l l [9]) . Let_ (A , <\>) be an H - s p a c e such that 
ca t A < 2 . Then for any s p a c e K , [K , A] i s a d i a s s o c i a t i v e loop. 

We a r e now r e a d y to p r o v e our r e s u l t . Suppose (A,<)>) is an 
H - s p a c e . Le t K be a s p a c e such that ca t K < 4 . Then by the above 
r e s u l t s , we see that [K , A] is a loop of c e n t r a l n i lpo tency <_ 3 , and 
tha t a l l a s s o c i a t o r s in [K, A] l ie in the c e n t r e of the loop. Since 
cat K < 4 , the a s s o c i a t o r s expand a c c o r d i n g to T h e o r e m 5 . It i s then 
eas i ly checked that [K , A] is Moufang if and only if the a s s o c i a t o r s 
sa t i s fy the r u l e [a , b , c] = [a , c , a] + [b , c , a] for a l l a , b , c in [K , A] , 
Now, suppose fu r the r tha t ca t A < 2 . Then, by T h e o r e m 6, [K , A] is 
d i a s s o c i a t i v e so that [a , c , a] = 0 for a l l a , c . Thus in th is c a s e , [K , A] 
is Moufang if and only if [a , b , c] = [b , c , a] for a l l a , b , c in [K , A] . 

THEOREM 7. Let (A,cj)) be an H - s p a c e such that ca t A < 2 . 
_If K i s a s p a c e such that ca t K < 4 , then [K , A] i s a Moufang loop. 

P roof . Let a , b , c be e l e m e n t s of [K , A] . We need to show 
tha t [a , b , c ] = [b , c , a ] . Now we can w r i t e b + c = (c + b) + [b , c ] . 
Hence [a , b + c , c + b] = [a , (c + b) + [b , c] , c + b ] = [a , c + b , c + b ] 
+ [a , [b , c] , c + b] . Since ca t A < 2 , we have that [a , c + b , c + b ] 
= 0 . On the o ther hand, s i nce con i l K < ca t K < 4 , our r e s u l t s , 
T h e o r e m s 2 and 3 on a s s o c i a t o r s and c o m m u t a t o r s , show tha t 
[ a , [b , c ] , c + b] = 0 . Hence [ a , b + c , c + b ] = 0 . Now expanding 
th is a s s o c i a t o r a c c o r d i n g to T h e o r e m 5 and us ing T h e o r e m 6, we see that 
[a , b + c , c + b ] = [a , b , c] + [a , c , b] s i nce a l l the o the r t e r m s 
v a n i s h . Thus [a , b , c] + [a , c , b] = 0 . If we now apply the s a m e 
p r o c e s s to the a s s o c i a t o r [a + b , c , b + a ] , we obta in the equa t ion 
[a , c , b] + [b , c , a ] = 0 . Since t h e s e a s s o c i a t o r s a l l l ie in the c e n t r e 
of [K , A] , we obta in the equa t ion [a , b , c] = [b , c , a ] . Thus [K , A] 
is Moufang. 

Our m a i n t h e o r e m now follows as a c o r o l l a r y of the a b o v e . 

T H E O R E M 8. Le t (A,cf>) be an H - s p a c e such that ca t A < 2 . 
Then for any space K , [K , A] is a Moufang loop. 

3 
P roof . Since ca t A < 2 , it fol lows that ca t A < 4 . Hence 

3 3 
[A , A] is a Moufang loop. Le t TT , TT , TT : A -> A be the p r o j e c t i o n s 
onto the f a c t o r s . Then (TT + TT ) + (TT + TT ) = {TT + (TT + TT )} + TT . 

i- Lé D i. x £i D J-

Let f , g , h be e l e m e n t s of [K , A] . Compos ing th is equat ion on the r igh t 
with (f X g X h) A , we obta in the equat ion (f + g) + (h + f) 

= {f + (g + h)} + f . Thus [ K , A ] is Moufang. 
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