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Abstract
Cerenkov wake amplification can be used as an accelerating scheme, in which a trigger bunch of electrons propagating

inside a cylindrical waveguide filled with an active medium generates an initial wake field. Due to the multiple reflections

inside the waveguide, the wake may be amplified significantly more strongly than when propagating in a boundless

medium. Sufficiently far away from the trigger bunch the wake, which travels with the same phase velocity as the bunch,

reaches saturation and it can accelerate a second bunch of electrons trailing behind.

For a CO2 gas mixture our numerical and analytical calculations indicate that a short saturation length and a high gradient

can be achieved with a large waveguide radius filled with a high density of excited atoms and a trigger bunch that travels at

a velocity slightly above the Cerenkov velocity. To obtain a stable level of saturated wake that will be suitable for particle

acceleration, it is crucial to satisfy the single-mode resonance condition, which requires high accuracy in the waveguide

radius and the ratio between the electron phase velocity and the Cerenkov velocity. For single-mode propagation our

model indicates that it is feasible to obtain gradients as high as GV m−1 in a waveguide length of cm.

Keywords: laser–plasma interaction; novel optical material and device

1. Introduction

Currently, high electron energies of tens of GeV are

achieved with radio-frequency (RF) linear accelerators that

operate in the GHz frequency range with a typical length of

a few kilometers[1]. In idealized conditions, breakdown[2]

limits the accelerating electric field to the order of a few

hundreds of MV m−1. In practice, gradients reach values

of 25 MV m−1 when operating at room temperature[1] and

35 MV m−1 in their superconductive counterpart[3].

In the past two decades, with the immense progress in

laser technology, laser plasma accelerators have become able

generate hundreds of GV m−1[4–6]. In this scheme, high

intensity focused laser pulses with lengths of the order of the

plasma wavelength generate an intense wake. The plasma

wake, which trails behind the laser pulse with the same

group velocity, can accelerate electrons from the plasma

itself. Work is in progress to accelerate electrons that do not

originate in the plasma.

Based on the chirped pulse amplification (CPA)

technique[7], pulsed laser technology facilitates focus on

plasma target pulses with intensities as high as 1018 W cm−2
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and duration of the order of femtoseconds (10−15 s)
for a laser wavelength of 1 μm that is optimized to a
plasma density of 1018 cm−3. In a series of experiments

reported in 2004[8–10], quasi-monoenergetic e-beams with
energies of the order of 100 MeV have been demonstrated.
More recently, several groups have demonstrated quasi-

monoenergetic e-beams with energies of up to 2 GeV[11].
An intense wake may also develop by replacing the laser

pulse with an energetic e-beam in plasma, and it is shown

experimentally[12] that an initial bunch of 40 GeV can
generate an intense wake of the order of 50 GV m−1, which
results in acceleration of a trailing bunch to an energy of
about 80 GeV with about 16% energy spread. The total
number of injected electrons in the bunch is 1010 and the spot
size is 10 μm, whereas the number of electrons accelerated
to 80 GeV is about 240×106. For comparison, in a dielectric
loaded waveguide, a 60 MeV bunch of electrons can generate

Cerenkov gradients of 250 MV m−1[13]. The total number of
injected electrons in the bunch is 3× 106 and the spot size is
10 μm, whereas the number of accelerated electrons is about
70× 103.

In the paradigm analyzed here, the gradients are more
modest (order of 1 GV m−1) and it is conceptually closer
to a conventional two-beam acceleration scheme. It relies
on transferring energy stored from the active medium to a
train of electron bunches – see Refs. [14, 15]. In contrast
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to previously mentioned schemes, where the energy for the

acceleration comes from either energetic laser pulses or an

energetic electron bunch, in this scheme the energy comes

from excited atoms. In the first approach of this scheme,

an electron bunch injected into an active medium generates

a wake comprised of a broadband spectrum of evanescent

waves. Since the active medium is a resonant medium,

only the fraction of the wake spectrum that is close to

the resonance frequency of the medium will be amplified.

Thus, it is proposed to inject a spatially modulated bunch

with periodicity equal to the resonance wavelength so that

a large portion of the wake spectrum lies in the vicinity of

the resonance frequency of the medium. As a result, the

amplified wake accelerates directly the injected bunch. This

approach has been demonstrated in an experiment performed

at Brookhaven National Laboratory Accelerator Test Facility

(BNL-ATF)[16], in which a density modulated bunch with an

energy of 45 MeV gained energy of 200 keV from an active

CO2 gas mixture.

For a description of the paradigm, we start with a general

description of the system followed by a simplified model

used to investigate the essential phenomena involved. A

trigger bunch propagates in a vacuum channel surrounded

by a low loss dielectric layer which is thick enough to sustain

the 8–10 atm pressure of the CO2 mixture consisting of the

active medium. The latter in turn is confined by a Bragg

waveguide which facilitates excitation of the active medium

on the one hand and allows full confinement of a resonant

Cherenkov wake. One of the eigenmodes is amplified by

the active medium and many wavelengths behind the trigger

bunch the former accelerates a trailing bunch. For the sake

of simplicity, the analysis that follows relies on a metallic

waveguide that contains the gaseous active medium.

Initially, a triggering bunch of electrons generates a

Cerenkov wake with electric field in the longitudinal

direction, which in turn is amplified by the active medium -

stimulated emission process. As the wake field is amplified,

the population inversion in the active medium is reduced

and, as a result, the spatial gain is also reduced. When the

spatial gain is zero, the wake reaches saturation and it can

accelerate a second bunch of electrons trailing behind the

triggering bunch.

Previous study of this scheme used a linear model[15, 17–19]

and a simplified nonlinear model[20]. In the linear model,

where a constant population inversion density (PID) is as-

sumed, the wake is exponentially amplified. Since the

propagating wake in the cylindrical waveguide propagates

in an oblique angle, it reflects multiple times from the

boundaries. As a result, the effective propagation path is

longer than if the wake were propagating in a boundless

medium. For a structure of a given length, the effective

gain of the wake is enhanced. The simplified nonlinear

model assumes the propagation of one electromagnetic (EM)

mode[20]; it does not account for the multiple reflections
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Figure 1. Schematic description of the accelerating structure. A trigger

bunch propagates in a cylindrical metallic waveguide of radius R filled with

an active medium. This bunch is injected into the structure with velocity βc
larger than the Cerenkov velocity c/

√
εr and generates an entire manifold

of TM modes which propagate behind. One of the eigenmodes is amplified

by the active medium and many wavelengths behind the trigger bunch the

former accelerates a trailing train bunch.

of the wake from the waveguide boundary and only the

dynamics of the polarization field is considered.

In this paper we extend the previous linear model[18, 19]

and include the nonlinear dynamics of the active medium.

The extended model can describe the wake saturation level

and the interval of time in which the wake reaches saturation.

While the previously mentioned approaches[18–20] predict

the saturation process qualitatively, the present approach is

far more quantitative.

This paper is organized as follows. Section 2 presents

the dynamics equations that describe the Cerenkov wake

amplification by the active medium. It also describes the

dynamics of the polarization and the population inversion

density. In Section 3 the single-mode resonance condition,

the value of the saturated wake and the saturation length are

calculated analytically. In addition, we calculate for a single

mode the width or the spot size of the longitudinal wake.

In Section 4 we show numerically for a modulated trigger

bunch the dynamics of the wake and the population inversion

density for a CO2 gas mixture. We conclude (Section 5) with

discussion and conclusions.

2. Formulation of the problem

The structure of interest consists of a cylindrical metallic

waveguide of radius R filled with an active medium (see

Figure 1). Far from the resonance of the active medium it

is assumed that the dielectric coefficient of the medium is

εr and it is frequency independent. A bunch of electrons,

the trigger bunch, is injected into the structure with velocity

βc larger than the Cerenkov velocity c/
√

εr , where c is the

speed of light in vacuum. Assuming azimuthal symmetry,

the bunch excites an entire manifold of transverse mag-

netic (TM) modes which propagate behind[21]. Each mode

consists of longitudinal and radial electric field components

(Ez, Er ) as well as an azimuthal magnetic field (Hφ).

This superposition of TM modes, also known as the

wake field, travels at the same speed as the trigger bunch.

Among this infinite manifold of TM modes only those

with frequency equal to or close enough to the resonance

frequency of the active medium, ω0, will be amplified
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through the stimulated emission process. Thus, the EM field

has the following generic form

ψ(T, r) = 1

2

∑
s

Jν(ksr)ψs(T )eiω0T + c.c., (2.1)

where each field ψ (ψ ∈ {Ez, Er , Hφ}) depends on the radial

coordinate, r , and a variable that follows the e-beam, T ≡ t−
z/βc. Specifically, for field ψ = Ez the index of the Bessel

function of the first kind is ν = 0 and for ψ = {Er , Hφ}
the index is ν = 1. In addition, the radial wavenumber is

ks ≡ ps/R, where ps is defined through J0(ks R) = 0 (s =
1, 2, 3, . . .) since Ez(T, r = R)= 0. Finally, the dependence

of each mode on T is given by ψs(T ).

Similarly to the EM fields, the current density of the

trigger bunch is assumed to be of the form

Jz(T, r) = 1

2
I (T )

θ(Rb − r)

π R2
b

eiω0T + c.c., (2.2)

where θ(x) is the Heaviside step function and I (T ) is the

e-beam longitudinal current envelope. Assuming that the

spatially modulated bunch profile is given by f (T ) then the

current envelope is I (T ) = I0 f (T ), where the modulated

current is I0 = Qbβc/Lb. Here, the total charge is Qb =
−eNb, where−e is the electron charge and Nb is the number

of macro-particles that comprise the bunch; Lb is the bunch

length.

Having in mind that the growth rate is much smaller than

the resonance frequency, the dynamics of the fields can be

separated into two major time scales: the ‘fast’ and the ‘slow’

time scales. The ‘fast’ time scale is the medium resonance

period of time 1/ω0 whereas the ‘slow’ time scale associated

with the growth rate of the field envelopes, ψs(T ), is 1/ωp,

where ωp = ω0

√
2N0μ

2

ε0�ω0
� ω0 is the ‘plasma frequency’ of

the active medium. Here, N0 is the initial PID, μ = μ12/
√

3

is the average dipole moment and μ12 is the dipole moment.

The parameter � is the reduced Planck constant and ε0 is the

vacuum permittivity. Thus, the dynamics of the wake and

the active medium can be described by the slowly varying

envelope approximation. Consequently, the dynamics of the

normalized EM fields derived from the Ampere and Faraday

laws read

∂ Ēz,s

∂τ
= −iω̄0 Ēz,s + k̄s

2
√

εr
Ē+,s + k̄s

2
√

εr
Ē−,s

+ 2

εr
P̄z,s − 2

εr
J̄s f, (2.3)

∂ Ē+,s

∂τ
= −iω̄0 Ē+,s − k̄s√

εrΔε−
Ēz,s + 2

εrΔε−
P̄r,s,

(2.4)

∂ Ē−,s

∂τ
= −iω̄0 Ē−,s − k̄s√

εrΔε+
Ēz,s − 2

εrΔε+
P̄r,s .

(2.5)

In our model the time T is normalized by 1/ωA such that

τ = T ωA, where ωA = ωp/(2
√

εr ) and, as already indicated,

εr is the dielectric constant of the medium excluding the

population inversion dynamics. Also, the normalized electric

field envelopes, Ēz,s and Ēr,s , are normalized with E0 =
1

J1(ks R)

√
�ω0 N0

2ε0
and the magnetic field envelope, H̄s , is

normalized with E0/(μ0c). In addition, Ē±,s = H̄s√
εr
± Ēr,s ,

Δε± = 1± 1
β
√

εr
, ω̄0 = ω0/ωA and k̄s = ksc/ωA.

The expression 2
εr

J̄s f is the normalized bunch current,

where J̄s = I0

π R2
Jc(ks Rb)
J1(ks R)

√
εr

ω0μN0
, Jc(x) ≡ 2J1(x)/x and f =

f (τ ) describes the electron bunch profile in the longitudinal

direction. In this study, the bunch injected at τ = τ0 with a

length of L̄b = LbωA/βc has a profile of f (τ0 < τ < τ1) =
1, f (τ = τ0) = 1/2, f (τ = τ1) = 1/2 and zero otherwise,

where τ1 = τ0 + L̄b.

The active medium is modeled semi-classically as a

two-level system within the framework of the dipole

approximation[22, 23]. In addition, it is assumed that only

stimulated emission can reduce the population inversion

density and collisions of the second kind are neglected here.

The response of the active medium to the wake is through

the normalized polarization fields P̄z and P̄r ,

∂ P̄z,s

∂τ
+ Δω̄

2
P̄z,s = εr N̄ Ēz,s, (2.6)

∂ P̄r,s

∂τ
+ Δω̄

2
P̄r,s = 1

2
εr N̄ Ē+,s − 1

2
εr N̄ Ē−,s, (2.7)

where the polarization envelopes are normalized with

i μN0√
εr J1(ks R)

and N̄ = N̄ (τ ) is the normalized population

inversion density measured in units of N0. Also, it is

assumed for simplicity that N̄ is radially independent. Radial

variations will be considered elsewhere.

The dynamics of the PID, N̄ , reads

∂ N̄
∂τ

+ Ā21(N̄ − N̄ e) = −1

4

∑
s

[2Ē∗z,s P̄z,s + 2Ēz,s P̄∗z,s

+ (Ē+,s − Ē−,s)P̄∗r,s + (Ē∗+,s − Ē∗−,s)P̄r,s], (2.8)

where Ā21 = A21/ωA is the normalized Einstein coefficient

associated with the spontaneous emission time τspon =
1/ Ā21 and N̄ e is the PID in thermal equilibrium. In this

study, we consider an active medium with a long sponta-

neous emission time compared with the order of the amplifi-

cation time of 1/ωp, which results in neglecting the second

term on the left-hand side of Equation (2.8) associated with

the spontaneous emission effect.

Finally, the set of equations introduced in Equations

(2.3)–(2.8) conserves energy,

∂

∂τ
W̄tot = 0, (2.9)
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where the total energy is

W̄tot = W̄N +
∞∑

s=1

[W̄ (E M,lo)
s + W̄ (E M,tr)

s + W̄ (B)
s ], (2.10)

W̄ (E M,lo)
s = εr

4 |Ēz,s |2 is the energy density associated

with the longitudinal electric field and W̄ (E M,tr)
s =

εr
8 (Δε−|Ē+,s |2 + Δε+|Ē−,s |2) is the transverse component

counterpart. Also, the energy density of the active medium

is W̄N = N̄ , and the energy of the bunch is denoted by

W̄ (B)
s = J̄s

∫ τ

0 f (τ ′) 1
2 [Ēz,s(τ

′)+ Ē∗z,s(τ ′)]dτ ′.

3. Analytical assessments

In this section we determine analytically the single-mode

resonance condition, the value of the saturated wake and the

saturation length. In addition, we calculate for a single mode

the spot size of the longitudinal wake.

In the considered structure only the modes with frequen-

cies adjacent to the resonance frequency will be amplified.

In our model it is possible to find the modes that will be am-

plified from the dynamics of Ēz,s as follows. Substitution of

Ē+,s and Ē−,s from Equations (2.4) and (2.5), respectively,

into Equation (2.3) results in

∂ Ēz,s

∂τ
= −iΔω̄s Ēz,s − i

2k̄s

βεr
√

εrεcω̄0
P̄r,s + 2

εr
P̄z,s

+ i
k̄s

2ω̄0
√

εr

∂

∂τ
(Ē+,s + Ē−,s)− 2

εr
J̄s f, (3.1)

where Δω̄s = ω̄0(1 − k̄2
s

εr εcω̄
2
0

) is the frequency detuning of

mode s. The parameter εc = Δε+Δε− = 1 − 1
β2εr

will be

referred to as the Cerenkov coefficient. Thus, the modes with

frequency detuning smaller than the active medium band will

be amplified or |Δω̄s | < Δω̄. Therefore, the condition for

single-mode propagation at the resonance frequency is 1 −
k̄2

s
εr εcω̄

2
0

= 0. In physical units this reads

(
ω0
√

εr

c

)2

−
( ps

R

)2 =
(

ω0

βc

)2

. (3.2)

Thus, the single resonance occurs when the dispersion re-

lation of the waveguide (left-hand side of Equation (3.2))

coincides with that of the electron (right-hand side of Equa-

tion (3.2)) at the resonant frequency (ω0) of the medium.

The dynamics of the wake can be divided into three parts.

In the first part of the amplification, where the PID is weakly

depleted i.e., N̄ 	 1, known also as the linear regime, the

solution of Equations (2.3)–(2.7) assuming a single-mode

longitudinal wake is

Ēz,s0 = i
J̄s

εr

[
A1

∫ τ

0

eiΩ1(τ−τ ′) f (τ ′)dτ ′

+ A2

∫ τ

0

eiΩ2(τ−τ ′) f (τ ′)dτ ′
]

, (3.3)

where A1 = iΩ1+0.5Δω̄
Ω1−Ω2

and A2 = i − A1. Here, the

normalized linear growth and decay rates of the wake are

Ω1,2 = i
Δω̄

4

⎛
⎝1±

√
1+ 16N̄

εcΔω̄2

⎞
⎠ , (3.4)

where it is assumed that |Ω1,2| � ω̄0 and N̄ is constant. In

the limit of 1√
εc

 Δω̄ and N̄ = 1 the growth rate is

Ω1 ≈ −i
(

1√
εc
− Δω̄

4

)
, (3.5)

and the decay rate is

Ω2 ≈ i
(

1√
εc
+ Δω̄

4

)
. (3.6)

At the limit of τ 
 τ0 and β → 1 the longitudinal wake is

Ēz,s0 	 − J̄s

2εr

1+ Δω̄
4

√
εc

1√
εc
− Δω̄

4

e
(

1√
εc
−Δω̄

4

)
(τ−τ0)

. (3.7)

Clearly, in the linear regime the wake is growing exponen-

tially. Moreover, for a trigger bunch satisfying the Cerenkov

condition or εc → 0 the growth rate can be significantly

larger than the medium bandwidth Δω̄. This is in contrast

to the growth rate of source-free EM pulse propagation in an

active medium which is limited by the medium’s bandwidth

Δω̄.

In the second part of the amplification the PID is sig-

nificantly depleted (|N̄ | � 1) as a result of the stimulated

emission (right-hand side of Equation (2.8)), thus reducing

the effective gain of the medium. In this nonlinear regime
of amplification, where the PID is getting depleted and the

wake is intense, both the amplified wake and the PID can

experience Rabi oscillations[24] before reaching the third

regime of deep saturation. In the latter case the PID is

completely depleted (N̄ 	 0) and as a result the effective gain

is zero. Hence, the medium is transparent to the propagating

wake and the interaction reaches full saturation.

The value of the saturated wake can be found from the

energy conservation (Equation (2.9)). Assuming that N̄ (τ =
0) = 1 and at τ = 0 most of the energy is stored in the active

medium rather than the trigger bunch (W̄b,s(τ ) � 1) then
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Equation (2.9) becomes

N̄ (τ )+
∑

s

εr

4
|Ēz,s(τ )|2 + εr

8
Δε−|Ē+,s(τ )|2

+ εr

8
Δε+|Ē−,s(τ )|2 = 1. (3.8)

Now, from Equations (2.4) and (2.5) we have Ē± ≈
i k̄s

ω̄0
√

εr Δε∓ Ēz,s . In addition, we assume a single propagating

mode (k̄2
s0 = εrεcω̄

2
0) and a relativistic bunch (β → 1).

Hence, the energy conservation reads

1

2
εr |Ēz,s0(τ )|2 + N̄ (τ ) = 1. (3.9)

In the saturation regime where N̄ (τ = τsat ) = 0 one can

obtain from Equation (3.9) that the value of the saturated

wake is

|Ēsat | = |Ēz,s0(τ = τsat )| =
√

2

εr
, (3.10)

and in real units it reads

|Esat | = 1

|J1(ps0)|

√
�ω0 N0

ε0εr
. (3.11)

Clearly, the value of the saturated wake is proportional to

the square root of the initial PID, N0. Moreover, since for

a large mode number (s 
 1) |J1(ps 	 sπ)| ∼ √
2/π2s,

the saturation value is proportional to the square root of the

mode number or (from Equation (3.2)) the waveguide radius.

To determine the saturation time we first evaluate the time

interval of the quasi-linear regime and then the nonlinear

regime. We define the time interval of the quasi-linear

regime to be from the point where the trigger bunch ends

(τ = τ1) until the point where the PID reaches its first time

zero, τd : N̄ (τ = τ1+τd)= 0. Motivated by the linear regime

(see Equations (3.4) and (3.7)), where the amplitude during

τ1 < τ < τ1 + τd satisfies

∂ Ēz,s0

∂τ
= Ω̄ Ēz,s0, (3.12)

wherein Ω̄ is virtually constant, in the nonlinear regime this

term is assumed to vary according to the PID, namely, Ω̄ =
iΩ1

√
N̄ 	

√
N̄√

εc−Δω̄
4

. Using Equation (3.9) the nonlinear

growth rate is Ω̄(τ ) = Ω̄0

√
1− 1

2εr |Ēz,s0(τ )|2, where Ω̄0 =
1√
εc
− Δω̄

4 . The solution of Equation (3.12) at the first

depletion point in real units is

τd = 1

Ω0
ln

[
2
√

2√
εr |Ēz,s0(τ1)|

]
, (3.13)

where the wake just behind the trigger bunch (calculated

from Equation (3.3)) is

Ēz,s0(τ = τ1) = i
J̄s0

εr

{
− A1

iΩ1
[1− eiΩ1(τ1−τ0)]

− A2

iΩ2
[1− eiΩ2(τ1−τ0)]

}
. (3.14)

Now, the time interval of the nonlinear regime is defined

from the first zero of the PID (τ = τ1 + τd ) until the excited

Rabi oscillation decays (τ = τ1 + τd + τr ). A simple way

to evaluate the time interval of this nonlinear regime is to

assume that the strongly amplified wake is virtually constant.

By differentiating equation (2.8) with τ and substituting

Equations (2.6) and (2.7) into it one obtains

∂2 N̄
∂τ 2

− Δω̄

2

∂ N̄
∂τ

+ ω̄2
R N̄ = 0, (3.15)

where ω̄R =
√

εr (|Ēz,s0|2 + | Ē+,s0−Ē−,s0

2 |2) is the normal-

ized Rabi frequency.

Since Ē± ≈ i k̄s0

ω̄0
√

εr Δε∓ Ēz,s0, the Rabi frequency in physi-

cal units is ω2
R = ω2

R,0

J 2
1 (ps0)

εc
, where ωR,0 = μ|Ez,s0|√

εr�
is in the

same form as the Rabi frequency in a homogeneous medium.

For a relativistic bunch that travels close to the Cerenkov

velocity (β → 1 and εc � 1) the Rabi frequency is ω̄R ≈
|Ēz,s0|/√εc. Hence, in the nonlinear regime where |Ēz,s0| ≈
|Ēsat | = √2/εr the wake oscillates at

ω̄R ≈
√

2

εrεc
, (3.16)

and the solution of Equation (3.15) is

N̄ (τ � τ ′) = N̄
′
0

ω̄R
e−

Δω̄
4 (τ−τ ′) sin[ω̄R(τ − τ ′)], (3.17)

where τ ′ = τ1 + τd and N̄
′
0 = ∂ N̄

∂τ
|τ=τ ′ . Thus, we define ac-

cording to Equation (3.17) the time in which the oscillations

of the PID relax to be

τr = 5

(
4

Δω̄

)
= 20

Δω̄
. (3.18)

Therefore, from Equations (3.13) and (3.18) the saturation

time is given by

τsat = τd + τr = 1

Ω0
ln

[
2
√

2√
εr |Ēz,s0(τ1)|

]
+ 20

Δω̄
, (3.19)

and in real units it is
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Table 1. Structure parameters of our studied example. Note that
the set of parameters used here is the same as in Ref. [22].

Parameter Symbol Value

Active medium resonance wavelength λ0 = 2πc/ω0 10.6 μm

Active medium resonance bandwidth Δ f = Δω/2π 37 GHz

Active medium plasma frequency ωp 1.18× 1010 rad s−1

Electrical dipole moment μ12 0.0275 Debye

Initial PID N0 1.3× 1023 m−3

Einstein’s coefficient A21 0.2 s−1

Relative permittivity εr 1.0014

Waveguide radius R 5.065 cm

E-beam Lorentz factor γ 600

E-beam total charge Qb −e109

E-beam length Ltr 150λ0 = 1.6 mm

E-beam modulation Mtr 20%

E-beam radius Rb 4 mm

tsat = 1

Ω
ln

[
2
√

2√
εr |Ēz,s0(τ1)|

]
+ 20

Δω
, (3.20)

where Ω = ωp
2
√

εr εc
− Δω

4 is the linear growth rate for

β → 1 and εc � 1. In addition, Ēz,s0(τ1) is given in

Equation (3.14).

Finally, the theoretical spot size, Rsp, of the longitudinal

wake can be calculated through J0(ps0 Rsp/R) = 0. Since

the first zero of J0(x) is ∼2.4 and from the single-resonance

condition ps0 = R ω0
c
√

εrεc, we obtain that the spot size of

the longitudinal wake is

Rsp 	 2.4
ω0
c
√

εrεc
. (3.21)

4. Simulations

In this section we show the wake dynamics for an active

CO2 gas mixture with the set of parameters that is given in

Table 1.

Since the bunch profile is continuously changing except

for a finite number of points where it can have first-order

discontinuity, the initial conditions of all the envelopes are

set to zero but the initial PID is N̄ (τ = 0) = 1.

Figure 2 shows the wake and the medium dynamics on the

waveguide axis (r = 0). In this example the trigger bunch

(Figures 2(a) and (b) dashed curves) which appears at τ =
τ0 = 0.05 and ends at τ = τ1 = 0.0813 (corresponding to

a bunch length of Lb = 300 μm) generates the initial wake.

As seen in Figure 2(a), the wake (solid curve) amplification

begins in the linear regime, where the PID (dashed–dotted

curve) is weakly depleted (N̄ (τ )≈ N̄ (0)= 1). In this regime

the growth rate of the medium is constant, which results in

exponential amplification of the wake (Figure 2(b)).

As the wake is amplified the PID is depleted. In this non-

linear regime of amplification, where the PID is significantly

reduced and the wake is intense, Figure 2(a) shows that the

amplified wake and the PID experience Rabi oscillations.

Finally, when the PID relaxes to zero, the effective gain of

the medium is zero and the wake reaches deep saturation.

Figure 2(a) shows that the normalized wake reaches a

saturation value similar to the theoretical calculation (Equa-

tion (3.10) with εr 	 1) of Ēsat =
√

2. Also, the normalized

saturation time in this example is τ sim
sat = τ sim

d +τ sim
r = 1.32,

where the depletion time is τ sim
d = 0.8448 and the relaxation

time is τ sim
r = 0.512. These time parameters are in good

agreement with the theoretical formulas (Equations (3.13)

and (3.18)) of τ th
d = 0.8448, τ th

r = 0.508 and τ th
sat = 1.353.

Figure 2(b) shows in a logarithmic scale the nonlinear

wake amplification in physical units of V m−1. Clearly, in

the linear regime the wake (solid curve) grows exponentially

and it saturates about 6 cm behind the trigger bunch to a

value of 0.7 GV m−1. In addition, Figure 2(b) shows in the

linear regime good agreement between the nonlinear wake

dynamics (solid curve) and the linear wake dynamics (dots)

which is calculated for N̄ (τ ) = 1.

Similarly to the linear regime approach[18, 19], the waveg-

uide radius is chosen such that only a single TM mode will

be in resonance with the active medium. Indeed, Figure 3

shows at τ = 1.67 that among the first 500 modes of Ēz,s
that are calculated in the simulation only s0 = 360 is the

dominant mode.

Figure 4 shows the two-dimensional plot of the longitudi-

nal wake. At τ = 0.95, corresponding to z − βct = 50 mm,

Figures 4(b) and (c) show that the radius of the spot is

about 100 μm, which is smaller than the waveguide radius

of R = 50.6475 mm. This spot size radius is in good

agreement with our theoretical expression (Equation (3.21))

of 107.6 μm. This means that such a wake can accelerate a

second bunch of electrons with a beam radius of less than a

hundred microns.

The energy balance of the structure shown in Figure 5

reveals that initially most of the energy comes from the

active medium (Figure 5(c)) and only a small fraction of it

comes from the trigger bunch (Figure 5(b)). In the steady

state of the amplification all the stored energy from the

active medium is transferred to EM energy (Figure 5(a))

such that the energy of the longitudinal wake, W̄ (E M,lo) =∑
s W̄ (E M,lo)

s , is the same as that of the transverse wake,

W̄ (E M,tr) = ∑
s W̄ (E M,tr)

s . In addition, the stored energy

of level 1 in the active medium, W̄N1(τ ) = 1
2 [W̄tot (τ = 0)−

W̄N (τ )], is equal to that of level 2, W̄N2(τ ) = 1
2 [W̄tot (τ =

0) + W̄N (τ )] (Figure 5(c)), which means that in the steady

state the total stored energy in the active medium is zero,

W̄N = W̄N2 − W̄N1 = 0. The deviation from energy conser-

vation η(%) = 100× |W̄tot (τ )− W̄tot (τ = 0)|/W̄tot (τ = 0)

is shown in Figure 5(d) and can be used for the numerical

simulation error which in our example is about 6× 10−5%.

As mentioned previously, the shape of the single-mode

wake is sensitive to the active medium bandwidth, Δω̄, and

the Cerenkov parameter, εc. These two parameters affect
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Figure 3. The mode spectrum of the wake |Ez,s (βcT = 10 cm, r = 0)|. Here, the single-resonance mode is s0 = 360.

the Rabi frequency ω̄R and the relaxation time τr . Figure 6

shows the dynamics of the wake for different Cerenkov and

bandwidth parameters. The solid curve corresponds to the

same wake dynamics as in Figure 6(a) with ω̄R = 37.6 and

Δω̄ = 39.4. As seen for a Cerenkov parameter five times

larger than our former example (dashed curve) the number

of Rabi oscillations is significantly lowered. However, the

saturation length, τsat , is greatly increased as a result of

increased τd—see Equation (3.13). It may be possible to

suppress the Rabi oscillation when the medium bandwidth

is enlarged. However, increasing the bandwidth can result

in multi-mode interaction if |Δω̄s | < Δω̄. Figure 6(a)

shows (dotted curve) that for a bandwidth that is five times

larger the shape of the wake in the steady-state regime has a

steady oscillation which results from multi-mode coupling.

In this example, |Δω̄s0±1| = 75 < 88.06 = Δω̄, whereas

for the first single-mode propagation we have |Δω̄s0±1| =

167 > 39.4 = Δω̄, where s0 = 360. Figure 6(b) shows the

mode spectrum of the wake. As seen for large bandwidth

(dotted curve), the adjacent modes (s = 359 and 361) par-

ticipate in the wake dynamics shown in Figure 6(a) (dotted

curve).

The two major parameters that characterize our scheme

are the value of the wake at the saturation and the saturation

length. The sensitivities of these two quantities to the

other parameters of the scheme are revealed in Figure 7.

Specifically, Figure 7 shows the dependence of the value

of the saturated wake (Figure 7(a)) and the saturation time

(Figure 7(b)) on the waveguide radius, the dielectric con-

stant, the active medium bandwidth, the bunch energy and

the bunch radius. Clearly, the saturation value of the wake

is significantly dependent on the waveguide radius, R, the

medium bandwidth, Δω, and the parameter εr − 1, which is

proportional to the Cerenkov parameter εc.
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Figure 5. The energy conservation. Here, W̄N1 is the energy of the ground state and W̄N2 is the energy of the excited state; (d) shows the deviation from

energy conservation.

For a relativistic beam the scaling law of the saturated

wake on the structure parameters can be explained by our

analytical calculations (Equation (3.11)) and the single-

resonance condition of ps = R(ω0/c)
√

εrεc (see Equation

(3.2)),

|Esat | ∝ (ΔωR)1/2(εr − 1)1/4, (4.1)

where it is assumed that N̄ ∝ Δω̄ (because of ωp =
ω0

√
2N0μ

2

ε0�ω0
and ωp =

√
2cΔωα, where α is the small signal

gain). This means that the waveguide radius and bandwidth

strongly affect the saturation – compared with the Cerenkov

parameter. In addition, for a relativistic beam the saturation

value does not depend on the beam radius and energy.
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Similarly, the scaling law of the saturation time on the

structure parameters can be explained by our analytical cal-

culations of the saturation time (Equations (3.14) and (3.20))

and the single resonance condition of ps = R(ω0/c)
√

εrεc
(see Equation (3.2)),

tsat ∝ (. . .)
√

εc ln[. . . (εrεc)
1/2(R Rb)

3/2] + 1

Δω
. (4.2)

For a single resonant mode, the saturation time is strongly

dependent on the Cerenkov parameter and the medium

bandwidth but weakly dependent on the waveguide radius

and beam spot size. Indeed, Figure 7(b) confirms the scaling

law in Equation (4.2), but not for the waveguide radius at

χ = 0.2.

At this point the saturation time is significantly large be-

cause the deviation from satisfying the resonance condition

is larger than for a larger waveguide radius (χ > 0.2).

Specifically, for R = 0.2R0 the deviation from the nearest

resonance mode is Δω̄s(s = 72) = 167, whereas for R =
0.5R0 the deviation is Δω̄s(s = 180) = 42. When the

waveguide radius is close to satisfying a single resonance,

then there is a small dependence on the saturation time, as

confirmed by the logarithmic dependence in Equation (4.2).

Otherwise the wake growth rate is significantly reduced.

5. Discussion and conclusions

In this paper we present the nonlinear aspects of a new

scheme of electron acceleration by an active medium. In

contrast to plasma-based accelerators, where the energy for

generating the intense wake originates in the intense laser
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pulse, in our scheme the energy source is stored in excited

atoms/molecules. Most importantly, we have shown that

a centimeter-sized cylindrical waveguide filled with a CO2

gas mixture can generate gradients of the order of GV m−1

traveling at the trigger bunch velocity.

We analyzed the dynamics of the wake and the active

medium both analytically and numerically. Our numerical

simulations indicate that the dynamics of the wake can be

divided into three regimes. In the first regime, known as

the linear regime, the PID is nearly constant (N̄ 	 1).

Hence, the gain of the medium is constant which results

in exponential growth of the wake. The second regime

starts when the amplified wake reaches high intensity, and

the PID is significantly reduced (N̄ � 1) by the stimulated

emission effect. In this regime both the PID and the wake

can experience Rabi oscillations. The Rabi frequency in

our confined structure can be significantly larger than in

a boundless medium. More specifically, this frequency

is inversely proportional to the square root of both the

Cerenkov parameter and the mode number. Finally, in the

third regime, when the Rabi oscillations are relaxed, the PID

reaches complete depletion (N̄ 	 0) and the wake reaches

deep saturation.

Energy conservation proves that most of the initial energy

originates from the active medium, and in the deep saturation

regime half of the initial stored energy is transferred to

the longitudinal EM field component and the other half is

transferred to the transverse EM field components.

To obtain maximum performance from our studied struc-

ture we should fulfill the following constraints. First, it is

desired to design the structure for single-resonance-mode

operation to obtain a constant value of the wake in the

saturation regime. In order to avoid multi-mode propagation

of adjacent frequencies, the active medium bandwidth should

be narrow enough. Second, the spot size of the wake should

be large enough in order to accelerate most of the trailing

train bunch. We found that for single-mode propagation a

large spot size is achieved for a small Cerenkov parameter.

The last requirement is obviously the generation of a high

gradient in a short saturation length.

On one hand, we have found that for a relativistic trigger

bunch the saturation value is strongly dependent on the

waveguide radius and the medium bandwidth but weakly

dependent on the Cerenkov parameter. On the other hand,

we have found that for single-mode propagation and a

relativistic trigger bunch the saturation length is strongly

dependent on the Cerenkov parameter and the medium

bandwidth but weakly dependent on the waveguide and

electron beam radius. Consequently, optimal performance

may be achieved with a large waveguide radius filled with

a high density of excited atoms and a trigger bunch that

travels at a velocity slightly above the Cerenkov velocity.

Interestingly, the short saturation length of the wake may be

used as a seed pulse for backward Raman amplification in

plasma[25].

For a proper perspective, it is important to comment that

the high value of the gradient is limited by self-focusing and

ionization effects[23], which are not analyzed here, but which

may be overcome by using a vacuum channel, as previously

mentioned in Section 1.

In spite of the relatively modest gradient, compared with

laser plasma accelerators, our paradigm may benefit from a

few aspects. First, our scheme can support staging[26, 27] in a

fairly natural way. Second, our setup, in principle, does not

seem to suffer from instabilities that may evolve in plasma

at a high repetition rate. A typical repetition rate for laser

plasma accelerators is less than 1 Hz for 100 J laser pulses

with fs duration in a laser plasma accelerator[6]. The various

laser wake acceleration schemes in plasma take advantage

of the fact that on the fs time scale all ion instabilities are

far below threshold; at high repetition rate these instabilities

may develop[28]. Their suppression may require a dramatic

reduction of the laser power.

Regarding our paradigm as a new source of coherent

radiation excited by a trigger bunch, it possesses important

features that distinguish it from a conventional laser driven

by spontaneous emission. The most remarkable ones are the

excitation of a specific mode number and wake propagation

at the same phase and group velocity as the trigger bunch.
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