MULTIPLICATION ON SPACES WITH COMULTIPLICATION*
C.S. Hoo

(received May 3, 1969)

Let A be an H-space and K a space. Itis well known
that [K, A] is a loop. Suppose A has a comultiplication
as well, thatis, cat A < 2. Then we shall prove that
[K, A] is a Moufang loop. This generalises a result of
C. W. Norman who proved this for the case where A is the
circle, the 3-sphere or the 7-sphere. It also improves
the known result that [K, A] is a diassociative loop if A
has a comultiplication as well, since Moufang loops are
diassociative.

1. We shall work in the category of spaces with base points and
having the homotopy type of countable CW-complexes. All maps and
homotopies are to respect base points which we shall usually denote by
the symbol * . For simplicity, we shall frequently use the same
symbol for a map and its homotopy class. Given spaces X, Y, we
denote the set of homotopy classes of maps from X to Y by [X,Y].
The symbol X shall stand for the suspension functor.

We recall briefly that a loop is a set M together with a binary
operation (which we shall denote by + even if the operation is not
commutative) satisfying the following axioms: (1) there is an identity
0 in M satisfying 0 + a = a = a + 0 for all a in M ; (2) the
equations x +a = b, a +y = b admit a unique pair of solutions
X,y in M where a, b are elements of M. We observe that an
associative loop is a group. Given elements a, b, ¢ of a loop M, we
define the commutator [a,b] and associator [a,b,c] by the equations
a+b = (b +a)+[a,b] and (a + b) +c = {a + (b +¢)} +[a,b,c].

We now recall some loop-theoretic notions. According to the axioms
above, every element of a loop has a unique left inverse and a unique
right inverse. A loop is called inversive if for every element of the loop
its left inverse coincides with its right inverse. We denote the inverse
of an element a of an inversive loop by -a . An inversive loop is called
power associative if for every element a, we have

*This research was supported by NRC Grant A-3026.

Canad. Math. Bull. vol. 12, no. 4, 1969

499

https://doi.org/10.4153/CMB-1969-064-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-064-3

(a+a)+a=a+(a+a), -a+(ata)=a=(a+a)-a, thatis,
[a,a,a] = 0, [a,a,-a] = 0, [-a,a,a] = 0 for every element a.
An inversive loop is called diassociative if for every two elements a,b
of the loop, we have [a,a,b] = 0, [a,b,a] = 0, [a,b,b] = O,
[-a,a,b] = 0, [a,b,-b] = 0 and [-a,b,a] = 0. Thus, an inversive
loop is power associative if the subloop generated by an element is a
cyclic group, and an inversive loop is diassociative if the subloop
generated by any two elements is a group. It is clear that a diassociative
loop is power associative. Finally, we say that a loop is Moufang if it
satisfies the identity (a + b) + (¢ + a) = {a + (b + ¢)} + a for all
elements a, b, ¢ of the loop. It is known that a Moufang loop is
diassociative (see Moufang's Theorem [2, page 117]).

For the sake of completeness, we briefly recall the definitions of
the conilpotency, the category and the weak category of a space. Let
X be a topological space and let X be its suspension. Let
¢ : ZX - ZX V ZX be the suspension comultiplication and p : ZX - ZX
the inverse. We define the basic cocommutator map ¢ : ZX - ZX VvV ZX
by ¢ = v(1 v1 Vv p V)l V o) where v: ZX v ZX V ZX V ZX -
22X v ZX is the folding map. The cocommutator map <y of weight 1

is the identity. Suppose the cocommutator map S ZX - ZX v...v ZX
(k terms) of weight k has been defined. We then define the cocommutator

map of weight (k+1) by S (ck Vi) : 2X - ZX v...v =X

(k +1 terms). The conilpotency class of X, conil X, is the least

integer k > 0 such that Sy X * . If no such integer exists, we put

conil X = oo,

Now for each integer n > 1, let X" denote the cartesian
product of n copies of X and let Ti(Xn) be the subspace of x"
consisting of all points with at least one coordinate at the base point *
of X. Let j: T1(Xn) ~ X" be the inclusion and let A : X - X"
be the diagonal map. Then we say that the category of X is less than
n, catX < n, if there is amap ¢ : X — Ti(Xn) such that jo ~ A .
The weak category of X, wcat X, is the least integer k > 0 such that

k+1
qA ~ % where A : X - X is the diagonal map and q : Xk-H - X(kH)

is the projection of the cartesian product onto the smashed product.

2. We now recall some results from [8]. Let A be an H-space with
multiplication ¢ : A X A - A . Let K be a space. Then we have a

loop [K, A]. For each integer n > 1, let T1(Kn) denote the subset

n
of K consisting of points with at least one coordinate equal to the base

point * of K. Let j_: T1(Kn) ~ K" be the inclusion, and q k® - k@™

be the projection where K(n) denotes the smashed product of n copies
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ko (n)

J
of K. Then we have a cofibration Tl(Kn) S K" S K Let

A K-> K™ be the diagonal map. We have homomorphisms

n
it K" Al - [T1(Kn),A], a?. K™, A] > [K,A]. Then it is shown
n n
in [8] that A# (ker jf) is a normal subloop of [K, A]. Let us denote
n
# # -
A" (ker Jn) by G for each n > 1. Then G1 = [K,A] and
n n
Gn:l-i - Gn (see [8]). It is also shown in [8] that Gn/Gn-F'l - Z(Gi/GnH)
where Z(G1/Gn+1) is the centre of the loop G1/Gn+1 .
Suppose conil K < n. Then we claim that Gn = 0. For suppose
f € G . Then we have f = f A where f, ¢ Ker j#, that is,
n 1™n 1 n
n n ‘jn n In (n)
f'ljn ~E L T'l(K ) > A. From the cofibration Ti(K ) > K = K

(n)

it follows that f1 ~ fzqn where f2 : K -~ A. Hence we have

f = f . qA , and hence Zf = Zf X(q A ). Since conil K < n, we
2'n n 2 n n
bave that =(q A ) ~ * by [3; 4; 6]. Hence Zf ~ *. Since A is an
n n — -

H-space, T : [K, A] = [ZK,ZA] is one-to-one. Hence f ~ *. Thus
we see that if conil K < n, we have an ascending chain of normal
subloops 0 = G C G C... C G, = [K,A] such that
n n-1 1
. i i 1
Gi/Gi-(-i C Z(G'l/Gi+1) Hence as in [8], we have that [K, A] is a loop

which is centrally nilpotent of class < n - 1 and nuclearly nilpotent
of class < [in] where [x] denotes the integral part of x. This
improves [8, Theorem 1.1] by replacing the condition w cat K < n
there by conil K < n. We have normalised wcat and cat in this
paper so that our value is one less than in [8], and we observe that
with the normalisation, conil K < wcat K < cat K (see [3]). Strict
inequalities can occur (see [3]). We state our result formally as the
following theorem.

THEOREM 1. Let A be an H-space and K a space. I«
conil K < n, then [K, A] is a loop which is centrally nilpotent of class
< n - 1 and nuclearly nilpotent of class < [4n].

We now consider the normal subloops G, of [K,A]. With the

same assumptions as in Theorem 41, we have the following result.

THEOREM 2. Let f ¢ Gr, g € Gs, h e Gt. Then the associator
[f.g,h] ¢ Gr

bstt and hence (f + g) +h = f + (g +h) if r +s +t>n.
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COROLLARY. If conil K < n, then G nt2 is a group. Hence
(7]
if conil K < 3, then [K,A] is a group.

The corollary follows immediately from Theorem 2.

Proof of Theorem 2. Let ¢ : A X A— A be the H-structureon A.

Let j3 : Ti(A3) - A3 be the inclusion. Then it can be checked that

J3 3 93

blp X 1)j3 ~ o1 X ¢)j3. From the cofibration Ti(A3) 3 AT~ A(3)

it follows that we can write ¢&(¢ X 1) = ¢(1 X ¢) + ¢q3 where

U A(3) - A. We have the map (f X g X h) A3 : K > A3 and hence
we have (f + g) + h = {f + (g + h)} +¢q3(f><g><h)A3. We
observe that qu3(f X g X h) A, is the associator [f,g,h]. Since
str, gsGs, hsGt we can write f :fiqrAr’ g = g'lqus’

h = hitht' Hence the associator [f,g,h] = ¢q3(f X g X h) A,

il

X
baglfy X gg X hy)la, Xa X q) A
W, A gy Ahy)aglg X g X q) A

n

r+s+t
- qJ(fi A £y A h1) Qe ys+4t Ar+s+t - Thus [f, g, h] ¢ c'1'+S+t' ¥
conil K< n and r + s +t > n we have Z(qr+s+t Ar+s+t) = 0.
Hence ZXZ[f,g,h] = 0. Since A is an H-space, X is one-to-one, and

hence [f,g,h] = 0. Thus (f + g) + h = f + (g + h). This proves
Theorem 2.

THEOREM 3. Let f ¢ Gr' g € GS . Then the commutator
[f.g] ¢ Gr+

s
Proof. We have the H-structure ¢ : A X A - A. Let

¢1 : AX A - A be any other H-structure on A. Then ¢j ~ V and

¢1j3there j*+ AV A-> AXA isthe inclusionand V: A V A > A

is the folding map. Hence we can write ¢ = ¢1 + n.pqz where

(2)

q, * A2 - A(Z) is the projection and { : A - A is amap and + is

the operation in [A2 , A] induced by ¢ . Composing with (f X g) A we
have f + g = (f ® g) + quz(f X g) A where © is the operation in
[K, A] induced by ¢1 . Now we can write f = f1qrAr’ g = giqus

X = X
and hence Y qz(f g) A U] qz(f1 X gi) (qr qs)Ar+s

- q"(fi A gi) 9r+s Ar+s' Thus £ +g = (f ® g) + Lp(fi A gi)qr+sAr.+s'
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Clearly q,‘(f1 A g1) qr+sAr+s € Gr+s'

T: AX A - A X A is the switching map, then f ® g is just g + f,
and hence we see that [f,g] ¢ Gr+s . This proves Theorem 3.

If we take ¢T for ¢1 where

We observe that in the general case if r + s > n, then our
usual arguments will show that quz(f X g) A = 0 and hence

f+g = f © g. This gives us the following corollary.

COROLLARY. Let f ¢ Gr’ g € GS. Then if r + s > n,
f+g =1f © g where +, ©® are induced by H-structures ¢, 4)1 on

is independent of the

A . Thus the loop structure on G
P [2(n+1)]

is an abelian group. In particular,

H-structure on A and hence G
(3(n+1)]

if conil K < 2, then the loop structure of [K, A] is independent of the
H-structure on A and hence [K,A] is an abelian group.

3. We now consider conilpotency and category conditions on the
H-space.

THEOREM 4. Let (A,¢) be an H-space such that conil A < 3.
Then for any space K, [K,A] is a power associative loop.

Proof. Since conil A < 3, by the above.we see that [A,A] is a
group. Hence there is an element -1 in [A, A] such that
1 -1 =0 = -1 +1. Let f be an element of [K, A]. Then
0 = (4 -1)f =f+(-4)fand O = (-4 +1) £ = (1) £+ f. Thus [K,A]
is inversive. Also (f +f) +f = (1 +1) f +f = {(1 +1) +1} f = {1 +
(1 +1) £ f+(f+1), ((f) + ¢ +1£)=(1)f+ (1 +1)f = {(-1) +
(1 +1)) £ =1 ={(4 +1) -1} £ = (f +{) -f. Thus [K,A] is a power
associative loop.

1

We now state a result from [8] that we shall need.

THEOREM 5 (Norman [8]). Let (A,¢) be an H-space and K
a space such that cat K < 4. Then the associator in [K, A] satisfies

the expansions

n

[a +a,,b,c] [a,b,c] + [a,,b,c]

1 1’

[a,b +b1,c] [a,b,c]+[a,b1,c]

1

[a,b,c +c1] [a,b,c]+[a,b,c1].

Finally, we recall another known result.
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THEOREM 6 (O'Neill [9]). Let (A,$) be an H-space such that
cat A < 2. Then for any space K, [K,A] is a diassociative loop.

We are now ready to prove our result. Suppose (A,¢) is an
H-space. Let K be a space such that cat K < 4. Then by the above
results, we see that [K, A] is a loop of central nilpotency < 3, and
that all associators in [K, A] lie in the centre of the loop. Since
cat K < 4, the associators expand according to Theorem 5. It is then
easily checked that [K, A] is Moufang if and only if the associators
satisfy the rule [a,b,c] = [a,c,a] + [b,c,a] for all a, b, ¢ in [K,A].
Now, suppose further that cat A < 2. Then, by Theorem 6, [K,A] is
diassociative so that [a,c,a] = 0 for all a, c . Thus in this case, [K,A]
is Moufang if and only if [a,b,c] = [b,c,a] for all a,b,c in [K,A].

THEOREM 7. Let (A,$) be an H-space such that cat A < 2.
I¥ K is a space such that cat K < 4, then [K,A] is a Moufang loop.

Proof. Let a, b, ¢ be elements of [K,A]. We need to show
that [a,b,c] = [b,c,a]. Now we can write b + ¢ = (¢ + b) + [b,c].
Hence [a,b + ¢, c +b] = [a,(c +Db) +[b,c], ¢ +b] = [a,c +b, ¢ +b]
+ [a, [b,c], ¢ + b]. Since cat A < 2, we have that [a, ¢ + b, ¢ + b]
= 0. On the other hand, since conil K < cat K < 4, our results,
Theorems 2 and 3 on associators and commutators, show that
[a, [b,c], ¢ +b] = 0. Hence [a, b +c, ¢ +b] = 0. Now expanding
this associator according to Theorem 5 and using Theorem 6, we see that
[a, b +c, ¢ +b] = [a,b,c] + [a,c,b] since all the other terms
vanish. Thus [a,b,c] + [a,c,b] = 0. If we now apply the same
process to the associator [a + b, ¢, b + a], we obtain the equation
[a,c,b] + [b,c,a] = 0. Since these associators all lie in the centre
of [K,A], we obtain the equation [a,b,c] = [b,c,a]. Thus [K, A]
is Moufang.

Our main theorem now follows as a corollary of the above.

THEOREM 8. Let (A,¢$) be an H-space such that cat A < 2.
Then for any space K, [K,A] is a Moufang loop.

Proof. Since cat A < 2, it follows that cat A3 < 4. Hence
3
[A”,A] is a Moufang loop. Let w

, Mo, T

1 2 3
onto the factors. Then (1'r'1 + 112) + ('n3 + 171) = {1r’1 + (1T2 + 11'3)} +

: A3 - A be the projections
Lt
Let f, g, h be elements of [K, A]. Composing this equation on the right
with (f X g X h) A3, we obtain the equation (f + g) + (h + f)

= {f + (g + h)} +f. Thus [K,A] is Moufang.
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