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Abstract

The aim of this note is to give a sharp lower bound for rational approximations to f (2) = TT2/6 by using
a specific Beukers' integral. Indeed, we will show that n1 has an irrationality measure less than 6.3489,
which improves the earlier result 7.325 announced by D. V. Chudnovsky and G. V. Chudnovsky.

1991 Mathematics subject classification (Amer. Math. Soc): 11J82.

1. Introduction

After Apery's remarkable irrationality proofs for £(2) and £(3), Beukers [1] gave
elegant proofs using the Legendre polynomials Ln(x) = (x"(l — x)")(n)/«!. Our aim
in this note is to give a sharp lower bound for rational approximations to £(2) = TI2/6

using Beukers' double integral

(1.1) / / '^"'dxdy,
JJ l-xy
s

where 5 is the unit square [0, 1] x [0, 1] and F(x), G(y) are non-zero polynomials
with integral coefficients. Let Dn be the least common multiple of {1,2,. . . ,«} and
let ord0(/

r) be the order of the zero point of F(x) at the origin. (We put ordo(F) = 0
if F(0) 7̂  0.) The double integral (1.1) is very important in the arithmetical study of

by virtue of the following lemma due to Beukers:

LEMMA 1.1. We have

-xy
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144 Masayoshi Hata [2]

where

is an integer, C denotes a closed curve enclosing the origin and b is a rational number
whose denominator is a divisor of DNDM with M = max{deg(F), deg(G)} and

N = min {max{deg(F), deg(G) - ordo(F)}, max{deg(G), deg(F) - ordo(G)}}.

Note that the expression for N in the above lemma comes from [1, Lemma 1]. In
fact, the rational part in the right-hand side of the formula

— xy l z AT
s

belongs to the set 1/D2
N since n < min{deg(F), deg(G)} < N. (Note that always

M > N.) Similarly, in the formula

tt xnym _ 1 / 1 1 \
JJ 1— xy \n — m\ \min{n,m} + 1 max{n,/w}/

for n ^ m, the right-hand side belongs to the set 1/ DNDM, since

\n-m\ < max{deg(F) - ordo(G), deg(G) - ordo(F)} < N

and max{n, m] < M, as required.
Beukers has studied the integral (1.1) with F(x) = Ln(x) and G(y) = (1 - yf,

which produces a good irrationality measure for n2:

log(2 + V5) - 6/5

Taking more complicated polynomials in (1.1), the above measure (i has been pared
down to 10.02979... by Dvornicich and Viola [4], to 7.552 by Rukhadze [9], to 7.5252
by the author [6], to 7.398537 by Rhin and Viola [8] and to 7.325 by Chudnovsky and
Chudnovsky [2]. (The measures 7.552 and 7.325 were announced without proofs.)

In this note we consider the following integral

f f
= JJ

. . . f f (x(l - x))l5n (y( l - y))X4n
 J

(L2) €n = JJ (ixyy^ dx dy

instead of (1.1), which will produce a better irrationality measure of n2 in the following
sense:
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THEOREM 1.2. There exists a positive integer q0 such that

r 2 -6.3489

for all p e Z and any integer q > q0. (In other words, n2 has an irrationality measure

less than 6.3489.)

We thus have immediately

COROLLARY 1.3. There exists a positive integer qx such that

v -12.6978

for all p e 1 and any integer q > qx uniformly in k. (n/^/k has an irrationality
measure less than 12.6978.)

This will be proved using the same techniques as in [6, Corollary 5.2]. However,
better irrationality measures for n/^/k for some particular integral values of k are
known; for example, 8.016045 . . . and 4.601579.. . for k = 1 and k = 3 respectively
(the author [7]), and 12 .11 . . . for k = 640320 (Chudnovsky and Chudnovsky [3]).

After 12n-fold partial integration with respect to x, we have, from (1.2),

— dxdy
1 - xy

s

with U(x) = (x15"(l -jt)15")(12")/(12rt)! and V(y) = y2"(l - y ) 1 4 " . Hence it follows
from Lemma 1.1 that
(1.3) €n=an^(2)+bn

where a , e 2 and bn e l/DX6nDXSn, since ordo(f/) = 3« and ordo(V) = In.
In Section 2 we will study the asymptotic behaviour of |en| and \an\. The most

essential part of this note is Sections 3 and 4, in which we will show that the denom-
inator of bn is comparatively small; more precisely, bn e (dn/Dx6nDm)Z for some
large product dn consisting of prime numbers less than 15«. Then Theorem 1.2 will
be proved in Section 5.

2. Estimates of en and an

From (1.2) it is easily verified that

1 , . , . / ( • * ( ! - * ) ) 1 5 ( y ( l - y ) ) 1 4 \
hm - log | e j = max log I — I .

»->oo n O<A:,><I y (I - xy)12 )
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Since the maximum a of the right-hand side is attained at x = (V6969 — 27)/96 and
y = (3 V6969 - 127)/208, we get

/ 12(5V6969-343)15(99V6969-7519)14\

)

<-36.0223.

We now estimate \an\. Since

„,
2TTI

/ 1 \2 f f W - w ) f
= \*Ti) Lie. (w-z)™

where C and Cz are circles centered at z = 0 and w = z with radii r and p respectively,
we have

- log \an\ < mm log ( —— .hmsup

The minimum p of the right-hand side is attained at r = (3V6969 - 127)/224 and
p = (285 - V6969)/336; therefore we get

(2.2)

P =
/515(<

=log I

< 35.4093.

2 2 6 9 3 1 5 7 1 4 13 2 8 17 1 2

3. The denominator of bn (I)

In this section we investigate the prime factors p of Tn = bnDi6nD\s,, satisfying
p < 15n.

After fc-fold and (12/i — £)-fold partial integrations with respect to x and v respect-
ively, we obtain, from (1.2),

with

/it!, Gk(y) =
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for any integer k e [0, 12«]. Note that Fk(x) e 1[x] and Gk(y) € l[y~\ with
deg(F*) = 18n, ordo(Ft) = 3n, deg(G*) = I6n and ordo(Gt) = 2n. Then, from
Lemma 1.1, (1.3) and (3.1),

for some ak,n e 1 and bkn e l/D16nDi&n. Thus, putting Tk<n = bk,nDX6nDx%n, we
obtain

(3.2) TKn =

since 4T(2) is irrational. For any prime p let vp (n) be the exponent of p in the resolution
of n into its prime factors. Hence, from (3.2),

(3.3) vp(Tk.K) = [12a>] - [I2co -K] + vp(Tn)

where co = {n/p} and K — [k/p] for any prime p > 5y/n. (Here {x} denotes the
fractional part of x.)

On the other hand, it is easily seen from Lemma 1.1 that if p is a common prime
factor of all the coefficients of Fk(x), or of Gk(y), then p becomes a divisor of Tk,„.
More precisely, we have

vp(Jk<n) > min vp(Ajtkn) + min vp(BLk,n)
0<j<15n 0</<14n

where

'15n\/15n + f

j ) \ k

Since vp( A,, t , J = [15£w]-[15&j-6>]+[15<w+6»]-[15(w+6>-fc] = /(<w,6>,/c),say,and

say, for any p > 5-Jn where 9 = {j/p} and 9' = {l/p}, we have

(3.4) vp(Tkn) > min I(co, 9, K) + min J(co, 9', K)

for any k e [0,12«].
We now distinguish four cases, as follows:

CASE I: We take* = 12/i giving K = {\2co}. From (3.3), vp(T12n,n) = vp(Tn). Suppose
now that 2{15(w} < {12a;}. Then clearly

I(co, 9, {12<w}) = [15w] - [I5co -9] + [15a; + 9]- [Uco] - [3w + 6»]

> 2 [15w] - [\2co] - [ISco] = {12<y} + {ISco} - 2{15<u}

> {ISco} > 0

for any 9 € [0, 1); hence we have vp(Tn) > 1 from (3.4), since I(co, 9, K) e I.
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CASE II: We take k = 0 giving K = 0. From (3.3), vp(T0,n) = vp{Tn). Suppose now
that2{14oj} < {12a;}. Then

J(co, 9', 0) = [Uco] - [14ft; - 9'] + [14a; + 9'] - [Uco] - [2co + 9']

> 2[Uco] - [12co] - [16ft;] = {12a;} + {16ft;} - 2{14tt>}

> {16w} > 0

for any 9' e [0, 1); hence vp{Tn) > 1 from (3.4).
CASE III: From (3.3) we have always vp(Tn) > vp(Tkin) - 1. Suppose that {2ft;} +

{12a;} < 1, {2&;} + {14&;} < 1 and 2{15ft>} < {14a;}. Since p < Un, one can
take k = k(p) = 14« — [14n/p]p; hence K = KW = {2a;} + {12a;}. Then, for any
9, B' € [0, 1),

I (co, 9, KJ = [I5(o] - [\5(o -9] + [I5co + 9]- [Uco] - [co + 9]

> 2[15o;] - [Uco] - [16a;] = {14a;} + [16co] - 2{15a;}

> {16a;} > 0

and

J(co, 9', KW) = [Uco] - [Uco - 0'] + 1 + [2a] - [2a + 9']

> 1 + [2io] + [Uco] - [I6co] = 1 + {16w} - [2co] - {Uco}

> {16co} > 0.

Hence vp(Tk(phn) > 2 from (3.4) and so vp(Tn) > 1.
CASE IV: The same argument as in Case III can be applied to the following expression:

(3.5)

with

12n\~' ffUk

Vk(y) —, Vk(y)
- k)\ k\

for any integer k e [0, 12n], which comes from &-fold and (12n — &)-fold partial
integrations with respect to y and x respectively. Then, by taking k = 15n —
[15n/p]p, it can be seen that vp(Tn) > 1 for any co satisfying {3a>} + {12a>} < 1,
{3a)} + {15ft;} < 1 and 2{14a>} < {15a;}. We have thus proved the following

LEMMA 3.1. Suppose a prime p e (5y/n, 15n) satisfies one of the following four
conditions:
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(I) 2{15<w} < {I2co};
(II) 2{14ft>} < {12ft>};

(III) {2co} + {12co} < 1, {2u>} + {14co} < 1 and2{l5co] < {14co};
(IV) {3<w} + {12(0} < 1, {3co} + {I5oo} < 1 and2{l4«o} < {I5co}.

Then p must divide Tn.

4. The denominator of bn (II)

In this section we investigate prime factors p € (5^/n, \5n) of Tn satisfying p2\Tn.
Suppose now that {2co} + {I2(o} > 1. In the expression (3.1), one can take k =
k{p) = 14« - [Un/p]p; thus K = km = {2co} + {I2(o} - 1. Hence, from (3.3),
vp(THp),n) = vp(Tn). Suppose further that {2(o} + {Ua>} < 1 and 2{l5a>} < {Uco}.
Then, for any 0, 9' e [0, 1),

/ (co, 9, ZJ = [15a>] - [15a> - 6] + [I5a> + 9] - I - [2a] - [12co] -[oo + 9]

> 2[l5(o] - [14OJ] - [I6co] = {I4w} + {16(o} - 2{15o>}

> {I6(o} > 0

and

J((o, 6', icj = [14o>] - [14<u - 6'] + [2co] + 1 - [2a> + 6']

> 1 + [2(o] + [14a>] - [16co] = 1 + {16(0} - {2xo} - {I4(o}

Therefore vp(Tkip) „) > 2 from (3.4); hence vp(Tn) > 2.
A similar argument to that above can be applied to the expression (3.5). By taking

k = I5n- [15n/p]p, we can show that vp(Tn) > 2 if co satisfies {3<w} + {12w} > 1,
[ico] + (15ft)} < 1 and 2{14w} < {15oo}.

We have thus proved the following

LEMMA 4.1. Suppose a prime p e (5y/n, 15«) satisfies one of the following two
conditions:

(V) {2(o} + {12(o} > 1, {2a>} + {14w} < 1 W2{15a>} < {14&>};
(VI) {3co} + {12ft)} > 1, {3ft.} + {15ft.} < 1 and 2{14co} < {15co}.

Then p2 must divide Tn.

5. Proof of Theorem 1.2

Let £2i and S22 be the sets of co e [0, 1) satisfying one of the conditions stated in
Lemma 3.1 (I, II, III or IV) and in Lemma 4.1 (V or VI) respectively. Then it is easily
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verified that the set £2i consists of the following intervals:

15' 12 / ' Ll5' 6^ ' | _5 '4 / ' 15' 18J' LV'16/' L14' 1 3 / ' | _5 ' l 2 / '

X 12 / ' L 5 ' 8 / ' Ll4' 16 / ' | _7 '4 / 'V 9 / ' L15* 2 / ' [15* 16 / '
11 5\ [6 8\ [13 17\
1 4 ' 6 / ' |_7* 9 / ' *" [ l4 ' 18 / '

Similarly the set S22 consists of the following intervals:

Ll4' T3j ' L7' 13j ' |_14' 9/ ' Ll5' 4 / ' [5' 16j ' L15' $) ' L"l5* 16/ '

Note that £22 C S2i. Putting

p: prime

for / = 1, 2, it follows from Lemmas 3.1 and 4.1 that the integer dn = Ai A2 must
divide Tn; that is,

(5.1)

Note that dn is a divisor of £>i6nD18n. Then, as in [6, 7], it follows from the prime
number theorem that

1 f f
I i m - l o g 4 , = / drlr(x)+ d\lr(x) = y, say,

where i(r(x) = T'(x)/ F(x) is the digamma function. The above Stieltjes integrals
can be expressed as sums of values of some elementary functions, by virtue of Gauss'
formula. (See, for example, Erdelyi et al. [5, p. 19].) Numerically one obtains

(5.2) y > 9.22875.

Now, putting Kn = Dl6nDlSn/dn € 1, we have, from (1.3) and (5.1),

Knan^{2) - Kn€n = -Knbn e Z.

Then we get

limsup - log |Knan\ < 34 - y + 0 = o, say,

and

lim -\og\Knen\ = 3 4 - y +a = - r , say,
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Therefore it follows from (2.1), (2.2) and (5.2) that n2 has an irrationality measure

, a , 34-y+p 35.4093 + 36.0223
1 + = 1 < <y 9.22875 - 34 + 36.0223 <

This completes the proof.

Addendum

Using the birational diffeomorphism r : (0, I)2 -> (0, I)2 defined by

it follows that the double integral (1.2) can also be written as

The transformation r, satisfying r = r ', was essentially used in Rhin and Vi-
ola [8], although their transformation generates a cyclic group of order 5. The above
expression (*) gives us further information about the denominator of bn e Q so that
we can obtain

THEOREM. There exists a positive integer q0 such that

,-5.687

q

for all p e 2 and any integer q > q 0 .

PROOF. After &-fold and (13n — &)-fold partial integration with respect to x and y
respectively in (*), it can be seen that

vP(Tn) > [13a; — K] — [13a;] + min /(a), 9, K) + min J(a), 9', K)

with

/(cu, 6, K) = [\Aco] - [ H w - 9] + [llco + 9]- [17ft; + 0 - K ] ,

J(co, 0', K) = [14a;] - [14a; - 9'] + [15a; - K + 6 ' ] - [13© - K ] - [2CO + 9']

for any integer k e [0, 13n] and for any prime p > 6*Jh, where co = {n/p},
K = {k/p}. Using this estimate for vp(Tn), Lemmas 3.1 and 4.1 can now be improved
as follows.
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LEMMA 1. Suppose a prime p e (6^/n, I5n) satisfies one of the conditions (I),
(II), (III), (IV), (VII) or (VIII), the latter two being:

(VII) {Uco} + {nco} <{l3(o],
(VIII) {2ft>} + {13o>} < 1, {2co} + {14«} < 1 and {Uco} + {17w} < {2co} +

Then p must divide Tn.

LEMMA 2. Suppose a prime p e {6^fn, 15n) satisfies one of the conditions (V),
(VI) or

(IX) {2co} + {14a;} < 1 and 1 + {Uto} + {llco} < {2a>} + {13OJ}.

Then p2 must divide Tn.

The above lemmas can be easily verified as above by taking k = 13« in Case (VII)
and k = 15« - [I5n/p]p in Cases (VIII) and (IX). Thus the sets fi, and Q2 can be
replaced by

i = fii U

= Q, U
5 4 ,
1 7 ' 1 3 | U 14' s) U

respectively. Here the contribution of the interval [jj, ^ )* to the corresponding
Stieltjes integral must be treated differently as follows:

since p < I5n. Consequently we obtain a better exponent y > 10.5383. Therefore
n2 has an irrationality measure less than

35.4093 + 36.0223
10.5383 - 34 + 36.0223

which completes the proof.

< 5.687,
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