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Mixing-induced reactions play an important role in a wide range of porous media
processes. Recent advances have shown that fluid flow through porous media leads to
chaotic advection at the pore scale. However, how this impacts Darcy-scale reaction
rates is unknown. Here, we measure the reaction rates in steady mixing fronts using
a chemiluminescence reaction in index-matched three-dimensional porous media. We
consider two common mixing scenarios for reacting species, flowing either in parallel in a
uniform flow or towards each other in a converging flow. We study the reactive properties
of these fronts for a range of Péclet numbers. In both scenarios, we find that the reaction
rates significantly depart from the prediction of hydrodynamic dispersion models, which
obey different scaling laws. We attribute this departure to incomplete mixing effects at the
pore scale, and propose a mechanistic model describing the pore-scale deformations of the
front triggered by chaotic advection and their impact on the reaction kinetics. The model
shows good agreement with the effective Darcy-scale reaction kinetics observed in both
uniform and converging flows, opening new perspectives for upscaling reactive transport
in porous media.

Key words: porous media, coupled diffusion and flow, laminar reacting flows

1. Introduction
Reactive processes in porous media play a central role in the transport, transformation and
degradation of chemical and biological substances in a wide range of systems, including
soils and rocks (Lichtner, Steefel & Oelkers 2018), engineered porous media (Perfect
et al. 2014; Huang et al. 2022) and biological porous media (Khaled & Vafai 2003;
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Goirand, Le Borgne & Lorthois 2021). In many applications, reactions are driven by
transport processes that bring dissolved reactants into contact (Rolle & Le Borgne 2019;
Valocchi, Bolster & Werth 2019). This reactive transport process is generally modelled
using the advection dispersion reaction equation (Dentz et al. 2011), which describes
mixing processes using an effective dispersion coefficient that lumps pore-scale velocity
fluctuations into a single coefficient. During the last decades, there have been increasing
observations of the breakdown of this model due to incomplete mixing of reactants at the
pore scale (Raje & Kapoor 2000; Gramling, Harvey & Meigs 2002; Klenk & Grathwohl
2002; Battiato et al. 2009; Battiato & Tartakovsky 2011; De Anna et al. 2014).

Although different phenomenological frameworks have been proposed (Olsson &
Grathwohl 2007; Benson & Meerschaert 2008; Edery, Scher & Berkowitz 2010; Sanchez-
Vila, Fernàndez-Garcia & Guadagnini 2010; Chiogna & Bellin 2013; Ding et al. 2013;
Hochstetler & Kitanidis 2013; Hochstetler et al. 2013; Porta et al. 2013; Paster, Bolster
& Benson 2014; Bolster, Paster & Benson 2016; Ginn 2018), it is still unclear how to
correctly upscale reactive processes at the Darcy scale. At the pore scale, the interplay
between fluid deformations, molecular diffusion and reaction is conveniently described in
a Lagrangian frame using the lamellar theory of mixing (Ranz 1979; Le Borgne, Dentz &
Villermaux 2015; Villermaux 2019). The latter represents mixing interfaces as elongated
lamellar structures whose stretching under the action of flow enhances mixing and reaction
rates (Bandopadhyay et al. 2017; Izumoto et al. 2023). However, it is unknown how
to upscale such a pore-scale description to three-dimensional (3-D) Darcy-scale porous
media. Furthermore, it is unclear how the mixing dynamics at the pore scale interacts with
non-uniform flows at larger scale. A case of particular interest is converging flows in which
reactive fluids flow towards each other in porous media flows (Hester et al. 2017; Marzadri
et al. 2017; Bresciani, Kang & Lee 2019; de Vriendt 2021; Izumoto et al. 2023). This leads
to a stagnation point of the flow associated with persistent fluid compression, which can
sustain reactions.

Using two-dimensional (2-D) microfluidic devices, several studies have succeeded
in quantifying the evolution of concentrations of reacting species at the pore scale
in mixing fronts. Reactions producing light or a fluorescent product have been used
to image reaction rates in 2-D micromodels (Willingham, Werth & Valocchi 2008;
De Anna et al. 2014; Izumoto et al. 2023), yielding high-resolution maps of local reaction
intensity. Although 2-D porous micromodels greatly facilitate imaging at the pore scale,
their mixing dynamics fundamentally differ from 3-D porous media flows, which sustain
chaotic advection (Lester et al. 2013, 2016). Chaotic advection has recently been shown to
control dilution rates and scalar gradients on the pore scale (Heyman et al. 2020), affecting
incomplete mixing and reactions (Sanquer et al. 2024) and fluid–solid reactions (Aquino,
Le Borgne & Heyman 2023). Experimentally, it is particularly challenging to resolve
reactive transport processes at the pore scale in 3-D porous media due to the opacity of the
grains, and most studies perform measurements of the reaction rate at the outlet of columns
(Ham et al. 2007). Recent studies have resolved mixing-induced reactions on the pore scale
using magnetic resonance imaging (Markale et al. 2021), or fluid–grain refractive index
matching together with chemical reactions producing fluorescent compounds (Sanquer
et al. 2024). However, these high-resolution imaging techniques are currently limited to
length scales of a few tens of grains, which is not sufficient to bridge the gap to Darcy
scales. Thus the impact of chaotic mixing on the large-scale reaction efficiency remains
unclear. Colorimetric reactions have been used in refractive index matching media on
the Darcy scale to measure the integrated mass of reaction products in an invading front
(Gramling et al. 2002; Edery et al. 2015), demonstrating the persistence of the signature of
incomplete mixing at large scales. These experiments were obtained in transient conditions
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in which a fluid flows and replaces another fluid. Such longitudinal mixing conditions are
expected to be dominated by longitudinal shear rather than chaotic advection, which in
steady 3-D flows occurs in the transverse direction of the flow (Lester et al. 2018). Hence
the impact of pore-scale chaotic mixing on the Darcy-scale effective reaction reaction front
properties remains unknown.

Here, we investigate the properties of the Darcy-scale reaction front of an irreversible
bimolecular reaction A + B → C in steady transverse mixing fronts through porous
media. In our flow cells, reactants were continuously injected by two inlets, and mixing
occurred in the direction perpendicular to the mean flow direction. We combined the
refractive index matching technique with chemiluminescence to map in two dimensions
the effective Darcy-scale reaction rates integrated over the gap of the cell. We considered
two common scenarios of mixing fronts in porous media: (i) a co-flow configuration where
two reactive fluids flow in parallel in a uniform Darcy-scale flow, and (ii) a saddle flow
where two reactive fluids flow towards each other in a converging flow around a stagnation
point. The paper is organised as follows. We first present the theory for mixing-induced
reactions in parallel and converging flows when considering diffusion or dispersion,
thus neglecting the effect of incomplete mixing at the pore scale. We then compare
these classical predictions with the experimental measurements, showing a significantly
different evolution of the effective reaction rate with distance along the front and Péclet
number because of incomplete mixing. Finally, we derive a new mechanistic model linking
the pore-scale chaotic mixing to the effective reaction front properties at the Darcy scale,
capturing experimental data for the range of investigated Péclet numbers, in both parallel
and converging flows.

2. Reactive front kinetics under diffusion and dispersion
In this section, we present the theory for bimolecular reactions A + B → C in mixing
fronts when considering diffusion or hydrodynamic dispersion, for both parallel and
converging flows. Deviations of experimental data from this reference model, which
ignores incomplete mixing at the pore scale, will be discussed in the following sections to
quantify the role of micro-scale mixing dynamics in macro-scale reactive front properties.

Given a flow velocity v, the dispersion tensor D, and k the kinetic constant of a
bimolecular reaction, the transport equation for the Darcy-scale concentration of the
reactants CA and CB follows:

∂CA

∂t
+ v · ∇CA = ∇ · (D ∇CA) − kCACB,

∂CB

∂t
+ v · ∇CB = ∇ · (D ∇CB) − kCACB . (2.1)

The dispersion tensor lumps the effect of pore-scale velocity fluctuations and molecular
diffusion into a single tensor, classically modelled by (Bear 1988; Delgado 2007)

D = (Dm + αT |v|) I + (αL − αT ) (v ⊗ v)/|v|, (2.2)

where αL and αT are the longitudinal and transverse dispersivities, respectively, Dm is
the molecular diffusivity, and I is the identity matrix. Two dimensionless numbers, the
Péclet number Pe and the Damköhler number Da, characterise respectively the ratio of
diffusion and advection times and the ratio of diffusion and reaction times. Setting L as a
characteristic length scale, U as a characteristic velocity scale, C0

A as the concentration of
reactant A far from the mixing front,
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CA

kCBCA

x

y

CB

v = (U, 0)

Figure 1. Flow and boundary conditions corresponding to the co-flow mixing front. Reactants A and B
are segregated and co-injected at the left-hand boundary. They flow, mix and react in the domain x > 0.
The colour scale indicates local reaction rates obtained in numerical simulations of the hydrodynamic
dispersion approximation (see § A.4).

Pe = U L

Dm
(2.3)

and

Da = kC0
A L2

Dm
. (2.4)

We consider a mixing front in which reactant concentrations vary in the (x, y) plane,
with x the coordinate along the front, and y the coordinate in the transverse direction,
and are invariant in the z direction. The two reactants are initially fully segregated
(i.e. (CA, CB) = (C0

A, 0) for y > 0, and (CA, CB) = (0, qC0
A) for y < 0). We define q =

C0
B/C0

A as the ratio of reactant concentrations on both sides of the front. The reaction rate
is R = kCACB . We characterise the properties of the reaction front as a function of the
position x along the flow direction using three metrics: the maximum local reaction rate
Rmax defined as

Rmax (x) = max
y

R(x, y), (2.5)

the total reaction intensity I defined as the integrated reaction rate along y,

I (x) =
∫

dy R(x, y), (2.6)

and the width of the reactive front sR defined from the second spatial moment of the
reaction rate as

s2
R =

∫
dx y2 R(x, y)∫

dx R(x, y)
. (2.7)

From these definitions, sR ∼ I/Rmax is expected.

2.1. Diffusion–reaction front (co-flow)
We first consider a mixing front with two reactive fluids flowing in parallel with
constant velocity v ≡ (U, 0) (figure 1) and mixing transversely through diffusion only
(low Pe), such that (2.2) reduces to D ≡ Dm . As the flow is steady and uniform, the
steady advection–diffusion problem simplifies to an unsteady diffusion problem in the
Lagrangian coordinate system, where the Lagrangian time is defined by t = x/U . From
(2.1), the concentration of solute species is governed by the equations
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∂CA

∂t
= Dm

∂2CA

∂y2 − kCACB,

∂CB

∂t
= Dm

∂2CB

∂y2 − kCACB . (2.8)

The properties of such a reactive front were studied by Gálfi & Rácz (1988), Taitelbaum
et al. (1991) and Larralde et al. (1992), and we recall here their main results for
completeness. For an instantaneous reaction (infinite Da), reactants react as soon as they
meet. Thus they remain fully segregated, and the reaction intensity is driven solely by
the mixing flux across the interface. For finite Da, two effective reaction regimes must
be distinguished. At times t smaller than the characteristic reaction time tr = 1/(C0

Ak),
i.e. a distance smaller than trU , the reaction is slow compared to diffusion, and the
front is in a reaction-limited regime. The concentration profiles of reactants can thus
be approximated with the conservative concentration profiles. The characteristics of the
reactive front follow typical diffusive scaling. When replacing time by position along front
t = x/U , this leads to,

sr ∼ L Pe−1/2
( x

L

)1/2
, Rmax ∼ (C0

A)2k and I ∼ (C0
A)2Lk Pe−1/2

( x

L

)1/2
. (2.9)

In contrast, at times larger than the reaction time (t > tr , x > trU ), the front becomes
mixing-limited, resulting in different scaling of the reactive front properties with distance,
Pe and Dm (Taitelbaum et al. 1991). As shown in Larralde et al. (1992), an approximate
solution can be obtained by a perturbation method that uses a spatial linearisation of the
conservative profile F = CA − CB near the front origin, while neglecting nonlinear terms
(see Appendix A). This leads to

sr ∼ L Da−1/3 Pe−1/6
( x

L

)1/6
,

Rmax ∼ C0
A Dm

L2 Da1/3 Pe2/3
( x

L

)−2/3
,

I ∼ C0
A Dm

L
Pe1/2

( x

L

)−1/2
. (2.10)

Note that although the reaction is fast compared to mixing in this regime, the reaction
kinetics, encoded in Da, still appears in the scaling laws for sr and Rmax . As Da increases,
the width of the reactive zone becomes narrower because the time in which the two species
can co-exist at the same location decreases. As sr decreases, the maximum reaction rate
increases proportionally such that the product sr × Rmax is independent of Da. This is a
consequence of the independence of the reaction intensity I ∼ sr × Rmax of Da, as it is
proportional to the mixing rate in the mixing-limited regime. For infinite Da, sr goes to
zero, Rmax goes to infinity, and I remains proportional to the mixing rate. For simplicity,
we did not report here the scaling with q for the case of an asymmetric reaction in these
expressions (see Appendix A for the full scaling laws).

2.2. Advection–diffusion–reaction with compression (saddle flow)
We now consider the case of a reactive front in converging flows, considering a saddle
flow around a stagnation point located at (x, y) = (0, 0):

v = γ

(
x

−y

)
, (2.11)

1013 A4-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10223


S. Izumoto, G. Rousseau, T. Le Borgne and J. Heyman

CA

kCBCA

x

y

CB

v = γ (x , –y)

Figure 2. Flow and boundary conditions corresponding to the saddle mixing front. Reactants A and B are
segregated and co-injected at the top and bottom boundaries, respectively. They flow, mix and react in the
domain. The stagnation point is located at (x, y) = (0, 0). The colour scale indicates local reaction rates
obtained in numerical simulations of the hydrodynamic dispersion approximation (see § A.4).

where γ is the compression rate (Haller 2015). In this flow field, opposing flows converge
and diverge at the stagnation point along directions y and x , respectively, leading to the
formation of one stable manifold ( y) and one unstable manifold (x) that are perpendicular
to each other, and an exponential compression of fluid parcels. For this system, we define
the characteristic velocity as U = γ L and the Péclet number as Pe = γ L2/Dm .

The saddle flow leads to the formation of a reactive front along the x direction, since the
two reactants are supplied in opposite directions on the y axis (figure 2). In a Lagrangian
coordinate system attached to a fluid particle travelling on the x axis, the concentration of
the reactant approximately follows :

∂CA

∂t
− γ y

∂CA

∂y
= Dm

∂2CA

∂y2 − kCACB . (2.12)

Equation (2.12) implicitly assumes that longitudinal scalar gradients are much smaller than
transverse ones, which is generally the case in steady mixing front. A detailed derivation
is provided in Rousseau et al. (2023).

As first shown by Ranz (1979) in the conservative case, this equation can be solved by
a change of variables that integrates the deformation of fluid elements in a Lagrangian
reference system (see Villermaux (2019) for a review). Under this transformation, the
advection–diffusion equation simplifies to a diffusion equation with analytical solutions.
Bandopadhyay et al. (2017) and Izumoto et al. (2023) have shown that reactive transport
can also be studied in this Lagrangian framework by using the reaction–diffusion theory of
Larralde et al. (1992). Two regimes can be distinguished in the saddle-flow configuration:
first, a kinetic-limited regime when γ � t−1

r , that is, when reaction at the front is limited
by the time for reaction to occur rather than by the supply of reactants; second, a mixing-
limited regime for γ � t−1

r , where reaction is limited by the supply of reactant under the
action of compression. In the kinetic-limited regime, Izumoto et al. (2023) have shown
that the properties of the reaction front under diffusion and compression are

sR ∼ L Pe−1/2, Rmax ∼ (C0
A)2k and I ∼ (C0

A)2kL Pe−1/2, (2.13)

while in the mixing-limited regime, the front scales as

sR ∼ L Da−1/3 Pe−1/6,

Rmax ∼ C0
A Dm

L2 Da1/3 Pe2/3,

I ∼ C0
A Dm

L
Pe1/2. (2.14)

More details on the derivation are given in Appendix A and in Izumoto et al. (2023).
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2.3. Advection–dispersion–reaction in porous media: co-flow
Here, we investigate how the presence of a homogeneous porous media of typical length
scale L = d, the grain diameter, and the resulting hydrodynamic dispersion (Delgado
2007) affect the properties of the reaction front for both parallel and converging flows.
We assume that αT U is large compared to Dm (high Pe), so molecular diffusivity can
be neglected in (2.2). In the co-flow scenario, the velocity is constant, so the dispersion
tensor is also constant. The dispersive mixing front is therefore very similar to the diffusive
one. Hence the scaling laws corresponding to diffusive transport ((2.9) and (2.10)) still
hold for dispersive transport, with the molecular diffusion coefficient Dm replaced by the
transverse dispersion coefficient

DT = αT U = Dm Pe
αT

d
, (2.15)

the diffusive Péclet number Pe replaced by a dispersive Péclet number

PeD = LU

DT
= d

αT
, (2.16)

and the diffusive Damköhler number Da replaced by a dispersive Damköhler number

DaD = Da

Pe

d

αT
. (2.17)

We thus obtain in the kinetic-limited regime x < trU ,

sr ∼ (αT x)1/2, Rmax ∼ (C0
A)2k and I ∼ (C0

A)2k (αT x)1/2, (2.18)

and in the mixing-limited regime x > trU ,

sr ∼ d Da−1/3 Pe1/3
(

d

αT

)−1/2 ( x

d

)1/6
,

Rmax ∼ C0
A Dm

d2 Da1/3 Pe2/3
( x

d

)−2/3
,

I ∼ C0
A Dm

d
Pe
(αT

x

)1/2
. (2.19)

2.4. Advection–dispersion–reaction in porous media: saddle flow
For the case of saddle flow, Rousseau et al. (2023) have shown that the dispersive front
has a shape similar to that of the dispersive co-flow configuration, with a prefactor in the
mixing width. The velocity varies spatially along the front as v(x, 0) = (γ x, 0). Thus the
transverse dispersivity is spatially dependent:

DT = αT γ x = Dm Pe xαT /d2. (2.20)

The dispersive Péclet and Damköhler numbers thus read PeD = d2/(αT x) and DaD =
Da Pe−1 d2/(αT x), respectively. In the kinetic-limited regime, the diffusive scaling
(2.13) thus transforms to the dispersive scaling

sr ∼ (αT x)1/2, Rmax ∼ (C0
A)2k and I ∼ (C0

A)2k(αT x)1/2. (2.21)
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Flow config. Regime Equation Reactive width sR Maximum reaction rate Rmax Total intensity I

Co-flow Kin. lim. (2.18) x1/2 Const. x1/2

Co-flow Mix. lim. (2.19) Pe1/3 x1/6 Pe2/3 x−2/3 Pe x−1/2

Saddle flow Kin. lim. (2.21) x1/2 Const. x1/2

Saddle flow Mix. lim. (2.22) Pe1/3 x1/2 Pe2/3 Pe x1/2

Table 1. Summary of expected scaling laws as a function of Péclet number Pe and distance x at Darcy scale
using the hydrodynamic dispersion equation, where x is the distance measured along the downstream flow
direction.

In the mixing-limited regime, the diffusive scaling (2.14) transforms into the dispersive
scaling

sr ∼ Da−1/3 Pe1/3(αT x)1/2,

Rmax ∼ C0
A Dm

d2 Da1/3 Pe2/3,

I ∼ C0
A Dm

d2 Pe (αT x)1/2 , (2.22)

where Pe = γ d2/Dm , and Da is defined in (2.4).
All theoretical scaling laws for reactive transport in the presence of hydrodynamic

dispersion are summarised in table 1. In § A.4, we numerically validate these scaling laws
for conditions close to the experiments. In the next section, we compare these analytical
scaling laws with experimental data. Note that these results are derived by assuming that
mixing can be modelled by hydrodynamic dispersion, hence ignoring incomplete mixing
at the pore scale. Therefore, a discrepancy of these predictions with observations can be
used to assess the impact of the pore-scale mixing dynamics on macroscopic reaction rates
in experiments.

3. Experimental results
We investigated steady reactive fronts that form between two reactive fluids flowing in
parallel (co-flow) or towards each other (saddle flow) in 3-D porous media. Our imaging
set-up measures two-dimensional maps of the effective reaction rate integrated over several
pore diameters across the cell gap. To this end, we used the principle of chemilumines-
cence and refractive index matching. The chemiluminescence reaction occurs through
the mixing of reactants at the pore scale, producing photons that travel freely through
a transparent, index-matched porous material. A camera records the total light emitted
over the thickness of the cell, which corresponds to a macroscale effective reaction rate
mapped across the mixing front. Experimental methods are described in the following.

3.1. Methods

3.1.1. Chemiluminescence reaction
We use the chemiluminescence of luminol (Izumoto et al. 2023), which involves a catalytic
reaction of H2O2 with Co2+ followed by an oxidation reaction of the luminol compound
with OH· and O2· radicals (Uchida et al. 2004). These reactions can be written as

luminol + H2O2 + 2OH− Co2+−−−−−→ 3-aminophthalatedianion + N2 + H2O + photon
(3.1)
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202 mm
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or 208 mm

6 mm
or 7.81 mm

50 mmInlet

(a) (b)

y

x
y

x
Inlet

Outlet

Outlet

Outlet

Inlet

Figure 3. (a) Co-flow set-up and (b) saddle-flow set-up. The distance between the inlet/outlet and the stagnation
point is 103 mm. For the porous medium, we used a larger cell; the distance between the inlet/outlet and the
stagnation point is 208 mm. In saddle flow, a is 303 mm2 for the Hele-Shaw cell, and 811 mm2 for the cell for
porous media. The thick arrows indicate the flow direction.

luminol is oxidised to 3-aminophtalatedianion with an emission of a blue photon of
wavelength λ≈ 450 nm. Such a reaction can be approximated (Matsumoto & Matsuo
2015) as a bimolecular reaction:

A + B −→ C + photon, (3.2)

where A and B represent the H2O2 and the luminol species, respectively. The total reaction
rate is thus directly proportional to the intensity of the emitted light. In practice, we
prepared two solutions. One was a mixture of 1 mM luminol, 7 mM NaOH and 0.01
mM CoCl2 (termed luminol solution), and the other was a mixture of 0.5 mM H2O2 and
3.9 mM NaCl (termed H2O2 solution). Izumoto et al. (2023) have estimated the reaction
constant k = 0.08 s−1 mM−1 by mixing the two solutions in a beaker and measuring the
intensity of light over time. This leads to the characteristic time scale tr = 1/(kC0) = 2.5
s, where C0 = 0.5 mM is the concentration of luminol in the batch solution (i.e. half of
the concentration of the solution before mixing). Note that after the fast reaction phase,
the luminol reaction continues with a slower reaction. The light emitted from this slow
reaction was subtracted from the original images by defining a threshold in the light
intensity following the method of Izumoto et al. (2023). Note also that the commercial
H2O2 solution may contain stabiliser compounds leading to a departure from the expected
bimolecular kinetic. This did not occur for our 30 % H2O2 solution, which contained the
Sigma-Aldrich stabiliser.

3.1.2. Flow cells
To impose the co-flow and saddle-flow conditions, we designed two flow cells. The first
cell includes two inlets in two separated triangular-shaped branches (figure 3a), leading to
a co-flow configuration. By injecting two different solutions from each of the inlets, they
start mixing at the edge of the separator, and they flow in parallel towards the outlet at the
other side of the cell, placed 220 mm from the start of the mixing zone. The second cell
has four flow branches (figure 3b), with two inlets and two outlets. The cell boundary is
chosen to be a streamline of the saddle flow (2.11), i.e. y = ±a/x , with a a constant. The
dimensions of the cells are given in figure 3. The flow cells are kept empty or filled by a
transparent granular material matched to the water refractive index (fluorinated ethylene
propylene, FEP) of size 2 mm. Empty cells, referred to as Hele-Shaw cells, are used to
study the advection–diffusion–reaction front. They are thin (2 mm) to maintain viscous
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Co-flow Saddle flow
Hele-Shaw cell Porous media Hele-Shaw cell Porous media

Injection rate
(ml h−1)

{183} {864, 594, 409, 281, 193,
133, 91.4, 62.8, 43.2}

{432, 297, 204,
140, 96.6}

{1913, 1316, 904.6, 622.1,
427.8, 294.2, 202.3, 139.1,

95.66}
Velocity (Darcy
scale) (mm s−1)

{0.845} {1.79, 1.23, 0.845, 0.581,
0.400, 0.275, 0.189,

0.130, 0.0894}
Compression rate
× 103 (s−1)

0 0 {43.4, 29.8, 20.5,
14.1, 9.70}

{43.4, 29.8, 20.5, 14.1,
9.70, 6.67, 4.59, 3.16, 2.17}

Pe {1690} {3575, 2458, 1690, 1162,
799.3, 549.7, 377.0,

259.9, 178.7}

{8678, 5968, 4104,
2822, 1941}

{8678, 5968, 4104, 2822,
1941, 1334, 917.6, 631.0,

433.9 }

Table 2. Summary of experimental runs and conditions. Constant parameters are the Damköhler number Da =
1600, the molecular diffusion coefficient Dm = 10−9 m2 m2 s−1, and the characteristic length L = d = 2 mm.
For co-flow, Pe = U L/Dm . For saddle flow, U = γ L , leading to Pe = γ L2/Dm . For each flow configuration
(columns) the different runs are indicated inside brackets.

flows (low Reynolds number). Porous media cells are thicker (12 mm) to allow for the
packing of a few grain diameters. Since the refractive index of FEP (1.34) is close to that
of water (1.33), this allowed us to visualise an integrated image of the reaction rate over the
whole cell depth. The porosity of the packed FEP was estimated to be 0.37 by comparing
the saturated and unsaturated weights of the cell. Since the scalar gradients developing
in co-flows and saddle flows mainly involve mixing in the direction transverse to flow
(y), we assume that Taylor–Aris dispersion due to the Poiseuille velocity profile, which
operates mainly in the direction of flow, only weakly alters mixing rates. For saddle-flow
experiments, all applied compression rates were such that the characteristic compression
time was larger than the reaction time, γ −1 > tr . Hence they are in the mixing-limited
regime. A summary of the experimental runs and associated parameters is provided in
table 2.

3.1.3. Protocol
Before each experiment, we filled the cell with deionised water. For experiments with
porous media, we injected CO2 gas before filling the cell with water. Hence any trapped
CO2 gas dissolved in the water, and there were no remaining bubbles. Then we injected
luminol and H2O2 solutions from two different inlets at a fixed injection rate. We imposed
nine flow rates for each of the experimental configurations. The maximum Reynolds
number varied between 0.18 and 3.6 for co-flow cells, and between 0.22 and 4.5 for saddle-
flow cells (Re = Ud/ν, with ν = 10−6 m2 s−1 the kinematic viscosity, d = 2 mm the grain
size, and U = Q/Aφ, where Q is the volumetric injection rate, A is the cross-sectional
area of the tank at injection, and φ is the porosity). We thus assume that inertial effects
are small in our experiments. For each flow rate, we waited for the front to stabilise before
acquiring images with a full-frame high-sensitivity 14-bit camera (SONY alpha7s) with
a macro lens (MACRO GOSS F2.8/90). The image resolution was 0.046 mm per pixel
for all cases. For porous media experiments, we triplicate the experiments by repacking
the FEP to obtain results independently of the specific grain packing. The images were
rescaled by the bit depth of the camera to obtain the normalised reaction rate.

The luminol reaction can be approximated as a bimolecular reaction after subtracting
light emission from the slow reaction kinetics at later times (Izumoto et al. 2023).
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0
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x
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0.48 0 0.10 0.20

(a) (b)

Figure 4. Experimental reaction rate fields in the Hele-Shaw cell for (a) the co-flow configuration (Pe = 3575)
and (b) the saddle-flow configuration (Pe = 8678). Flow is from left to right. The white bar represents 10 mm.
The colour scale indicates local reaction rates R normalised by the bit depth of the camera.

We measured this weak light emission as follows. We first mixed the luminol solution and
the H2O2 solution in a beaker, and then injected this solution into Hele-Shaw and porous
media cells. After more than 30 minutes, we started taking images. The intensity of these
pictures corresponds to the light emission from the long-lasting reaction. We subtracted
these image intensities from the images taken in reactive transport experiments following
the protocol of Izumoto et al. (2023).

We estimated the transverse width of the reactive front sR by computing the spatial
standard deviation of a normalised transverse reaction rate profile. The maximum local
reaction rate Rmax was taken as the maximum, and the total reaction intensity I from the
image intensity profile. The width was obtained experimentally by

sR(x) =
(∫

y2 P(x, y) dy −
(∫

y P(x, y) dy

)2
)1/2

, (3.3)

where y is the transverse position, and P(x, y) is the normalised image intensity at the
position (x, y). The maximum image intensity of the profile was chosen as Rmax (x) =
maxy P(x, y), and the image intensity was integrated over the measured line to calculate
IR(x) = ∫

P(x, y) dy.

3.2. Reactive fronts in the Hele-Shaw cell
We first used Hele-Shaw cells without porous medium to confirm that the
chemiluminescence reaction is a good proxy for bimolecular reactive fronts, whose
theoretical behaviour is now well understood in the absence of porous media (Gálfi &
Rácz 1988). In the co-flow configuration, we observe a steady reactive front that forms at
the interface between the flowing reactants reactants (figure 4a). Luminescence, which is
proportional to the local reaction rate, is maximal at the entrance of the cell, and rapidly
decreases as it moves downstream. The dependence of the measured reaction zone width,
maximum reaction rate and total intensity with advective time (figure 5a) is well captured
by the theoretical scaling laws expected for a bimolecular reaction in a mixing-limited
reactive front (2.10). We could not observe the kinetic-limited regime, which occurs at
short times (t < tr ), probably because the cell geometry did not allow for a perfectly 2-D
co-injection of reactants.

In the saddle-flow configuration (figure 4b), the reaction front is steady and invariant
along the x axis. In fact, the constant compression rate induced by the saddle-flow
configuration maintains a fixed scale of scalar fluctuations (Rousseau et al. 2023). We
plot the characteristics of the reaction zone against the Péclet number in a window of 100
pixels centred on the stagnation point (figure 5b). The data agree well with the scaling
laws expected for the mixing-limited regime (2.14), which is expected since γ −1 > tr for
all compression rates used experimentally. The consistency of these observations with
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Figure 5. Experimental reaction front properties (red circles) in the Hele-Shaw cells for (a) co-flow at
Pe = 1690 and (b) saddle-flow configurations. Errors bars are calculated by taking the standard deviation over
a window of length L . The black dashed lines show the theoretical scaling laws given by (2.10) (co-flow) and
(2.14) (saddle flow). The red continuous lines are power-law fits.

the theoretical scaling laws (Gálfi & Rácz 1988; Larralde et al. 1992) confirms that the
chemiluminescence reaction is well approximated by a bimolecular reaction.

3.3. Steady reactive fronts in porous media
Experimental images of reactive fronts obtained in porous media cells in co-flow and
saddle-flow configurations are shown in figure 6 for increasing Péclet numbers. The
presence of grains clearly enhances the transverse spreading of the reactive zone compared
to the open flow case (figure 4). In contrast to the Hele-Shaw cell, the reactive mixing
interface that forms in the saddle flow in porous media broadens with x (figure 6b),
since the dispersion coefficient increases with x . This broadening was also observed in
conservative transport experiments (Rousseau et al. 2023). We present in figure 7 the
characteristics of the reactive front and its dependence on the distance x for the co-flow
and for the saddle flow. In co-flow, we normalise the distance by the characteristic reaction
distance xr = U/tr to highlight the two different regimes in space. For saddle flow, we
normalise x by grain size since there is only one regime in space. We averaged these
characteristics over triplicate experiments with different grain packings.

For co-flow experiments, we observe first a kinetic-limited regime, where the reaction
intensity I increases with distance and then, further downstream, a mixing-limited regime,
where I decays (figure 7a1). The transition distance between the two regimes is obtained
at x ≈ xr . In the kinetic-limited regime, Rmax and I increase faster than predicted by the
hydrodynamic dispersion theory (2.19). In the mixing-limited regime (x > xr ), the decay
of Rmax and I is closer to the hydrodynamic dispersion model (2.10). For saddle-flow
experiments, the evolution of Rmax and I with distance is also significantly faster than
predicted by the hydrodynamic dispersion theory for the mixing-limited regime (2.22).
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Figure 6. Normalised steady-state reaction rate fields for (a) co-flow and (b) saddle flow, obtained from
chemiluminescence experiments in porous media. The reaction rate is normalised by the maximum reaction
rate at the highest Pe for each configuration. The white scale bar has length 10 mm. The porosity appears as
dark patches in the mixing front. For (a), the left-hand edge corresponds to the start of mixing and for (b), the
left-hand edge corresponds to the stagnation point.

Interestingly, the measured reactive mixing width sR in both co-flow and saddle flows
in the presence of porous media approximately follows the hydrodynamic dispersion
predictions (2.18), (2.19), (2.22). This suggests that the hydrodynamic dispersion theory
provides a robust framework to predict the spatial extent of the mixing fronts, as observed
by Rousseau et al. (2023) for conservative mixing, although it does not capture actual
mixing and reaction rates.

We plot the properties of the experimental reaction front as a function Pe measured at
x = 10d in figure 8. At this position, all experiments are in the mixing-limited regime. For
the intensity of the reaction front intensity (figure 8a1,b1) and the maximum reaction rate
(figure 8a2,b2), the evolution with the Péclet number is stronger than predicted by the
hydrodynamic dispersion theory. This discrepancy suggests that incomplete pore-scale
mixing plays an important role, as discussed in the following. Note that the evolution
of the reactive width with the Péclet number (figure 8a3,b3) is consistent with the
scaling predicted by hydrodynamic dispersion, since this spatially integrated measure
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Figure 7. Reactive mixing properties measured in porous media. (a) The reaction front properties over distance
normalised by the characteristic reaction distance xr in co-flow porous media experiments, showing (a1)
reaction intensity, (a2) maximum reaction rate, and (a3) reaction width. The dashed lines show the scaling laws
expected from the hydrodynamic dispersion theory (2.18), (2.19). (b) Reaction front properties over distance
normalised by the grain diameter in saddle-flow porous media experiments, showing (b1) reaction intensity,
(b2) maximum reaction rate, and (b3) reaction width. The dashed lines show the scaling expected from the
hydrodynamic dispersion theory (2.22). Continuous lines show the fit to the data. The error margin is estimated
from the minimum and maximum envelope of the three experimental replicates obtained with different packing
realisations.

is not modified by the presence of pore-scale gradients, as also found in conservative
experiments (Rousseau et al. 2023) .

4. Discussion
Experimental observations show that reaction rates in mixing fronts under flow in porous
media largely depart from those predicted by the hydrodynamic dispersion framework. In
this section, we discuss the origin of this discrepancy and investigate the role played by
pore-scale chaotic advection (Lester, Metcalfe & Trefry 2013; Heyman et al. 2020), which

1013 A4-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10223


Journal of Fluid Mechanics

10−1

100

Pe1

Pe3/2

Pe1.47 ± 0.08

Pe1

Pe3/2

Pe1.46 ± 0.11

10−2

10−1

100

R m
ax

/R
m

ax

Pe2/3

Pe1.28 ± 0.09

Pe2/3

Pe1.46 ± 0.15

102 103

Pe Pe

10−1

100

10−1

100

10−2

10−1

100

10−1

100

s R
/
s R

Pe1/3

Pe0.54 ± 0.04

103 104

102 103 103 104

102 103 103 104

Pe1/3

Pe0.42 ± 0.03

I/
I–

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

Figure 8. The reaction front properties as a function of Pe for porous media experiments measured at fixed
distance x = 20d ± 10d. (a) Co-flow porous media with (a1) reaction intensity, (a2) maximum reaction rate,
and (a3) reaction width. (b) Saddle-flow porous media with (b1) reaction intensity, (b2) maximum reaction rate,
and (b3) reaction width. Error bars are estimated from the variability of reaction front properties at various
distances between x = 10d and x = 30d. The 95 % confidence interval is shown. Note that the width at the
lower two Pe values, and the maximum reaction rate and intensity at the lowest Pe, could not be obtained
because of the small image intensity. The dashed lines show the scaling expected from the hydrodynamic
dispersion theory ((2.18), (2.19) and (2.22)). The scaling of the effective reaction intensity I predicted by the
micro-scale mixing theory ((4.16) and (4.20)) is shown as thick continuous lines.

is expected to sustain chemical gradients and drives the rate of mixing at the pore scale.
We focus on the total intensity of the reaction I along the reactive front, because it is a
robust integrated measure of effective reaction rates.

4.1. Stretching-enhanced reactive front kinetics under co-flow
At the pore scale, we define the mixing interface as the isoconcentration surface where
CA = CB . This surface coincides with the conservative isoconcentration surface F = 0,
with the conservative component F = CA − CB . In a given cross-section perpendicular to
the flow (figure 9), the length of this interface results from a balance between stretching,
which continuously deforms the interface (figure 9) and aggregation/dilution, which
reduces its length by merging and diluting the stretched sections of the front (Le Borgne,
Dentz & Villermaux 2013; Villermaux 2018, 2019).
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Figure 9. Sketch of the micro-scale mixing interface between reactants A and B. (a) Starting from a given
mixing interface (black line), fluid stretching leads to an incremental elongation of the interface (red line). The
latter is balanced by two main processes that contribute to the reduction of the interface. The first is dilution,
which describes the decay of concentration of an isolated lamella of A into the B side (or the opposite). The
second is aggregation, which describes the overlap of difference sections of the front. (b) Considering a lamella
of A being stretched into the B side, the section of width equal to the Batchelor scale dilutes exponentially,
leading to a receding of the interface and thus a flux of A into the B side.

Due to stretching, the mixing front forms an ensemble of lamellae that are elongated
in one direction and compressed in the other (figure 9a). The elongation of a lamella is
defined as ρ(t) = �(t)/�0, where �0 and �(t) are the initial and final lengths of the lamella,
respectively. The chaotic nature of pore-scale stretching (Heyman et al. 2020; Souzy et al.
2020) implies that this elongation should be exponential, e.g. ρ = eλt , with

λ∼ U

d
∼ Dm

d2 Pe, (4.1)

the Lyapunov exponent. At pore scale, the thickness of lamella s is reduced by compression
and enhanced by diffusion, according to

ds

dt
= −λs + Dm

s
. (4.2)

When compression and diffusion balance each other, i.e. when the temporal derivative on
the right-hand side of (4.2) is zero, the lamellar width converges to the Batchelor scale
(Batchelor, Howells & Townsend 1959),

s → sB =
√

Dm

λ
∼ d Pe−1/2. (4.3)

This equilibrium is achieved at the mixing time (Villermaux 2019)

tm ∼ log Pe

2λ
, (4.4)

which is obtained when the lamella width reaches the Batchelor scale by compression
from the initial width, s0 e−λtm = sB .

After mixing time, further elongation of lamellae of constant width sB in a finite-size
domain implies that they overlap and aggregate, limiting the growth of the total interface
length (figure 9a). Furthermore, lamellae of A that are stretched in the B domain (or B
into A) start to dilute exponentially, leading to receding of the interface after an
incremental deformation (figure 9b). In this regime, the balance between constant
stretching and destruction of the interface thus leads to a saturation of the front elongation
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to a maximum value ρm equal to the elongation at the mixing time (Villermaux 2018):

ρm = ρ(tm) = eλtm ∼ √
Pe, (4.5)

where we have used (4.4) and (4.1).
We first consider an element of the interface that is stretched in the B domain at constant

stretching rate (figure 9b). After the mixing time, the mixing interface reaches a steady
state, and the tip of the lamella, of width equal to the Batchelor scale, dilutes exponentially.
This dilution leads to a flux of A to the B side, which is proportional to the stretching rate:

jA ∼ CAλ∼ CA
Dm

d2 Pe, (4.6)

where CA is the characteristic concentration of A. When the mixing interface reaches a
steady length ρm , it is composed of a characteristic number of elongated elements n ∝
ρm/L , with L the domain size. Using (4.5), we estimate

n = β
√

Pe, (4.7)

with β a constant prefactor to be determined. The total flux across the interface due to the
dilution of these stretched segments of the interface is thus

JA = njA = β
Dm

d2 CA Pe3/2. (4.8)

Initially, reactants are fully segregated, and CA and CB remain close to their initial
concentrations C0

A and qC0
A. At a further distance downstream, called xΔ, dispersion

inevitably smooths scalar gradients at the interface such that CA < C0
A, limiting the flux

of A in (4.6), and equivalently for the flux of B. We focus here on the first regime, where
x < xΔ and CA ≈ C0

A (CB ≈ qC0
A), which covers a large part of our measurements. Note

that in the case of fast reactions (large Damköhler numbers), reactions occur mostly at
the mixing interface where concentrations are similar. Here, we consider the general case
of arbitrary Damköhler numbers where reactions can be slow compared to mixing rates.
In this case, reactions also occur further away from the mixing interface. On the B side,
the concentration of A becomes rapidly much smaller than that of B as it is diluted by
stretching-enhanced diffusion. The evolution of the mass of A on the B side, denoted
m A|B , can thus be approximated as a first-order reaction process:

dm A|B
dt

= −kCBm A|B + JA ≈ − q

tr
m A|B + β

C0
A Dm

d2 Pe3/2, (4.9)

where we used CB ≈ qC0
A for x < xΔ and for the general case of an asymmetric reaction

front. This equation leads to

m A|B = β
C0

A Dmtr
qd2 Pe3/2 (1 − e−qt/tr

)
. (4.10)

Similar arguments can be used to estimate m B|A, leading to

m B|A = β
C0

A Dmtr q

d2 Pe3/2 (1 − e−t/tr
)
. (4.11)

Thus the total reaction intensity developing on the two sides of the mixing front is

I = kC0
Bm A|B + kC0

Am B|A = βq
C0

A Dm

d2 Pe3/2 (2 − e−t/tr − e−qt/tr
)
. (4.12)
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Replacing t by x/U and using the definitions of Pe and Da (see (2.3) and (2.4)), the last
equation is

I = βq
C0

A Dm

d2 Pe3/2
(

2 − exp
(

− Da

Pe

x

d

)
− exp

(
−q

Da

Pe

x

d

))
. (4.13)

This equation predicts a linear growth of reaction intensity followed by a plateau
(figure 10a). In the kinetic-limited regime t � tr , the consumption rate is much smaller
than the mixing flux. Hence the mass of A in the B domain grows linearly as

m A|B = JAt, (4.14)

which corresponds to a Taylor expansion of (4.11) at small times t � tr . The intensity of
the reaction is thus

I = βq
(1 + q)DmC0

A

d2 Da Pe3/2 t

tr
∼ βq

(1 + q)DmC0
A

d2 Da Pe1/2 x

d
. (4.15)

In the mixing-limited regime t � tr , the reaction is fast compared to mixing, and the
reaction intensity reaches a constant:

I = JA = βq
DmC0

A

d2 Pe3/2. (4.16)

This constant is proportional to the flux of the solute across the mixing front, and
corresponds to the asymptotic limit of (4.13) at large times.

The model of (4.13) is in relatively good agreement with experimental data for the
range of distances and Péclet numbers considered (figure 10a). The prefactor β in (4.7)
is the unique fitting parameter of the model, and is the same for all experiment runs.
As a reference, we also plot in figure 10(a) the prediction of the dispersion model,
whose parameters are determined by a fit to the lowest Péclet number. Although the
dispersion model captures the data relatively well for the lowest Péclet number, it diverges
significantly for the largest Péclet numbers, with up to one order of magnitude difference
from the data. In contrast, the mixing model captures the initial growth followed by a
plateau observed for the evolution of the reaction intensity with distance (figure 10a), and
the dependence of the reaction intensity and reaction maximum with the Péclet number
(figure 8a1,a2). Thus it provides a mechanism to quantify incomplete mixing at the pore
scale and explain the failure of the hydrodynamic dispersion model. The agreement is less
good for the lowest Péclet number (Pe = 179), for which the model tends to overestimate
reaction intensities. At low Péclet number, the fluctuation scale (set by the Batchelor scale)
reaches the grain size, and incomplete mixing is expected to be less significant. Using
the estimate of the Lyapunov exponent λ≈ 0.2U/d measured in bead packs, Heyman
et al. (2020) estimated that the Batchelor scale should reach the grain size for Pe � 5.
For the reaction fronts considered, this appears to occur at larger Péclet numbers, of the
order of Pe � 200, i.e. for a fluctuation scale of the order of 16 % of the grain size.
The complete mixing limit Pe = 5 was obtained assuming stretching in an unbounded
domain (Heyman et al. 2020). However, the presence of grain boundaries significantly
enhances diffusive homogenisation due to confinement (Hamada, Cueto-Felgueroso & de
Anna 2020). Therefore, it is not surprising that the effective limit for complete mixing is
larger than 5 in confined environments.

At a distance of approximately 20 grains, the reaction intensity departs from the plateau
and begins to decay (figure 10a). We attribute this to the limitation of the supply of fresh
reactants to the interface by dispersive mass transfer. To describe the conditions for this
to occur, we define Δ as the characteristic size over which fluid deformations occur in the
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transverse direction (Heyman et al. 2020). When the transverse dispersion of the front is
less than Δ, the stretching events at the mixing front can bring fresh fluid with CA = C0

A
from outside the mixing front. In contrast, for x > xΔ, the concentration of reactant A near
the mixing interface F = 0 decays due to dispersion. In random bead packs, the mixing
width generally follows the classical dispersive behaviour (Delgado 2007; Heyman et al.
2020; Rousseau et al. 2023; Sanquer et al. 2024):

s =√
4αT x . (4.17)

We have measured the transverse dispersivity using a conservative tracer in the same set-up
(Rousseau et al. 2023) and found αT = 0.07d. We define the dispersion distance as the
distance at which s = Δ:

xΔ = �2

4αT
. (4.18)

Considering the observation xΔ ≈ 20d leads to Δ ≈ 2.4d, a value compatible with the
typical scale at which the filaments are stretched on the pore scale (Heyman et al. 2020).

4.2. Stretching-enhanced reactive front kinetics under saddle flow
In the saddle-flow configuration, the experimental conditions are such that reaction is
mixing-limited, γ � t−1

r . We assume that the pore-scale mixing mechanism is similar
to the one described for the co-flow situation, with a local stretching rate, and thus Péclet
number, that increases with distance. Replacing Pe by

Pex ∼ γ xd

Dm
, (4.19)

in (4.16), we obtain

I = β ′q
C0

A

(d Dm)1/2 (γ x)3/2. (4.20)

The prefactor β ′ in (4.20) is the sole fitting parameter and is expected to be the same
for all experiments performed in the saddle-flow configuration. The pore-scale mixing
theory agrees well with the data for the distance range considered and the Péclet numbers
(figure 10b). As a reference, we also plot the predictions of the dispersion model in
figure 10(b). Although it matches the experimental curves at distances smaller than the
pore size, i.e. for low velocities in the saddle flow, the dispersion model largely diverges
from the data at larger distances for all Péclet numbers. In contrast, the mixing model
captures the observed evolution of the reaction intensity with both distance (figure 10b)
and Péclet number (figure 8b1). Note that, contrary to the co-flow configuration, there is
no transition to the dispersive scaling at large distances. In saddle flows, the supply of
reactants on both sides of the front increases linearly with distance (figure 2), allowing for
a continuous supply of fresh reactants. Hence there is no limitation of reactant supply
by dispersion, and the effect of pore-scale mixing persists over the whole range of
experimental observations.

5. Conclusion
We investigated experimentally and theoretically the dynamics of a bimolecular reaction in
steady mixing fronts in porous media. Two common flow configurations were considered,
namely, a uniform flow and a converging flow. We first derived the effective reaction rates
on the basis of the classical hydrodynamic dispersion model, which assumes well-mixed
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Figure 10. Comparison of theoretical predictions for the mixing model (dashed lines, (4.13) and (4.20)) and the
dispersive model (dotted lines, (2.18), (2.19) and (2.22)) with data (solid lines) for the reaction intensity versus
distance for (a) the co-flow and (b) the saddle flow. Independent parameters are Da = 1600, Dm = 10−9 m2 s−1,
C0

A = 1 mM, and q = 2. Prefactors used for fitting models are 0.2 (dispersive co-flow), 5 × 10−3 (dispersive
saddle flow), β = 2 × 10−2 (mixing model co-flow) and β ′ = 3 × 10−5 (mixing model saddle flow).

pore-scale conditions. We then experimentally measured the effective reaction rates in
a cell filled with 3-D granular material. For this, we combined chemiluminescence and
refractive-index matching, allowing us to precisely map the Darcy-scale reaction rates,
integrated over the cell gap, across the mixing front.

Experimental reaction rates in the mixing zone show a significant departure from the
predictions expected by modelling mixing with hydrodynamic dispersion. In co-flow,
differences persist for approximately 20 grain diameters, while in saddle flow, they persist
throughout the front. Therefore, these findings highlight the role of incomplete mixing at
the pore scale in reactive fronts. Building on the recent demonstration of the chaotic nature
of mixing at the pore scale in 3-D porous media, we propose a new description of micro-
scale reactive mixing dynamics to explain our Darcy-scale observations. This model leads
to new scaling laws for effective reaction rates in porous media, as a function of both space
and Péclet number.

Although predictions accurately capture the general experimental trends, additional data
are needed to uncover the details of micro-scale reactive mixing and its impact at the Darcy
scale. Such data would require resolving both the pore-scale dynamics and the Darcy-
scale effective reaction rates, a range of scales that is difficult to achieve experimentally
with optical methods. Numerical simulations of large flow domains (Sole-Mari, Bolster &
Fernàndez-Garcia 2022) or porous flow analogues (Heyman, Lester & Le Borgne 2021)
may be able to provide such data in the future.

Finally, our findings suggest that micro-scale mixing processes in porous media have an
important effect on macroscopic reaction rates, an effect that persists for long time and
distances along mixing fronts. The framework proposed to capture these processes, based
on the physics of pore-scale flows (Lester et al. 2013), opens new avenues for upscaling
reactive transport at Darcy scale, beyond the hydrodynamic dispersion paradigm.
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Appendix A. Theory of reactive mixing at finite Damköhler number

A.1. Reaction–diffusion front
Gálfi & Rácz (1988) and Larralde et al. (1992) proposed an approximate solution to
the equation of advection–diffusion–reaction in the case of one-dimensional fronts. The
theory allows for the derivation of the asymptotic scaling with time and Damköhler
number of the effective reaction front properties at the Darcy scale. Here, we recall the
main steps of the derivation. We take dimensionless variables for space y = ỹ/L and time
t = t̃/tD , with L a length scale, and tD = L2/Dm the diffusion time, and dimensionless
concentrations Ci = C̃i/C0

A. The ratio of initial reactant concentrations is q = C0
B/C0

A. In
our experiments, q = 2. The dimensionless reaction–diffusion equation reads

∂CA

∂t
= ∂2CA

∂y2 − Da CACB,

∂CB

∂t
= ∂2CB

∂y2 − Da CACB, (A1)

where Da = tD/tr is the Damköhler number, and tr = 1/(kC0
A) is the characteristic

reaction time. It is easy to show that F = CA − CB is a conserved quantity obeying an
advection–diffusion equation. For initially segregated reactants with initial conditions
F = 1 for y < 0 and F = −q for y > 0, F follows

F(y, t) = 1 − q

2
− 1 + q

2
erf
(

y√
4t

)
. (A2)

The front position is located at F = 0, i.e. at

y f (t) = −√2D f t, (A3)

where the constant D f is a solution of

erf
(
−√D f /2

)
= (1 − q)/(1 + q). (A4)

Note that if q = 1 (equal reactant concentrations), then D f = 0 and y f = 0 at all times.
For the chemiluminescence reaction considered, q = 2 and D f ≈ 0.1855. Inserting (A2)
into (A1), a nonlinear equation is obtained for CA:

∂CA

∂t
= ∂2CA

∂y2 + Da CA (F(y, t) − CA) . (A5)

Equation (A5) can be approximated if the penetration of reactants is limited to a small
region near y = y f , i.e. for intermediate Damköhler numbers (Gálfi & Rácz 1988; Larralde
et al. 1992). Neglecting the C2

A term and taking an expansion of the error function near
the front position y f , we get

∂CA

∂t
= ∂2CA

∂y2 − q ′ Da CA
y − y f√

t
, (A6)
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with q ′ = (1 + q) exp(−D f /2)/(2
√

π) (Gálfi & Rácz 1988). The solution to this equation
can be found by recognising the Airy differential problem on the right-hand side of (A6),
such that a solution for CA is

CA(y, t) ≈ B tα Ai
(

y − y f

sr (t)

)
, (A7)

where Ai is the Airy function, and sr (t) = (q ′ Da)−1/3t1/6 is a dimensionless reactive
width. The dimensional reactive width reads

s̃r (t) = Lsr = L(q ′ Da)−1/3(Dmt̃/L2)1/6. (A8)

Finding α and B is possible by equating the nonlinear term with the spatial derivative in
(A5), giving α = −1/3 and B ∼ q ′2/3 Da−1/3.

The reaction rate is also the source term of (A6), such that

R(y) ∼ q ′ Da CA
y − y f√

t
= Rmax

y − y f

sr (t)
Ai
(

y − y f

sr (t)

)
, (A9)

with the maximal reaction rate Rmax ∼ q ′4/3 Da1/3 t−2/3. The dimensional max reaction
rate is

R̃max = C0
A

tD
Rmax = C0

A

t1/3
D

q ′4/3 Da1/3 t̃−2/3 = C0
A D1/3

m

L2/3 q ′4/3 Da1/3 t̃−2/3. (A10)

The total reaction intensity is

I = 2
∫ ∞

0
R(y) dy ∝ Rmax sr ∼ q ′t−1/2. (A11)

Its dimensional equivalent is

Ĩ = C0
A

L

tD
I = C0

A D1/2
m q ′ t̃−1/2. (A12)

Note that this result can also be recovered by considering the infinitely fast reaction case,
where the intensity of reaction is exactly equal to the diffusive flux across the interface:

Ĩ ∼ Dm
∂CA

∂y
∼ Dm

C0
A√

Dmt̃
, (A13)

which is equivalent to (A12). In fact, the finite and infinite Damköhler cases yield equal
scaling for the total reaction intensity. The difference emerges in the existence of a finite
reaction width and a maximum reaction rate.

A.2. Advection–diffusion–reaction front
In the case of an advection at constant velocity U , the preceding results simply hold with
x̃ = t̃U , or equivalently, t = x Pe. This implies that

sR ∼ (q ′ Da)−1/3 Pe−1/6 x1/6, (A14)

Rmax ∼ q ′4/3 Da1/3 Pe2/3 x−2/3 (A15)

and

I ∼ q ′ Pe1/2 x−1/2. (A16)
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A.3. Advection–diffusion–reaction with compression
In the presence of a constant compression rate γ = U/(2L), the conservative profile F
reaches a steady state:

F → 1 − q

2
− 1 + q

2
erf
(

ỹ

sB

)
, (A17)

with the Batchelor scale sB = √
2Dm/γ (Villermaux 2019). Since Pe = L2γ /Dm , this is

also

F = 1 − q

2
− 1 + q

2
erf(Pe1/2 y). (A18)

The front location F = 0 is now fixed to y f , the solution of

erf
(

Pe1/2 y f

)
= 1 − q

1 + q
. (A19)

The above derivations still hold, without the time dependence. The equation for CA reads

0 = ∂2CA

∂y2 + Da CA (F − CA) , (A20)

whose approximate solution is

CA ∼ B Ai
(

y − y f

sr

)
, (A21)

with sr = (q ′ Da)−1/3 Pe−1/6 and B ∼ q ′2/3 Da−1/3 Pe1/3. As before, B is determined
by scaling the nonlinear term with the spatial derivative in (A20). Then the reaction rate
is

R ∼ Rmax
y

sr
Ai
(

y

sr

)
, (A22)

with

Rmax ∼ q ′4/3 Da1/3 Pe2/3. (A23)

The total reaction intensity is

I ∼ sr Rmax = q ′ Pe1/2. (A24)

In dimensional form, these read

s̃R ∼ L(q Da)−1/3 Pe−1/6, R̃max ∼ C0 Dm L−2q ′4/3 Da1/3 Pe2/3

and Ĩ ∼ q ′C0 Dm L−1 Pe1/2. (A25)

A.4. Numerical simulation of dispersion–reaction fronts
We validated the theoretical scaling of reactive fronts under dispersion in uniform
flow (2.18)–(2.22) against numerical simulations of the full 2-D advection–dispersion–
reaction problem (2.1). To numerically solve the equations, we use the OpenFOAM
finite-volume software (https://openfoam.org). The domain is a 2-D rectangle; for co-flow,
x ∈ [0, 150] mm with 300 grid cells, y ∈ [−25, 25] mm with 400 cells, and for saddle
flow, x ∈ [−150, 150] mm with 600 cells, y ∈ [−25, 25] mm with 400 cells. We fixed
Dm = 5 × 10−10 m2 s−1, and varied U or γ . We used an isotropic dispersivity tensor
with αT = αL = 0.06d m, where d is the grain size (2 mm). The reaction rate constant
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Lower PeSaddle f lowCo-flow

Figure 11. Normalised reaction rate fields at Pe = 799, 1690 and 3575 for co-flow, and Pe = 1941, 4104 and
8678 for saddle flow (lowest at the top row, highest at the bottom row) from simulations for porous media. The
reaction rate is normalised by the maximum reaction rate at the highest Pe for each configuration. For co-flow,
the left-hand edge corresponds to the start of mixing, and for saddle flow, the left-hand edge corresponds to the
stagnation point. The white dashed lines in the lowest Pe in experimental images show the streamlines.
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Figure 12. Scaling of reactive front properties with distance to injection in co-flow with hydrodynamic
dispersion obtained by numerical simulations: (a) width of the reaction front, (b) maximum reaction rate,
and (c) reaction intensity. Black dashed lines stand for the theoretical prediction (2.18) and (2.19).

is fixed at k = 0.08 mM−1 s−1. We used a kinetic rate that is 10 times smaller than the
experimental value such that the width of the simulated fronts is approximately the same
as the one observed experimentally. This net difference highlights the fact that the porous
medium efficiently spreads the reactants but without completely mixing them (retarding
reaction). To match the observed reactive width with a hydrodynamic dispersion model,
it is necessary to slow down the reaction kinetics so that the reactive width approaches
the dispersive width. The solute concentration at the inlet boundary of the co-flow
(at x = 0) was (CA, CB) = (1, 0) mM for y > 0, and (CA, CB) = (0, 1) mM for y < 0.
The inlet boundary condition of the saddle flow was (CA, CB) = (1, 0) mM at y = 50,
and (CA, CB) = (0, 1) mM at y = −50 mm. For the outlet boundaries (x = 150 mm for
co-flow, and y = ±50 mm for saddle flow), we imposed a zero gradient for all species.
We used the Euler method as a temporal discretisation scheme, and a linear interpolation
scheme for interpolating face-centred values from cell-centred values. We varied the
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Figure 13. Scaling of reactive front properties with distance to injection in saddle-flow with hydrodynamic
dispersion obtained by numerical simulations: (a) width of the reaction front, (b) maximum reaction rate, and
(c) reaction intensity. Black dashed lines stand for the theoretical prediction in the kinetic-limited regime (2.21).
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Figure 14. Simulated reactive front over Pe at 150 mm in co-flow under hydrodynamic dispersion: (a) width
of the reaction, (b) maximum reaction rate, and (c) reaction intensity. Black dashed lines are the hydrodynamic
dispersion predictions for the mixing-limited regime at fixed time (2.19).

velocity U (co-flow) and compression rate γ (saddle flow) in the same range as in the
experiments. The characteristic length scale to define the Péclet number in the co-flow is
the diameter of the grain, L = 2 mm. In saddle flow, the characteristic velocity is U = γ L ,
with the length L = 100 mm corresponding to our experimental set-up (see § 3.1.2). Such
definitions resulted in simulations with Pe ranging from 179 to 3575 for co-flow, and from
434 to 8678 for saddle flow. The spatial behaviour of the reactive fronts in the presence of
dispersion is plotted in figure 11.

A.5. Simulation results
The dependences of the maximum reaction rate Rmax , total reaction intensity I and
reaction width sR with position x along the front in co-flow and saddle flows are plotted
in figures 12 and 13 respectively, as well as the theoretical predictions (2.18)–(2.22). The
predictions show very good agreement with the simulations. Next, the front properties are
plotted against Pe at a given location x in figures 14 and 15 for the co-flow and saddle
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Figure 15. Simulated reactive front over Pe at 150 mm in saddle flow under hydrodynamic dispersion:
(a) width of the reaction, (b) maximum reaction rate, and (c) reaction intensity. The green dashed lines are
hydrodynamic dispersion predictions of reaction limited regime (2.21), whereas the black dashed lines are
those of mixing-limited regime (2.22). The blue dashed lines show fitted lines with fitted exponent.

flows, respectively. In co-flow, the theoretical scaling laws compare well with simulations.
On the other hand, in saddle flow, the scaling laws of the mixing-limited regime are
verified only for low Pe. This is because the longitudinal derivatives that were dropped in
(2.12) (γ x ∂CA/∂x and αLγ |y| ∂2CA/∂x2) become large compared to kCACB , and the
approximation becomes not valid at high Pe. Thus the approximation is valid for low to
moderate Pe. To compare with the experiments, the scaling exponents were derived by
fitting the simulation results.
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