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Abstract
We present an interferometry setup and the detailed fringe analysis method for intense short pulse (SP) laser experiments.

The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic

electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency

doubled (λ = 0.527 μm) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to

better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware

of the diagnostic, data analysis and example data are presented. The diagnostic setup and the analysis procedure can be

employed for any other SP laser experiments and interferograms, respectively.
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1. Introduction

The relativistic electrons generated from the intense short

pulse (SP) laser interactions have been extensively studied

for a wide range of applications, such as the fast igni-

tion inertial confinement fusion scheme[1] and the laser

driven electron–positron pair production[2]. The exact mech-

anisms generating these energetic electrons are still un-

clear, especially the effects of pre-plasmas on the rela-

tivistic electrons. The pre-plasma scale length is known

to affect the electron acceleration[3, 4], the electron beam

divergence[5] and the laser energy absorption[6]. However,

there are only a few quantitative experimental data avail-

able. In the studies of laser–plasma interactions, the scale

length is often estimated from simulated density profiles

using radiation-hydrodynamic codes, such as HYDRA[7],

MULTI2D[8] and HYADES[9], and further simulations us-

ing particle-in-cell codes are carried out to investigate the

detailed physics. In spite of continuous development in

the radiation-hydrodynamic codes, the codes have to be

benchmarked against measurements. Also, it is not practical

to simulate a large number of target shots using experimental

conditions. Therefore, experimental measurements of the

plasma density are still needed.
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Optical interferometry is the most widely used tech-

nique to measure the plasma electron density in magnetic

confinement plasma experiments[10, 11] and laser plasma

experiments[12–18]. Also, much effort was put in to devise

and improve fringe analysis methods[19–23] and Abel inver-

sion techniques[24–27]. However, the optical interferometry

is underutilized in high-intensity SP laser interactions with

solid targets than it should because (1) setting up the

interferometry is very time consuming and (2) the probe

beam path prevents other diagnostics from being deployed.

This is especially true for experiments at user facilities,

such as the Jupiter Laser Facility (JLF), Livermore, USA. In

addition, most publications on the fringe analysis and Abel

inversion techniques focus on details of specific methods

but does not give an overview of the entire data analysis

procedures assuming that diagnostic users are already

familiar with them. As a result it is very difficult for first

time users to successfully field the diagnostic and analyze

data unless close guidance, for instance advisers to pupils,

is provided. These circumstances motivated this paper to

give detailed information on how to successfully employ an

optical interferometry and analyze data.

The interferometry setup described here employs the mod-

ified Mach–Zehnder (M–Z) interferometer[28] and single

vertical probe beam path to maximize the use of target

chamber space. The data is analyzed by utilizing the Fourier
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transformation (FT)[19] and the linear operator methods[25].

Readers are strongly encouraged to read the references

given in this paper and references therein for more detailed

information.

2. Experimental conditions and setup

The experimental scheme and interferometer setup described

here have been used in multiple campaigns to investigate

the effects of pre-plasmas on energetic electrons generated

in laser–solid interactions on the Titan laser[29] at JLF at

Lawrence Livermore National Laboratory.

Targets made of aluminum (Al), titanium (Ti), copper

(Cu), gold (Au) and plastics (CH) were shaped in disk or

square form. The disk targets were made of single material,

and their dimension varied between 2 and 6 mm in diameter

and 75 μm to 1 mm in thickness. Two different types

of square targets (3 mm × 3 mm) with varying thickness

between 75 μm and 1.28 mm were used for the study: bulk

(CH, Ti, or Cu) and layered. The layered targets had 10 μm

metal foil (Ti or Cu) sandwiched between two plastic layers

with a thinner layer (3–15 μm) on the laser incident side.

2.1. Short pulse laser conditions

The Titan SP laser uses optical parametric chirped pulse

amplification[30] to generate 0.7–20 ps long pulses and

delivers up to 350 J energy on targets when operated at the

fundamental wavelength, 1.054 μm (1ω)[29]. The SP laser

beam is focused to a focal spot of 10–15 μm at the full-

width-half-maximum (FWHM) by an F/3 off-axis parabola,

and the maximum laser intensity of low 1020 W/cm2 is

achievable. The SP laser can be operated at the second

harmonic, 0.527 μm.

The pre-plasma experiments were performed using the 1ω

Titan SP laser at its minimum pulse length, and the laser

energy on targets was varied between 110 and 140 J. The

1ω SP laser has a nanosecond scale pre-pulse that generated

pre-plasmas on the target front surface. The pre-pulse energy

history was monitored on each shot with a 20 ps temporal

resolution by using a calibrated fast diode (EOT ET-3500)

and a fast oscilloscope. The fast diode system was calibrated

against a calorimeter placed inside the target chamber under

vacuum. The main SP laser was partially amplified, 100–

200 mJ, and uncompressed, ∼3 ns long. The fast diode

read-out (V) was integrated and normalized to the measured

energy in order to find a scaling factor, J/V. The measured

pre-pulse had a nominal pulse length of 3.3 ± 0.5 ns with

energies between 10 and 70 mJ, which was equivalent to

laser intensity in a range of 1012–1013 W/cm2.

Figure 1 shows a recorded pre-pulse (solid blue curve)

and a linear fit (dotted red line) to it. The sharp rise at

0 ns (vertical dashed black line) is due to the arrival of the

Figure 1. The pre-pulse measured by the calibrated fast diode (solid blue)

and a linear fit (dotted red).

main pulse. The pre-pulse was ∼3.2 ns long and contained

62 ± 6 mJ.

2.2. Sub-picosecond optical probe laser

The interferograms were taken using a laser optical probe.

The optical probe is split from a main SP front end (after

the beam stretcher) and bypasses the amplification system,

which allows the probe laser to arrive prior to the main

SP laser. Upon entering the target area, the probe laser

propagates through an open air compressor which adjusts the

probe laser pulse length for various optical diagnostics. For

the interferometry the probe beam was compressed to the

minimum pulse length of ∼0.5 ps in order to take snapshots

of the pre-plasmas. The probe laser was frequency doubled

(0.527 μm or 2ω) by a beta barium borate (BBO) crystal in

order to increase the maximum measurable plasma density.

The relationship between the index of refraction of plasmas,

ηp, and the plasma density, ne, is given as,

ηplasma =
√

1 − ne

nc
, (1)

where nc is the plasma critical density. The critical density

is inversely proportional to the square of a probe beam

wavelength, nc ≈ 1.12 × 1021/λ2
probe cm−3, where λprobe

is the probe laser wavelength in μm. The critical density for

the frequency doubled probe laser is ∼4 × 1021 cm−3.

2.3. Probe beam path

Figure 2(a) shows a simplified top–down view of the ex-

perimental setup. The SP laser (red shade) is focused by

the F/3 parabola on to a target at ∼16◦ (red dashed arrow)

from the target normal (black dashed line). The 0.5 ps 2ω

probe laser (green arrows) emerging from the compressor
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Figure 2. (a) A simplified experimental scheme and (b) the single vertical

probe beam path at the target position.

propagates through a timing periscope, which is to adjust the

relative timing between the SP and probe lasers at the target

area, and enters the target chamber. Inside the chamber the

probe beam is initially positioned below the SP laser plane

in order to scan pre-plasmas vertically, i.e., perpendicular to

the SP beam plane. Figure 2(b) shows the relative orientation

of a target, the main SP and probe lasers: the SP laser (red

shade) is incident on target at an angle of 16◦ from the target

normal, and the probe laser travels perpendicular to the SP

laser plane (x–z plane). Note that the relative location of

the target within the probe beam is important for any single

probe path: the target has to be placed on one side of the

probe beam in order to make sure a large area of the beam

is not perturbed by plasmas. The unperturbed part of the

probe beam is used as reference to generate fringes by an

interferometer.

The probe beam, after interacting with pre-plasma, is

collected by a lens to form the first image with a small

magnification, ×2 to ×3, outside of the chamber. The

final image is formed by another lens to give ×16 to ×20

magnification with better than 10 μm imaging resolution.

An interferometer was placed between the second lens and

the imaging plane.

The vertical probe path requires extra effort as comparison

to the common coplanar probe beam path. However, it allows

to deploy more diagnostics and maximize the experimental

time: an x-ray pinhole camera, Figure 2(b), and an x-ray

spectrometer (not shown) were used on the SP laser plane

close to the target position.

2.4. Laser relative timing

The relative timing between the SP and probe lasers was

adjusted by controlling the timing periscope, Figure 2(a),

while monitoring the unamplified SP and the probe lasers

using a Hamamatsu visible streak camera, C7700-11[31].

Because two laser paths were orthogonal to each other, a

light scattering target was used in order to scatter the SP laser

Figure 3. An image captured by the streak camera (left top) and laser signals

along the vertical line on the image (right bottom) are shown.

light and propagate the scattered light along the probe beam

path. The light signals from both lasers were collected by

the first lens within the chamber, and the streak camera was

placed at the first imaging plane.

Figure 3 shows an image recorded by the streak camera

(top left) and line-out along the temporal axis (bottom right).

The image was recorded by a charge-coupled device (CCD)

with 1024 × 1024 pixels and a 500 ps sweeping window.

The curvature of streaked lines is due to the edge effect of

high voltage applied to the sweep plates within the streak

camera. The upper (earlier) streak is the probe beam which

was partially blocked by the scattering target (indicated with

an arrow).

The plot shows signals from the probe beam (left) and the

SP laser (right). The probe beam had a large tail, possibly,

due to (1) a part of the probe beam doubly reflected within

the BBO crystal, (2) the unconverted 1ω probe beam whose

pulse length was slightly larger than the green light, (3) an

artifact of the streak camera, etc. A Gaussian fit with three

terms, two for the probe and one for the SP, were used to

find the peak locations. The light signals are separated by

∼47 pixels, equivalent to ∼23 ps.

2.5. Modified Mach–Zehnder interferometer

The Nomarski interferometer[32] and the modified M–Z

interferometer[28] have been used in earlier experiments.

However, the modified M–Z interferometer was chosen for

later experiments for the following reasons.

The Nomarski interferometer uses a Wollaston prism to

split the probe laser into two orthogonally polarized beams

and a pair of polarizers, before and after the prism, to control

the probe laser polarization in order to generate fringes.

The Nomarski interferometer is easy to work, especially
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Figure 4. A modified M–Z interferometer setup.

with a sub-picosecond probe laser, because the orthogo-

nally polarized beams have equal path lengths and generate

fringes where they overlap. However, control of the image

separation (from the separated beams) and the fringe gap

are interlinked via the angle at which the prism splits the

probe laser; both the image separation and fringe gap become

smaller or larger as the prism is brought closer to or further

away from the final imaging plane, respectively (Figure 1 in

Ref. [32]). Therefore, achieving adequate image separation

and fringe density could be difficult in cases of relatively

large (∼1 mm) targets or plasmas with high magnification

(×15 or larger) due to image blurring caused by overlapped

images.

The M–Z interferometer uses a pair of beam splitters to

separate a probe laser into two arms (probing and reference

arms) and merge them back to generate fringes, which

requires extra attention in order to generate fringes. On

the other hand, the M–Z interferometer offers much better

control over the image separation and fringe gap than the

Nomarski interferometer does. Note that the conventional

M–Z interferometer setup of using a pair of mirrors and

beam splitters also suffers from the interlinked control of

the image separation and fringe spacing. This restriction can

be easily removed if a pair of mirrors are replaced with two

pentaprisms or two periscopes while keeping the versatility

of the M–Z interferometer[28]. The details of the diagnostic

setup and fringe adjustment are given below.

Figure 4 shows the modified M–Z interferometer with a

pair of beam splitters and periscopes as well as images before

and after entering the diagnostic. The separation of target

images and the fringe spacing at the final imaging plane are

controlled rotating both beam splitters (BS1 and BS2) by un-

equal amounts for the following reasons. Rotating only one

beam splitter can lead to unrecognizably small fringes before

reaching an appropriate image separation. On the other hand,

rotating the beam splitters by equal amounts easily separates

the images but does not change the fringe spacing. Therefore,

two beam splitters have to be rotated by unequal amounts in

order to separate the images and control the fringe spacing.

Keep in mind, however, that unequal amounts of rotations

will result in low contrast fringes or loss of fringes when

an SP probe laser is used because the split probe beams

no longer temporally overlap at the final imaging plane.

The co-arrival of the split beams (and fringe generation) is

achieved by mounting one periscope on a translation stage

(Periscope 1 in Figure 4) and simultaneously adjusting its

position while rotating the beam splitters.

3. Fringe analysis

The index of refraction through plasmas differ from that

of vacuum or air. The difference in the index of refraction

causes the probe beam to experience different optical path

length and shifts fringes. Therefore, the fringe analysis is

done in two stages: estimation of (1) the probe beam path

length change and (2) the index of refraction. Once the

refractivity is found, the plasma density is estimated using

the relationship given in Equation (1).

Note that fringe data analysis procedures are to find

the index of refraction, and a physical variable of interest

depends on how the index of refraction is expressed. For

instance, one can estimate the plasma density (as in this

paper) while others estimate temperatures if the index of

refraction is expressed in terms of temperature[33].

3.1. Phase map: Fourier transformation method

The path length difference can be estimated by counting

the number of fringe shift, N = ΔP . However, counting

fringes could be erroneous and time consuming. Takeda

et al.[19] suggested a more elegant way of estimating the

phase difference, Δφ = (2π/λprobe)ΔP, at each point on

interferograms by using the FT method. The FT method is

not only faster than the direct fringe shift counting method

but also reduces noises from interferograms. In addition, the

phase difference estimated by using the FT method forms

a smooth curve at the target boundary and beyond, as seen

in Figures 5(b) and 5(c), while the direct counting method

would result in an abrupt change in the estimated phase

difference. As result, the FT method helps eliminating spiky

features when the Abel inversion is used to extracted profiles

(the plasma density profile in this paper). Note that a proper

mask should be employed in order to separate the erroneous

regions out of the unfolded density profile as the phase

difference beyond boundaries are not correct values.

The FT method uses the oscillatory nature of fringes

to estimate the phase value in four steps: (1) forward FT

of an interferogram, FTinter, (2) selection of one side in

the frequency domain, (3) inverse FT of one-sided fre-

quency spectrum, FT−1
inter and (4) the phase value extraction.

When interferograms are Fourier transformed, there are
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Figure 5. Interferogram and phase maps. The red dotted line in (a) indicates

the original target–vacuum interface.

three distinctive peaks: at the zero frequency and at the

nascent frequencies, ± fo. Selecting one side of spectrum

with an adequate width, fo ± Δ f , and performing the

inverse FT reduces noise with components faster or slower

than the fringe frequency but retains the fringes. The phase

at each point is found by taking the imaginary part after

applying the natural logarithm to the inverse FT of one-

sided frequency spectrum, fo + f1 = Im[ln(FT−1
inter)], where

f1 is due to the fringe shift. The real part, Re[FT−1
inter],

reconstructs interferograms with reduced noise, which can

be used to check the adequacy of the frequency width,

±Δ f [24]. Consult[19] and appendix in Ref. [34] for more

detailed information.

Figure 5 shows an interferogram recorded by a CCD with

7.4 μm per pixel and an estimated phase map by using the

FT method. The red dotted line in Figure 5(a) indicates

the original target surface, and the bright spot is caused

by the plasma emission near the probe beam wavelength,

0.527 μm. A few different methods were employed in order

to reduce the recorded plasma emission. First, 2ω specific

optics, such as mirrors, lens, beam splitters and 527 ± 5 nm

filters, were used along the probe path after the target area.

Second, a waveplate and a polarizer were used before and

after the target area, respectively, in order to remove 2ω

plasma emission at different polarization. Also, an aperture

was used at the light converging point of the first lens.

Notice that the phase values oscillate between 0 and 2π

(or −π and π ), Figure 5(b). Therefore, it is necessary to

remove the discontinuities between 0 and 2π by adding or

subtracting 2π , ‘phase unwrapping’[35], in order to find the

phase difference, Δφ. Figure 5(c) shows the final unwrapped

phase map of the interferogram.

Figure 6. A cylindrical geometry and the Abel transformation variables.

Once unwrapped phase maps are obtained from the ref-

erence and shot interferograms, the phase difference is esti-

mated by subtracting the two, ‖Δφ‖ = ‖φreference − φshot‖.

Note that the phase difference could be either positive or neg-

ative depending on how fringes shift, convex or concave, and

the order of the phase subtraction. Therefore, the absolute

value of the phase difference is used here in order to remove

any ambiguity due to the sign convention.

Notice that the word ‘phase’ was used for two different

things: the phase of fringes and the probe beam path length

(difference). Readers should be mindful how ‘phase’ is used

in the context and which definition it refers to.

3.2. Plasma index of refraction: linear operator method

The phase of the probe laser propagating through plasmas

with a cylindrical symmetry, Figure 6, can be expressed by

the Abel transform, and the plasma index of refraction, η, can

be estimated by performing the inverse Abel transform. The

Abel forward and inverse transform equations are expressed

as, respectively,

φ = 2π

λprobe

∫ xi

−xi

η(r) dr,

= 4π

λprobe

∫ Ro

y j

η(r)r dr√
r2 − y2

j

, (2)

η = 2λprobe

∫ R0

r

δφ/δy√
y2 − r2

dy, (3)

where a target surface is on the X–Z plane. The Abel

inversion has two short comings: it requires the derivatives

of the phase, δφ/δy, and the integrand diverges along the

symmetric axis, y → r . These problems can be overcome if

a linear operator method is used.

Dasch[25] showed that the inverse Abel transform could be

represented as a linear operator if any line-of-sight projected

data is taken at equal spacing,

ηplasma(ri ) = 1

Δr

∞∑
j=0

Di jφ(ri j ), (4)

where Δr is the data spacing (CCD pixel size/magnification),

ri = iΔr is the distance from the symmetric axis, and
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Figure 7. Two dimensional plasma density (cm−3) profile extracted from

the interferogram shown in Figure 5. The white color indicates densities

below 5 × 1018 cm−3.

Di j are the linear operator coefficients. The coefficients

depend on the numerical algorithm used to calculate but

are independent of the data spacing. Therefore, they can be

pre-calculated and stored for future use.

The change in the index of refraction due to plasmas,

‖Δη‖, is estimated by applying the linear operator to the

phase difference, ‖Δφ‖, and the plasma index of refraction is

calculated by using a relationship, ηplasma = 1−Δη. Finally,

the plasma density is calculated by using Equation (1).

Figure 7 shows the plasma density profile estimated from

the interferogram shown in Figure 5. The Onion Peeling

linear operator was chosen among several operators pre-

sented by Dasch. The right end of the profile, x = 0 μm,

is at the target–vacuum interface, and the origin, (0, 0) μm,

is centered at the laser focal spot. The red dotted curve

indicates the last visible fringe used as a masking line,

∼3 × 1019 cm−3, beyond which the plasma density becomes

erroneous due to the refraction of the probe beam and

plasma emission. The plasma density up to 5 × 1019 cm−3

was measured during experiments, which is similar to other

studies using optical interferometry[36, 37]. The measurement

near the density of 1×1021 cm−3 requires shorter wavelength

probe beam, such as soft x-ray[38].

4. Summary

An optical interferometry with the vertical single probe path

and the modified M–Z interferometer has been successfully

used in multiple campaigns. This scheme allowed more

diagnostics to be simultaneously fielded than the horizontal

probe path would have. The plasma density measure-

ments provided valuable data to benchmark radiation-

hydrodynamic simulation. The experimental measurements

and simulation of the plasma density together played

crucial roles to investigate the effects of pre-plasmas on the

relativistic electrons, which is a subject of future publication.
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