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Abstract

Controlling the landing position of a spinning ball is difficult when using a table tennis robot. A complete physical
model requires the factoring in of aerodynamic elements and object collisions, and inaccurate environmental coef-
ficients would increase the landing position error. This study proposed a landing position control method based on
a cascade neural network (CNN) that consists of forward and recurrent neural networks (RNNs). The forward NNs
are used to estimate the velocity of the outgoing ball according to the velocity and acceleration of the incoming ball
captured by cameras and the desired velocity of the outgoing ball. The RNN is employed to reverse-predict ball dis-
placement based on the state of the incoming ball, desired landing point, and ball flight duration. The experiments
verified that the method proposed in this study achieved control of differently spinning balls more effectively than
the locally weighted regression (LWR)-based model did. The success rate of the CNN at two of six desired landing
points was 25.9% and 32.9% higher, respectively, compared with use of the LWR-based model.

1. Introduction

The table tennis robot is a type of entertainment robot that has sparked the interest of numerous scholars
worldwide. These robots are applied to machine vision, trajectory planning, and machine learning, all of
which must be integrated into a set of systems, making these robots of considerable value in academic
research. Acosta et al. [1] developed a complete robotic table tennis system that uses a simple robotic
arm to achieve easy stroke movements. However, because of its small size, the robotic arm can hit table
tennis balls to only a limited distance. Mulling et al. [11] used an anthropomorphic robotic arm and a
machine learning method to imitate the arm swinging movement. Miyazaki ez al. [9] and Yang et al. [19]
proposed using a slide rail machine to control the stroke movement and angle of a table tennis paddle; the
proposed method could return the ball within a limited timeframe. Regarding the method of predicting
whether the robot can hit a ball, scholars have employed various physical models for estimating the force
direction and state of the ball. Physical models involve gravity, air resistance, the Magnus effect, and
elastic collision, all of which must be accurately calculated to achieve the desired outcome. The velocity
of a moving ball approximately ranges from 4 to 20 m/s [18]; therefore, a high-performance computer
vision system [4, 17] and camera array [6] are required to quickly calculate the high-sample rate of a
ball. Subsequently, various equations for physical objects are used to deduce the required hitting point.
Such vision systems are, however, expensive and impractical.

Ball landing positions are calculated using either physical models or machine learning. Early studies
typically employed physical models of table tennis robots. Because of technical difficulties, a ball’s
rotation velocity is difficult to measure and therefore ignored in most studies, resulting in models that do
not truly reflect the actual movement of a table tennis ball. Consequently, the trajectory of a spinning ball
cannot be effectively predicted, and the landing point cannot be properly controlled. Following the recent
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development of image sensors with greater sampling frequency and novel operation, the spin of the ball
has been considered in the physical models of table tennis ball movements, which has substantially
improved trajectory prediction. Commonly, trajectory prediction employs image processing or tracking
techniques on an object moving, which can process data efficiently and in real-time, as demonstrated
by Lin et al. [8] and Zhi et al. [21]. These methods utilize advanced algorithms to analyze and predict
the ball’s path based on its observed motion, ensuring accurate and timely predictions. Considering ball
spin situations in the tennis ball game, refs. [2, 14, 16] analyzed the phenomenon of a table tennis ball
hitting the table and then a racket and established the table rebound model (TRM) and racket rebound
model (RRM). In ref. [13], the control of landing position for a spinning ball was investigated. The
table on the serving side was divided into nine grid squares to measure the success rate of the control
of ball landing position; next, the simple aerodynamic model (ADM) and optimization approach were
employed to calculate the initial ball velocity and rotational velocity when the ball landed in the various
grid squares; finally, based on the ball velocity and rotational velocity at the landing point, the TRM and
RRM were used to inversely calculate the parameters of the racket hitting the ball.

Nakashima et al. [12] proposed a method of controlling the ball landing position based on physical
models, including the ADM and RRM, and reported the equations representing the movement of a ball
during flight and when the ball hits the racket. Subsequently, they used the finite difference method to
estimate the racket orientation and velocity corresponding to the landing point. However, they only used
simulation methods to verify the landing position error of a single incoming ball at a single desired
landing point. Li et al. [7] proposed a learning-based approach to controlling ball landing position.
This learning system combines physical models with compensation mechanisms to slowly minimize the
landing position error by adjusting the speed of the next hit according to the error in the landing position
after each strike.

In previous studies, control of landing position by using a physical model has been applied to only
balls with backspin. In physical models of landing position control, the parameters governing how the
racket hits the ball and the velocity and rotational velocity of the outgoing ball are all unknown, which
renders inverse operation extremely difficult. To mitigate this problem, multiple assumptions must be
made regarding the specific rotational status of the incoming ball to simplify its physical model; hence,
controlling the landing positions of different spinning balls is impossible.

Control of ball landing position by using machine learning does not require complex physical models;
instead, it employs large volumes of training data to learn the association between the input and output
data and construct a corresponding model. Matsushima ef al. [10] described the process of playing table
tennis by using three input—output maps: (1) the hitting point corresponding to the state of the incoming
ball; (2) racket orientation and velocity corresponding to the change in ball velocity before and after
impact; and (3) ball velocity after impact corresponding to the landing position of the returned ball
and flight duration. Matsushima et al. used locally weighted regression (LWR) to learn the relations
among these input—output maps. To equip a table tennis robot with learning capability, Huang et al.
[5] combined LWR with fuzzy cerebellar model articulation control (FCMAC). When the robot hits a
ball, LWR is performed to determine the required orientation and velocity of the racket upon impact.
Subsequently, the FCMAC parameters are updated according to the errors between landing positions to
adjust the racket parameters and minimize the error in the landing position. LWR is a nonparametric
learning method; thus, when prediction is conducted using new input data, the coefficients must be
recalculated. As the volume of training data increases, the calculation duration lengthens. To address
this problem, Zhang et al. [20] used a neural network (NN) to learn the ball velocity after impact and
the relationships between racket parameters during impact.

In control of ball landing position, the trajectory of the incoming ball, which differs from ball to ball,
must be predicted. Solving this problem requires inverse operations. Inverse operation using physical
models involves a highly complex calculation process and the use of other equipment and convoluted
experiments to measure each environmental coefficient. Inaccurate environmental coefficients also influ-
ence model accuracy. Hence, this study separated the process of ball landing position control into
multiple subtasks and employed NNs to construct a model for each subtask. Subsequently, the results
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were combined to form a complete model for control of landing position, with subtasks completed one
after another.

This study is innovative in that multiple cascade neural networks (CNNs) were used to control the
landing position of balls hit by table tennis robots, and the control was modeled by using large volumes
of training data to learn the association between input and output data. The robot must be able to hit
an incoming ball in such a way that the ball lands in the desired location. The method employed in this
study consists of two parts. First, to control the robotic arm so that it successfully hits an incoming ball,
the arm’s hitting movement is planned, and the time of impact is controlled. Second, landing position
is controlled, and the problem of this control is divided into four subtasks. In Subtask 1, in the absence
of a high-flying ball, the appropriate flight duration is estimated using the incoming ball velocity and
ball acceleration captured by cameras and ball’s displacement from its actual hitting point to desired
landing point. In Subtask 2, the trajectory of the ball from the desired landing point to the hitting point
is predicted using the desired landing point, flight duration, and acceleration of the incoming ball. In
Subtask 3, the desired velocity of the ball after it has been struck by the robotic arm is determined
using the predictions from Subtask 1 (i.e., the distance and flight duration between the last point and
hitting point along the trajectory). Finally, in Subtask 4, the required orientation of the racket surface is
determined using the change in ball velocity after impact.

Compared with the LWR-based model for control of landing position [5], the CNN method pro-
posed in this study resulted in a 233-mm smaller error in the average landing distance in the simulation
experiment, with the standard deviation (SD) 201.3 mm lower. The success rate of the CNN method at
landing points 1 and 2 was 25.9% and 32.9% higher, respectively, than when the LWR-based model
was employed. For the landing point 5, the success rate was 2.6% lower. Regarding other landing posi-
tions, the success rate was slightly higher. Overall, the proposed NN exerted more favorable ball landing
control than did the LWR-based model.

The rest of this paper is organized as follows: The next subsection provides an overview of the hard-
ware system architecture and the environment for the table tennis setup. Section 2 details the proposed
method for controlling the landing position, including the specifics of the table tennis robot and the
motion control system for the robotic arm. Section 3 covers the experimental simulations, the process
of generating training and testing data, and the methods used for evaluating landing position control.
Finally, Section 4 presents the conclusions of the research and outlines potential directions for future
work.

1.1. Hardware system architecture

Figure 1 illustrates the hardware system architecture of the table tennis robot used in this study. The
architecture consists of an imaging system and a robotic system. Unlike the research conducted by
Cohen et al. [3], which used a single camera positioned above the environment, we employ three 1.31
megapixel Imaging Development Systems (IDS) color industrial cameras (model UI-3140 CP-C-HQ)
equipped with HO514-MP2 lenses to capture images and send them to a computer. These cameras offer
aresolution of 1280x1024 pixels and a frame rate of 224 FPS, providing high-quality image data crucial
for accurate tracking and prediction. Building on our previous study [8], we implemented ball tracking
and trajectory prediction techniques to obtain the pixel coordinates of the spherical body (ball) and the
three-dimensional (3D) coordinates of the table tennis ball. The system then calculates the velocity and
acceleration of the ball by processing these sequential frames, ensuring precise tracking. To mitigate the
effects of visual noise, we used a noise-reduction filter and a region-of-interest mechanism, focusing pro-
cessing on the relevant areas. The computer records the trajectory of the flying ball for a period of time,
predicts the hitting point, and calculates the desired orientation of the racket according to the hitting
point and desired landing point. Additionally, we set up the environment to remain consistent, avoiding
any changes in lighting that could affect the images. We used the same lighting throughout the experi-
ments to ensure stable conditions. Finally, the results are translated into the Cartesian coordinates of a
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Figure 1. Hardware system architecture.

Staubli TX60 industrial robotic arm, and the movement command is sent to the robotic arm controller,
completing the hitting movement.

The CRACK V-989E table tennis ball machine was used in this study. This table tennis robot can hit
balls at various velocities and rotational strengths through adjustment of the rotational velocity of the
top and bottom wheels. It can hit nine types of spin through modification of the angle of the rotational
head. The pitch angle of the machine head can be adjusted to hit balls that bounce either once or twice.
The robot’s controller can be used to adjust the left- or right-tilted deflection angle of the machine head
and thus control the landing point of the outgoing ball.

1.2. Hitting movement of the robotic arm

The range over which the robotic arm hits balls and the arm’s hitting movements in this study were
designed with due consideration of the arm’s working range. First, given the default range of the hitting
movement, the angles must be arbitrarily adjustable within the default range of two degrees of freedom
for controlling the racket’s surface orientation. In this context, the default range refers to the initial
constraints on the robotic arm’s movements, ensuring the angles can be adjusted safely and effectively.
This limitation is necessary because the base of the robot is fixed, and extending the range beyond
these constraints could lead to dangerous situations, as the robot’s movements could become hazardous.
Second, the safe range over which the robotic arm can hit a ball must be considered to prevent the arm
or racket from hitting the table during the hitting process, which could damage the equipment. Third,
limited by the rotational angle of the arm’s joints, the arm’s terminal point affects the hitting movement
and orientation that can be adopted.

Based on the three aforementioned conditions, the range of the arm’s hitting movement was planned
as illustrated in Figure 2. Because this study employed a robotic arm, for which the rotational velocity of
each joint cannot be controlled, complex movements could impede the control of the time point at which
the ball was struck. Additionally, only limited movements could be achieved at different locations within
the working range of the arm because of structural factors. To ensure the ball clears the net, which was a
standard constraint in our setup, this study defined the hitting movement of the robotic arm as illustrated
in Figure 3: the center of the racket at the terminal end of the robotic arm moved from initial position
P, to P, and then from P, to Pjp; the Y and Z axes are determined by the hitting points predicted using
the visual system of the table tennis robot.

Figure 4 presents a schematic of how the orientation of the table tennis racket at the terminal end of
the robotic arm was adjusted. In the diagram, « is the Y-axis rotation of the racket at the base coordinates
of the robotic arm, which adjusts the pitch angle of the racket, and 8 is the Z-axis rotation of the racket
at the base coordinates of the robotic arm, which adjusts the deflection angle of the racket. Because
the robotic arm’s movement command controls the center of flange at the terminal end, to achieve the
desired surface orientation of the racket so that the center of the racket coincides with the hitting point,
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Figure 4. Schematic showing adjustment of racket orientation.
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the tool coordinate axis of the racket must be rotated to the desired racket surface orientation to push
back the position and orientation of the flange.

Within the default range of hitting movement in this study, the robotic arm adopts similar orienta-
tions to hit a ball; hence, using Cartesian coordinates during movement control prevents discrepancies
between the joint’s rotational direction and user’s expectation. The X, Y, and Z parameters of the
Cartesian coordinates in movement control represent the center of the flange at the terminal end of
the robotic arm. RX, RY, and RZ represent the angle of X-, Y-, and Z-axis rotation along the coordinate
axis, and these three rotational angles can be used to determine the arm’s orientation at its terminal end.

1.3. Hitting time of robotic arm

The industrial robotic arm used in this study does not provide functions for controlling joint rotational
velocity; only the percentage of movement velocity can be adjusted. Thus, measuring the time required
for the arm to move from its initial position to the hitting point is difficult. Nevertheless, trial and error
were used in this study to solve this problem and ensure that the arm could hit the ball. The purpose of
this method is to measure the time required for the robotic arm to move from its initial position to the
hitting point as it performs the default hitting movement at a constant velocity and acceleration and with
different racket surface orientations. This approach allows us to gather accurate data on the time required
for various movements, despite the lack of precise control over individual joint speeds. As illustrated
in Figure 5, when an incoming ball passes X = 1650, the robotic table tennis system starts recording
the trajectory of the moving ball. The choice of X = 1650 was based on the specific dimensions of our
table tennis setup, standardizing the position from which measurements and analyses were conducted.
This value ensures consistency across all experiments, providing a controlled environment for accu-
rate data collection. When 10 trajectory points have been recorded, these points are used to predict the
position of the ball at X =400. This predicted position, along with a random racket surface orienta-
tion, serves as the basis for generating the robotic arm’s movement command. The value X =400 is
used specifically for measurements and observations to determine the optimal striking point. When the
ball is struck by the racket held by the robotic arm, the trajectory of the moving ball from X = 1650
to the point of impact is recorded, including the time intervals between each recorded trajectory
point.

The position of the table tennis ball at X = 400 can be used to determine the position of the racket’s
center in the directions Y and Z as the robotic arm performs a hitting movement. The RX, RY, and RZ
angles of the robotic arm can also be used to calculate the orientation of the racket surface. Because
racket orientation is randomly decided, when the racket is tilted, the point of contact between the racket
and ball is difficult to determine. Thus, the position of the racket’s center in the X direction during impact
is difficult to calculate. To address this problem, the center of the ball as it hits the racket is adopted as
the basis for the hitting point, and when the surface of the racket coincides with plane F "in Figure 6,
the racket’s center is used as the estimated hitting point, where plane F' / represents the center of the
spherical body of the ball when it hits the racket.

Finally, the first predicted point of the trajectory of the moving ball to the point of impact is extracted,
and the time intervals between the predicted points in the trajectory are summed, obtaining #, in Figure 7.
t, represents the total time taken from the last recorded position of the ball to the point of impact. This
includes the time needed to predict the hitting point, calculate the Cartesian coordinates for the robotic
arm’s movement, and execute the command. Because it takes less than a millisecond to predict the
hitting point and calculate the Cartesian coordinates of the robotic arm’s flange corresponding to the
hitting point and racket orientation, the total calculation time is negligible in this study. Therefore, 7, is
considered the time required to send a movement command to the robotic arm’s controller and move the
arm from its initial position to the hitting point. Using the aforementioned method of measuring the time
taken to perform a hitting movement, this study collected 200 sets of data regarding the time required for
the robotic arm to move from its initial position to the joint angle corresponding to the hitting position.
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Figure 7. Allocation of time by the robotic table tennis system.

The 200 sets of data comprised 160 sets of training data and 40 sets of test data. These data were used
to construct a model for estimating the time required to perform a hitting movement.

This study used multivariate linear regression (MLR) and a NN estimation model. Table I shows the
estimation errors in the training and testing data for both methods. According to Table I, the average
absolute error, maximum absolute error, and SD based on the training and test data were more favorable
when neural-network-based prediction was employed than when MLR was used. Therefore, this study
used a NN as the model for estimating the time required to perform a hitting movement.
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Table I. Estimation error of the time required to perform a hitting movement.

Training data Test data

Prediction Models MLR NN MLR NN
Ave. Abs. Err (s) 0.016 0.012 0.022 0.018
Max. Abs. Err (s) 0.074 0.046 0.102 0.067
Min. Abs. Err (s) 0.000 0.000 0.001 0.001
SD (s) 0.020 0.016 0.028 0.020

Incoming ball state
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Rotational ball Variables Known

velocity: in V ball Variables

Racket parameters Racket impact| out Aerodynamic | Ball flight Ball landing

model  pall model h trajectory point
elocity: w out
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Figure 8. Inverse operations using physical models to control the landing point of a returned ball.

2. Controlling the landing position of the returned ball
2.1. Planning of landing position control

The problem of ball landing position control can be considered an inverse operation problem. As illus-
trated in Figure 8, the ball velocity after impact, angular velocity, racket orientation during impact,
and racket velocity are all unknown in this problem. These unknowns can only be determined using
the incoming ball velocity, angular velocity, desired landing point, and desired ball flight duration.
The physical models, consisting of the aerodynamic and bouncing models as referenced by Nakashima
et al. [15], are essential to this approach. The ADM accounts for drag and lift forces, which are crucial
for understanding the ball’s flight path, especially under varying spin conditions. The bouncing model
encompasses the dynamics of the ball’s interactions with both the table and racket, providing a detailed
understanding of the ball’s behavior upon impact. Because a table tennis ball movement model can be
viewed as a quadratic nonlinear formula, using these physical models to perform inverse operations for
controlling the landing point of different spinning balls is, in reality, both complex and difficult.

The machine learning methods proposed in previous studies are not applicable to the problem of
landing position control for various spinning balls because they were typically designed for specific
conditions like topspin or backspin and relied on assumptions about the ball’s rotational state. These
assumptions limited their ability to accurately control the landing position under varied spin conditions.
In this study, we modified these methods to handle the complexities of different spins. The problem of
return ball landing position control is associated with four sequential subtasks, as shown in Figure 9.
Our approach utilizes a CNN model that divides the task into these subtasks, allowing for more precise
and adaptable control over the ball’s trajectory and landing position, regardless of the spin type. This
modification enhances the generalizability and effectiveness of the control system, providing a more
comprehensive solution than previous methods. Additionally, we integrated a physical model of the
table tennis robot, considering factors such as aerodynamics and the interactions between the ball and
the racket. This integration enables the system to account for real-world factors like air resistance and
spin effects, which were not adequately addressed in previous methods. This combination of machine
learning and physical modeling offers a more robust solution for predicting and controlling the landing
position of various spinning balls.
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Figure 9. Planning of ball landing position control subtasks.

Subtask 1: In this subtask, the flight duration of a ball from the moment of impact to the desired
landing point is determined. In studies regarding the hitting control of table tennis robots, the racket
velocity and racket surface orientation are the parameters for implementing control. However, the true
velocity at the terminal end of the arm used in this study cannot be controlled; hence, the velocity and
acceleration percentages of the robotic arm are set as constant to ensure that the racket’s hitting velocity
approximates constant values and the ball landing point is controlled by the orientation of the racket.
Assume that at constant racket velocity and incoming ball velocity, only the time a ball takes to reach
a certain flight distance after impact is adjusted under the condition of racket orientation, then flight
duration is primarily affected by the ball velocity after impact and flight distance. However, the ball
velocity after impact is unknown, and other known conditions must be employed to determine the flight
duration. At constant racket velocity, the ball velocity after impact is proportional to the velocity of the
incoming ball, and in the absence of a high-flying ball, flight duration and flight distance can be assumed
to be proportional. In [7], the states of topspin and backspin balls after impact were determined, and the
flight trajectory of a topspin ball was found to be higher, whereas the backspin ball began falling after
being hit by the racket. This reveals that the rotational state of the incoming ball considerably influences
the state of a ball after impact. Because the rotational velocity of a spherical body cannot be determined
for this study’s robotic table tennis system and because the ball’s acceleration varies during its process
of rotation, this study used acceleration to represent the rotational state of the ball. According to the
aforementioned factors that influence flight duration, the Subtask 1 model was defined to comprise the
following inputs: distance between the hitting point and desired landing point, incoming ball velocity,
and incoming ball acceleration. The model’s output is flight duration.

Subtask 2: In this subtask, the ball’s flight trajectory from the desired landing point to the hitting
point is reverse-predicted from among the trajectory points segmented by the same time interval. The
obtained point is used to increase the accuracy of the ball velocity estimate after impact. Unlike trajectory
prediction of an incoming ball, forward trajectory prediction is not applicable in this case because the
ball velocity at the initial position (hitting point) is unknown and the end point of the trajectory (desired
landing point) is self-defined (i.e., a known term). In addition, the trajectory of a moving ball after impact
is related to flight distance, flight duration, and the rotational state of the ball, whereas the displacement
from the trajectory at each moment is related to that in the previous moment. Hence, in Subtask 2, the
displacement from hitting point to desired landing point, flight duration, and acceleration of incoming
ball are the initial inputs for estimating the displacement in the previous moment. Displacement in the
next moment is predicted using the displacement in the previous moment, flight duration, and incoming
ball acceleration, subsequently obtaining, from among the trajectory points that are segmented by the
same time interval, the trajectory point that is closest to the hitting point.
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Figure 10. Proposed cascade neural network.

Subtask 3: In this subtask, the velocity of the outgoing ball after impact, V,,,, is estimated at the last
point of flight trajectory, which was predicted in Subtask 2. Because this position is closer to the hitting
point, the state of the ball at this position is similar to that at the hitting point. The velocity of the ball
after impact is more accurately estimated than if using the total displacement and total flight duration.

Subtask 4: According to the physical model employed in ref. [15] for illustrating the impact between
a table tennis ball and racket, the velocity of an outgoing ball after impact is related to the ball velocity
before impact, ball rotational velocity, racket orientation, and racket velocity. In the present study, the
racket velocity is constant, and the racket surface orientation is used to control the landing position of
the returned ball. Hence, ball velocity before and after impact and incoming ball acceleration are the
input parameters for estimating racket orientation.

2.2. Cascade forward and recurrent neural networks

On the basis of the subtasks of ball landing position control planned in the previous section, a CNN
based on a forward and recurrent neural network (RNN) was designed (Figure 10) to achieve control
of ball landing position when using a robotic table tennis system. In Parts 1, 3, and 4 of the model,
control is implemented using the forward NN, whereas in Part 2, the RNN is employed to exercise con-
trol. Compared with other regression algorithms, NNs do not require input of hypothesized relationships
between input and output variables such as index, polynomial, and trigonometric functions. By adjusting
the hidden layer and number of neurons, the network’s ability to express models can be improved to learn
the relationships of complex input—output maps. Therefore, Parts 1, 3, and 4 of the model in this study
employ forward NNs as the model architecture. The forward NN handles the non-linearities associated
with the ball’s motion, such as drag and spin effects, by providing initial estimations of the ball’s tra-
jectory. Regarding Part 2, because a ball’s displacement at every moment is related to the displacement
at the next moment, a model based on the RNN, which contains state memory units, is used to pre-
dict trajectory points by referring to information on the displacement at the last moment and the history
stored in the state memory unit. The RNNss refine these predictions by capturing temporal dependencies,
essential for precise motion planning and control, especially in dynamic scenarios like table tennis. In
the network architecture designed in this study, Part 2 is the reverse trajectory prediction model, which
is only used to predict the Z-direction trajectory, and Part 3 is the postimpact ball velocity estimation
model, which is only employed to estimate the Z-direction velocity of the ball because the movement
trajectory of a topspin or backspin ball after impact is similar to that of an isokinetic movement.

In the flight duration estimation model (Part 1), the inputs are the displacement of the incoming
ball from the hitting point to the desired landing point, denoted Ax,, Ay, Azy; the acceleration of the
incoming ball V}* = (V,,, V,, V,); and the Z-direction acceleration of the incoming ball a’*". The output
is the flight duration £, from hitting point to desired landing point. In this study, topspin, backspin, and
no-spin balls were considered. Topspin and backspin influence only the Z-direction acceleration of the
ball; therefore, only the acceleration in this direction was considered.

In the reverse trajectory prediction model (Part 2), the flight trajectory of the ball from hitting point
to landing point was divided into 10 segments with equal time intervals. As illustrated in Figure 11,
P, is the ball landing point and P, is the ball-hitting point. Based on Figure 11, the definition of the
RNN architecture for reverse trajectory prediction is displayed in Figure 12, where the time step T =
0,1,---,9; Sy is the state memory unit of the RNN; Az; is the Z-direction displacement of the ball
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Figure 12. Architecture of the recurrent neural network for reverse trajectory prediction.

from hitting point Py, to Pr; t; is the flight duration of the ball from hitting point P,, to P; in Figure 11;
and a2 is the Z-direction acceleration of the incoming ball once it has reached hitting point P;,. In the
RNN architecture, when the time step = 7', the network receives Sy_;, Azy_, ty_;, a;*" as the inputs and
outputs Azr.

The ball velocity estimation model (Part 3) receives the Z-direction displacement Azy and flight
duration #, of the ball from hitting point P;, to Py in Figure 11 as its input and outputs the Z-direction
velocity of the ball at hitting point Py, after it has been hit. Because the movement of the ball in the
X and Y directions is similar to an isokinetic movement, the X- and Y-direction velocity of the ball at
hitting point Py, after it has been hit can be calculated as follows:

Vox = %, Voy = %, ey
0 ’ )

Finally, the change in velocity and racket orientation mapping model (Part 4) receives the velocity of

the ball at hitting point P,, before (V2*") and after (V>*") it hits the racket and the Z-direction acceleration

out

. . ha]] . . . .
of incoming ball (a;"") as the inputs and outputs the corresponding angles of racket orientation o and S.

2.3. Landing position control based on LWR

Unlike the systems used in previous studies, the robotic table tennis system proposed in this study does
not use racket velocity as the parameter for controlling the ball’s landing position. Hence, the landing
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Figure 13. Modified locally weighted regression-based landing position control method.

position control methods developed by past studies cannot be compared with the method proposed in
this study. For this reason, the LWR-based landing position control method in ref. [5] was modified
to act as a comparison method for the present study’s system. Figure 13 illustrates the architecture
of the modified LWR-based landing position control method. Part 1 of the method is the flight dura-
tion estimation model, which is identical to Part 1 of the multilayer NN architecture proposed by this
study. Part 2 is the postimpact ball velocity estimation model. In ref. [5], only the displacement of the
ball from the hitting point to the desired landing point was used to estimate the velocity of the ball
at the hitting point. However, the same level of displacement may occur at different ball velocities.
Hence, the ball velocity estimation model was modified to receive the Z-direction displacement Az,
and flight duration ¢, of the ball as inputs and to output the Z-direction velocity V,. of the ball after the
ball has been hit. Subsequently, the ball velocities in the X and Y directions can be calculated using
(1). Part 3 is the change in velocity and racket orientation mapping model, which receives the change
in ball velocity AV, at the hitting point and outputs the corresponding angles of racket orientation
o and B.

3. Experimental results

3.1. Simulation

The ball landing position control results of a robotic table tennis system are affected by not only training
errors in the landing position control model itself but also errors in the 3D calculation of imaging sys-
tems, hitting point prediction, estimation of incoming ball velocity and rotation, and hitting time point
control. These factors cause greater landing position errors. Therefore, this study first used simulation to
compare the performance of the proposed CNN and LWR models in landing position control when only
errors in landing position control model exist. The physical model of the table tennis ball movement
process in ref. [15] was employed to simulate the entire process of a ball flying, bouncing on the table,
and being hit by a racket.

3.2. Generating training and test data

Incoming balls with different movement directions, velocities, and rotational states were generated by
adjusting the initial position, serving angle, velocity, and rotational velocity of the incoming ball. The
ball landing position control only considered topspin and backspin balls; hence, the initial rotational state
of the incoming ball was configured to include topspin and backspin balls. To ensure that the landing
points of the returned ball in the training data were evenly distributed among the nine grid squares on
the server’s side (Figure 14), 900 sets of data (consisting of the trajectories of the incoming ball and
return ball) were obtained for model training. Among the 900 sets of data, 100 sets were data on the
return ball’s landing points in each grid square; 720 sets were training data, and 180 sets were test data.
Next, another 900 sets of data were obtained, 100 of which were data on the landing points in each grid
square. These datasets were used to evaluate the landing position control method and verify that landing
position control was achieved. Half the training data and test data involved topspin balls, and the other
half, backspin balls.
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Table I1. Structural settings for cascade neural network in simula-
tion experiment.

Model No. of Neurons Activation function
Part 1 9 tanh

Part 2 12 ReLU

Part 3 12 tanh

Part 4 14 tanh

Robot’s side Server’s side

Figure 14. Planning of the landing area of a return ball.

3.3. Model evaluation

The previous section described the method by which the training data and test data in the landing position
control model were obtained. This section presents an evaluation of the CNN proposed in this study and
the LWR-based landing position control mode. The purpose was to evaluate each part of the model that
causes errors in the landing position to accumulate. Table II shows the structural settings for each part
of the proposed CNN shown in Figure 10 in the simulation experiment.

To assess the accumulation of errors in each part of the CNN, 4 bits were used to express whether each
part was activated. Take 0001 as an example; 0001 means that Parts 1, 2, and 3 are unactivated, whereas
Part 4 is activated. Similarly, the LWR-based landing position control model was planned using the same
approach. Because the LWR-based model has only three parts, 3 bits are used to indicate whether each
part is activated.

After the input data required by each model were incorporated into the model, the racket orientation
parameters o and § could be obtained, which were then input to the physical model to obtain the return
ball’s landing point. Subsequently, the landing distance error was calculated on the basis of the desired
and actual landing point. Figure 15 shows the errors in landing distance for the training data based on
the four types of models planned by the CNN. Models 0001 and 0011 had extremely similar average
errors and SDs, suggesting that adding a model to Part 3 did not significantly influence the errors. Next,
the errors of Models 0011 and 0111 were compared, and if Part 2 was added, the average error increased
substantially from 33.1 to 40.7 mm whereas the SD increased from 51.5 to 60.2 mm, both of which are a
considerable increase compared with the two aforementioned comparisons. This difference was obtained
because the error in flight duration t0 estimated by the Part 1 model simultaneously influenced the input
parameter 7, of the Part 3 model and the input parameter V> of the Part 4 model. Unlike the trend prior
to the addition of Part 1, for every part added to the model, the errors accumulated gradually. In Model
0111, the errors were higher because Part 2 had been added, causing the output errors of Part 3 to be
greater, which indirectly increased the output errors of Part 4. Once Part 1 had been added, the errors
accumulated gradually, and the errors input to the Part 3 and Part 4 models increased, thereby further
raising the errors in the model’s final output, which was the orientation of the racket surface. According
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Figure 15. Landing distance errors of four cascade neural network-based models for training data.
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Figure 16. Landing distance errors of three locally weighted regression-based models for training data.

to Figure 16, the LWR-based landing position control produced greater errors in landing distance than
the CNN for the training data based on three models. Figure 16 shows that the average errors of the three
models were all greater than 260 mm (SD = 190 mm).

Figure 17 illustrates the errors in the landing distance for test data when using the four CNN models.
The error trend was identical to that for the training data. Models 0001 and 0011 had similar errors.
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Figure 17. Landing distance errors of four cascade neural network-based models for test data.
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Figure 18. Landing distance errors of three locally weighted regression-based models for test data.

Model 0111 generated considerably greater errors, and the errors of Model 1111 were dramatically
higher. Figure 18 shows the errors in the landing distance for test data when using the three LWR-based
models. The error trend was again identical to that for the training data. The average errors and SDs of
the three models were similar; however, the average error and SD for the test data were 20 and 40 mm
greater than those for the training data, respectively. This result reveals that the LWR-based landing
position control model performed poorly for the test data.
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Figure 19. Planning of desired landing points.
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Figure 20. Distribution of landing points for desired landing point 9.

3.4. Landing position control

To compare the landing position control performance of the CNN proposed in this study and the LWR-
based landing position control model, the desired landing points are displayed in Figure 19 were selected.
The server’s side was divided into three equal parts in the X and Y directions, forming nine grid squares
of equal size. The center point of each square was designated as the desired landing point. In this exper-
iment, 100 incoming ball trajectories (50 topspin and 50 backspin balls) were employed for each desired
landing point to examine the distribution of return ball landing points generated using the two model
types. Figure 20 presents the distributions of ball landing points for desired landing points 1-9, respec-
tively. In the diagrams, red circles represent the desired landing point and blue circles represent the
actual landing point of a returned ball.

Examination of Figure 20 reveals that when the CNN was used for control, the landing points were
relatively more centralized and closer to the desired landing points than when the LWR-based model
was used. In this experiment, landing position control was more effective with the proposed CNN than
with the LWR-based model.
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Figure 21. Experimental environment and controllable area of return ball landing point and planning
of desired landing points.

Figure 22. The block (where the ball should land and bounce on the table) used in this experiment. (a)
Placement of the block during the experiment. (b) Prints left on white paper when the block was hit by
the ball.

3.5. Experiment

The objective of this experiment was to compare the landing position control performance of the pro-
posed CNN and LWR-based control models in a robotic table tennis system. Figure 21 illustrates the
experimental environment and placement of relevant equipment in the robotic table tennis system.
The visible range of the visual system in the robotic table tennis system could not include the whole
of the server’s side; therefore, the blue area (shown in Figure 21) was defined as the controllable range
of the return ball landing point according to the visible range of the visual system and distribution of
landing points of a ball returned by the robot when using a randomly oriented racket. This blue area was
divided into six grid squares of equal size. The center of each grid was the desired landing point in this
experiment.

Given the 3D calculation errors inherent in a visual system, for this experiment, a 40 x 40 cm? block
(where the ball should land and bounce on the table) was designed as shown in Figure 22(a). The block
consisted of four layers. The topmost layer was a 2-cm-wide white frame that facilitated positioning of
the block when testing different desired landing points; the second layer was carbon paper so that when
a ball hit the block, it would leave a print on the piece of white paper at the bottom [Figure 22(b)]; the
third layer was a frame of the same size as the topmost layer to avoid leaving prints on the white paper
at the bottom when the ball landed outside the block; and the bottommost layer was the aforementioned
piece of white paper.
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Figure 23. Blocks of differing sizes.
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Figure 24. Comparison of execution time of the cascade neural network and locally weighted
regression-based models.

In this experiment, the errors in the returned ball landing point were affected by numerous factors,
including the errors in the CNN, control of hitting time and hitting point, incoming ball velocity, and
acceleration prediction. Therefore, blocks of three sizes were planned, as illustrated in Figure 23. The
success rates for these three blocks were averaged to represent the success rate of a desired landing
point. In this experiment, the trajectories of topspin, backspin, and no-spin balls returned by a randomly
oriented racket were collected for model training.

Once the robotic table tennis system completed estimation of the hitting point and incoming ball
velocity and acceleration, the landing position control model was employed to calculate the racket ori-
entation, and finally, the robotic arm was ordered to move and return the ball. To ensure that the robotic
arm had sufficient time to complete a hitting movement once the calculation had been completed, the
calculation time of the model had to be minimized as much as possible. Figure 24 shows the average
amount of time spent by the CNN and LWR-based models to make 100 calculations. Because both
models took less than 1 ms, the time required by robotic arm to execute the remaining movement was
not adversely affected. The average execution time of the CNN and LWR-based models was 0.012 and
0.458 ms, respectively. Compared with the LWR-based model, the CNN model took 97.38% less time.
Figure 25 shows the number of parameters associated with the CNN and LWR-based models. The LWR-
based model had 3766 parameters, whereas the CNN model had 424 parameters, 88.74% fewer. When
predicting every new input, the LWR-based model must recalculate the model coefficients by using
the training data; therefore, a large volume of training data must be stored in the matrix, taking up a
considerable amount of memory.

Table III summarizes the average success rates at the six desired landing points when the CNN and
LWR-based models were used. The results indicate that the success rate at desired landing points 1 and 2
was considerably higher for the CNN model than for the LWR-based model. The success rates at desired
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Table III. Average total success rate at various desired landing points in
blocks of varying sizes.

Desired landing point Cascade Neural Networks LWR
1 37.8% 11.9%
2 58.5% 25.6%
3 73.0% 70.7%
4 45.9% 45.2%
5 68.9% 71.5%
6 68.9% 59.6%

4000 3766

3000

2000

1000 424

0 [
Cascade Neural Networks LWR

Figure 25. Comparison of the number of parameters associated with the cascade neural network and
locally weighted regression-based models.

Ball coming from the launcher machine Ball hits by the racket Ball landing on the block experiment

Figure 26. Sequential stages of table tennis ball interaction during experimental testing.

landing points 3, 4, and 5 differed between methods by 3%, and this difference can be considered to be the
result of measurement errors. The two methods had similar control effects at these three desired landing
points. At desired landing point 6, the CNN model was somewhat superior to the LWR-based model.
Overall, the CNN model achieved favorable landing position control. Figure 26 shows the sequential
stages of the table tennis ball interaction during experimental testing. The first stage captures the ball
coming from the launcher machine, the second stage shows the ball being hit by the robotic arm’s racket,
and the final stage illustrates the ball landing on the block used for measuring landing positions.

Next, the success rates for topspin, backspin, and no-spin balls were calculated. Tables IV and V
show the success rates of controlling the landing positions for the three spin types using the CNN and
LWR models, respectively. Based on the results, CNN model maintains a relatively stable control effect
on landing points, with success rates not less than 50% for all six points.

Additionally, comparing the success rates across 18 sets of data (covering three spin types and six
landing points), the success rates of topspin balls at desired landing points 3, 4, and 5 and no-spin balls
at desired landing points 5 and 6 were lower than those obtained using the LWR-based model. Therefore,
the CNN overall more effectively controlled the landing of differently spinning balls.
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Table IV. Average success rates of cascade neural networks model for
different spin types.

Desired landing point Topspin Backspin No Spin
1 58.9% 36.7% 17.8%
2 57.8% 73.3% 44.4%
3 50.0% 85.6% 83.3%
4 67.8% 24.4% 45.6%
5 60.0% 80.0% 66.7%
6 70.0% 65.6% 71.1%
Average 60.75% 60.93% 54.82%

Table V. Average success rates of locally weighted regression model for
different spin types.

Desired landing point Topspin Backspin No Spin
1 20.0% 8.9% 6.7%
2 27.8% 46.7% 2.2%
3 75.6% 57.8% 78.9%
4 73.3% 23.3% 38.9%
5 70.0% 73.3% 71.1%
6 47.8% 50.0% 81.1%
Average 52.42% 43.33% 46.48%

4. Conclusion and future work

In the CNN proposed in this study, the task of controlling the return ball landing position by cameras was
divided into four subtasks. A forward NN and RNN were used for model training and combined to form
a landing position control model. A LWR-based landing position control model [5] was compared with
the proposed CNN. The models were evaluated through a simulation experiment. For the LWR-based
model, the average landing distance error was 285.2 mm (SD =237.5 mm), whereas for the CNN, the
average landing distance error based on the test data was 52.2 mm (SD = 36.2 mm). This was an average
error reduction of 233 mm and SD reduction of 201.3 mm, indicating considerable improvement. In the
physical experiment on the ball landing position control of the robotic table tennis system, the success
rate of the LWR-based model at desired landing points 1 and 2 was 11.9% and 25.6%, respectively,
whereas that of the CNN at the same landing points was considerably improved at 37.8% and 58.5%,
respectively. Regarding the other four desired landing points, the success rates of the two methods dif-
fered by 3% for desired landing points 3, 4, and 5, which can be considered to be a result of measurement
errors. The two methods thus exhibited similar control effects for these three points. At desired landing
point 6, the CNN (68.9%) outperformed the LWR-based model (59.6%) by 9.3%. The experimental
results verified that the proposed CNN generally performed more favorably than the LWR-based model
in controlling the landing position of a table tennis ball.

Because the robotic arm used in this study does not provide functions for controlling joint velocity,
the velocity of the racket could not be included in the model as a control variable. If the robotic arm were
replaced with a self-made ball-hitting structure, the user would be able to control the racket velocity.
Hence, introducing racket velocity to the model as a control variable can be considered to further enhance
the effectiveness of landing position control.
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