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CONVEX FUNCTIONS ON BANACH
SPACES NOT CONTAINING 7,

JON BORWEIN AND JON VANDERWERFF

ABsTRACT. Thereisasizeable class of results precisely relating boundedness, con-
vergence and differentiability properties of continuous convex functions on Banach
spaces to whether or not the space contains an isomorphic copy of ¢;. In this note,
we provide constructions showing that the main such results do not extend to natural
broader classes of functions.

Introduction. Following [3], we will say a Banach space is sequentially reflexive
if Mackey and norm convergence coincide sequentially in its dual space. In addition
to showing that Asplund spaces are sequentially reflexive, [3] also shows that weak
Hadamard and Fréchet differentiability coincide for continuous convex functions on se-
guentially reflexive spaces (and thus on all Asplund spaceswhich was quite unexpected,;
seealso[4]). Using Rosenthal’s ¢ theorem, [10] showsthat a Banach space X is sequen-
tialy reflexive if and only if X 2 £1 (meaning no subspace of X is isomorphic to £1).
Sequential reflexivity has turned out to be an extremely useful notion in convex analy-
sis. Indeed, in addition to its implications in the study of differentiability properties of
convex functions [3, 4], it has applications to boundedness and convergence properties
of convex functions[2, 6, 7].

Because the notion of uniform convergence on bounded sets plays a fundamental
role in convex analysis and optimization (see[1]), it is natural to ask when it isimplied
by weaker forms of convergence. We studied this question in [7], where among other
results it was shown that on each sequentially reflexive space, every sequence of Isc
convex functions converging uniformly on weakly compact sets to a continuous affine
function converges uniformly on bounded sets. However, it was not known if this result
still holds when the limit function is only a continuous convex or even Lipschitz convex
function—Theorem 1 (a) below shows, in adecisivefashion, that it fails even for norms.

Throughout, we will work with real Banach spaces. We use By and S to denote the
closed unit ball and unit sphere of X. Definitions of additional basic concepts used but
not defined here can befoundin [1], [8], or [11]. We also often use the Eberlein-Smulian
theorem (see [8]) without specific referencetoit.

THEOREM 1. Let X be a nonreflexive Banach space. Then:
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(a) Thereisanon-increasingsequenceof equi-Lipschitznormsconverging uniformly
on weakly compact sets to a norm, but such that the convergenceis not uniform
on bounded sets.

(b) Therearenormsy andw on X suchthat u — v isweak Hadamard but not Fréchet
differentiable at some point.

(c) There are continuous convex functions f and h on X such that h — f is bounded
on weakly compact sets, but not on bounded sets.

Before proceeding with the proof of Theorem 1, let usrecall that afunction f isweak
Hadamard differentiable at x if thereisa /A € X* such that

limif o<+ th) — F(9 — A(t] /t = 0

with the limit being uniform for h in weakly compact sets. Notice that Theorem 1(b)
and (c) sharply contrast the following known result which is arestatement of parts of [4,
Theorem 2] and [6, Theorem 2.4].

THEOREM 2. For a Banach space X the following are equivalent.

(a) Xissequentially reflexive or equivalently X 2 (1.

(b) Weak Hadamard and Fréchet differentiability coincide for continuous convex
functions on X.

(c) Every continuous convex function bounded on weakly compact subsets of X is
bounded on bounded subsets of X.

The following lemmais a key component in the proof of Theorem 1. Notice that the
system it provides is stronger than a sequence in the dual space that is weak™ null but
not norm null as given by the Josefson-Nissenzweig theorem in the dual of each infinite
dimensional Banach space (see [8, p. 219]). However, its proof shares similarities with
the manner in which the Josefson-Nissenzweig theorem isderived from [9, Corollary 1].

LeEMMA 3. If Xisnotreflexiveand X 4 (1, thenthereisasystem{x,, An} C Bxx X*

such that Ap, w, Oand
(@ 1—e < A(xn) < 1fork<n,
(b) Ax(x,) = Owhenever k > n.

PrROOF.  First supposethat By: isw*-sequentially compact. For e > 0 given, we shall
construct a system {Un, ¢n} C Sx X Sk such that
D 1—e <) <1lifk<nm
2 o(un) = 0if k > n.

Because X is not reflexive, we can choose @ € Sy \ X such that d(®,X) > 1 —e.

By Goldstine's theorem one can fix anet {x,} C Sx such that x, Y. o, Let ¢1 € Sk
satisfy ¢1(P) > 1 —¢; fix oy such that ¢1(Xy) > 1 —efor o > oy, and let u; =
Xo, - SUPPOSEUY, . . ., Uy @Nd ¢4, . .., ¢n have been chosen appropriately. To choose @n+1,
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let E, := span{uy,...,Un}. Then E, is w*-closed, and by the separation theorem one
chooses ¢n+1 € Sx- such that ¢nea(En) = {0}, and ¢pe1(P) > 1 — €. FiX oner > o Such
that ¢ns1(Xe) > 1 — € for a > apeq and let Upsa = X, - It follows from the construction
that {un, ¢n} satisfy (1) and (2). By w*-sequential compactness, ¢n, v, ¢ for some ¢. We
let X := un, and Ay := ¢p, — ¢. Observethat ¢(u,) = 0for eachn, soit follows that the
system {x, A\ } satisfiesthe conditions of the lemma.

It remainsto provethe lemmain the case By is not w*-sequentially compact. Because
X 2 £1 and Bx- isnot w*-sequentially compact, [9, Corollary 1] showsthat ¢y isisomor-
phic to a quotient of X. Let T be the quotient map of X onto Y where Y isisomorphic to
Co. From the first part of the proof, there is a system {y,yi} C Y x Y* satisfying the
conclusion of the lemma. Choose u,, such that {un}2°; is bounded and Tu, = y,. Let
K > 0 be such that Ku, € By for each n. For x, := Ku, and A\, := %y;; o T, it follows
that {x,, An} hasthe desired properties. n

PrROOF OF THEOREM 1. (@) If X D ¢4, then X is not sequentially reflexive [10] and
sothereisasequence{A,} C Sx- that convergesto 0 uniformly onweakly compact sets.
Hence the sequence of norms || - || defined by [|X||n = ||X]| + SUp=n [Ak(X)| decreases
to || - || uniformly on weakly compact sets but not on bounded sets. So we may assume
X 7 (1 and that {xn, An} isasystemin By x X* asgiven by Lemma3 withe = 1/4.
Thusin particular,

® 3/4 < A(x) < lifk<m;
(4) Alx) = 0if k > n.

Now one can use the system {x, A\n } to define norms

v 1= ]+ supsup| (A — 1) 69

V() = max{v(x), x| +sup |G}

Notice that these norms are uniformly bounded on By because {A,} is norm bounded.
Let usfirst check that v, convergesto v uniformly on weakly compact sets. Indeed,

becausethe sequence {vn} isnonincreasing, if it did not converge on some weakly com-

pact set, one could find wy, 2 wsuchthat lim SUP, oo Vn(Wn) —v(Wn) > 0. However, for

any fixed e > 0, because /g -, 0, we can find ko such that | A (W)| < e. Thusfor some
No, | Ak, (Wn)| < e foral n> ny. Let N = max{ko,no}. Thenfor n > N, we have

1
() = [l + Sup) (Am = 54 ) (W)
m>N

> | Wal| + sup [Am(wn)| — €.
m>N

Using this with the definition of v, one seesthat v(W,) > vn(Wn) — € for n > N. Thus
we conclude the convergenceis uniform on weakly compact sets.
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To seethat the convergenceisnot uniform on bounded sets, using (3) and (4) it follows

for k < nthat
1 3 5.
< _ = <1-=<Zifn<m
(5) 0< (/\n 2/\k)(xm) <1-Z<Zifnsm
1 1 1 .
(6) -5 < (An— E/\k)(xm) =0-— E/\(Xk) <0ifn>m

Therefore, v(x,) <5/8+ ||| for al n, while vn(Xq) > An(Xn) + [|Xal| > 3/4+ ||xn|| for
all n. Hence the convergenceis not uniform on the bounded set {x,}> ;. This proves (a).

To prove (b), if X D ¢1, then [4, Theorem 2] shows there is a normon X for which
weak Hadamard and Fréchet differentiability do not coincide. So we may suppose X 4
{1, andwewrite X = H X R. Now let {x,, An} C By x H* beasystemgivenby Lemma3
that satisfies (3) and (4). Welet ¢nk(X) := An(X) — 2/Ak(X) for k < n. Using (3) and (4)
asin (5) and (6), one obtains

@) —2 < Ppk(Xm) < Oforal mnandk < n.

Motivated by [4], welety; = 1/2and v, = 1—1/nfor n > 2, and we define functions
fandgonH x R by

f(x,1) == supsup|pnk(X) + tVnl,
n k<n

g(X,t) := sup |An(X) + t7n|.
n
The desired equivalent norms are now defined for (x,t) € H x R by

(1) = maf (6,9, 906, 5] + KD},
v(x,1) := max{f(x,1), %(HXH +t])}

We shall show that ; — v is weak Hadamard differentiable at (0, 1) but not Frechet
differentiable there. First observethat (0, 1) = g(0, 1) = 1while1/2(]|0|| +|1]) = 1/2.
Therefore, the norm term in the definition of 1 and v islocally inactive around (0, 1) and
so it sufficesto show that h— f isweak Hadamard but not Fréchet differentiable at (0, 1)
where h(x, t) := max{f(x,t), g(x, t)}.

Let us now show that h — f has weak Hadamard derivative 0 at (0, 1). Because
(h—1)0,1) = 0andh—f > 0, if h— f were not weak Hadamard differentiable at
(0,1), onecould find t, | 0, ¢ > 0 and aweakly convergent sequence {(wn, n)}, such

that
fimsup N L+ tare) = T, 1+ tafe)

n—o0 tn

and consequently

(8) limsup OtWn, 1+ torn) = F(taW, 1+ toln)

n—oo tI"I
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Asin (a), one can fix ko and no, with ng > ko such that [Ay,(Wn)| < e/2for al n > no.
Now fix N > ng such that

1
9) |Am(taWn)| + [tarn| < =— forn > N.
2no
Then for n > N and m < ng one has
1 1
(10) [Am(taWn) + Y+t Ym| < |’Ym| + 2—no <1l- 2—no
For each n > N, using (10) with the definition of g yields
1

(12) g(taWn, 1 +tarp) = max{l — =—, sup |/\m(thn) +Ym(1+ tnrn)| }

2no m>ng

Because ¢mm v, 0, using (9) for each n > N one obtains

f(taWn, L+ tarp) > lim |¢m,m(thn) +Vmt+ tnrnﬁfm|
M—00

(12) 21— [tarl
1

1——.

> 2no

The definition of f, (11) and (12), for n > N, imply that

1
f(thn, 1 + tnrn) Z maX{l - 2—no, SUp |/\m(thn) - 2Ak0(thn) + ’\/m(l + tnrn)|}

m>ng
1
> max{l— —, SUP[|Am(taWn) + Ym(1 + tarn)| — tne]}
2N0 m>ny
> g(taWn, 1+ tarn) — the.

This contradicts (8) and so we concludethat h — f hasweak Hadamard derivative O at O.
Now we show that h—f is not Fréchet differentiable at (0, 1). First, by (3), h(%xn, 1>
£An(Xn)+1—2 > 1+ However, since ¢n, isweak* null (7) impliesthat f(2x,, 1) = 1
for n > 3. Therefore,
h(3xn, 1) — f(3x, 1) _ 1
>,
2 — 4
n
Hence h — f does not have Fréchet derivative 0 at (0, 1), which proves (b).
Finally, to prove (c), according to Theorem 2 (see[6, Theorem 2.4]) we may assume
X 2 £1. Let {xn,An} C Bx x X* be asystem asin Lemma 3 which satisfies (3) and (4).
Let gk = An — %/\k for 1 < k < n,and let a, = An(X,). Using this, one defines real
functionsf, by fo(t) = 0if t < a,— % andfp(t) = n! (t+ % —a,) if t > a, — 1. Wedefine
On by gn(t) = 0if t < @, — 5 and gu(t) = n! (t + 5 — an) if t > a, — 5. The desired
functionsf and h are defined as follows:

f() = Sl:piglr?{fn((f)n,k(x)) },
909 = sup{gn(An(9) } and
h(x) = max{f(x), g(9}.

limsup
n—oo
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First, we show that f and g (and hence h) are continuous convex functions. Indeed, it is
clear that f and g are convex because they are suprema of such functions. Also, because

An » 0, oneverifiesasin the proof of [6, LemmaZ2.1] thatf and g arelocally amaximum
of finitely many Lipschitz functions and therefore continuous.

If h—f were not bounded on some weakly compact set, one could find aweakly con-
vergent sequence {wn} such that limsup, . .(h — f)(Wy,) = oo, which implies
limsup,_,..(@ — f)(wWn) = oo, ash —f > 0. However, as in (@), one finds kg and ng
so that |Ay, (Wn)| < ;11 for n > no. Let N = max{ko, no}. Then for m,n > N, it follows
that

| dmko (Wn) — Am(Wh)]

'(Am - %/\ko)(wn) — Am(Wn)

2 1
— I\ < —.
m| o (Wn)| < 2m

Thus, ¢my,(Wn) > Am(Wn) — % for m,n > N. Observe that the definitions of f, and gm
imply that fr(s) > gin(t) if s > t — 5. Consequently fin(émk, (Wn)) > Gm(Am(Wn)) for
m,n > N. Hence, letting M := sup, |An(Wn)|, for k > N we have

g(Wn) < max{ga(A1(Wn)), .., On-1(An-1(Wn)), F(wn) }
< max{N!'M, f(wy)}.
Thuslimsup,,_,..(@—f)(w,) < N!'M, and we conclude h—f is bounded on each weakly
compact set.

Finally, let us show that h — f is unbounded on {x,}2,. Indeed, An(Xn) = a, and so
9(%) = Gn(An(X)) = (n— 1)! /2. Onthe other hand, using (3) and (4), we obtain:

Snk(Xm) < 0if m < nand so fy(nk(xm)) = O;
Pnk(Xn) < @8 — 1/nand so fy (k) = O;

and finally ¢nx(Xm) < Am(Xn) < 1for n < m, and so

fo(dnk0m)) <Nt (L+1/n—3/4)
=(n—-1'+n! /4
<(M-2!+(m-1) /4

Therefore f (xm) < (m—2)! + (m—1)! /4 and g(Xm) — f(Xm) > (M—1)! /4 — (M — 2)!
which tendsto co asm— oo. ]

REMARK 4. (a) One can also construct an increasing sequence of norms as in
Theorem 1(a). However, our proof requires a more complicated system than given by
Lemma 3, so we have chosen to omit the details.

(b) An underlying theme from [4] and [6] is that many constructionsinvolving con-
vex functionsare not as easy asit might first appear. We should also emphasizethis here.
Indeed, it may seem that it should be easy to construct adifference of continuous convex
functions as in Theorem 1(c). However, as soon as the difference of continuous convex
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functionsis unbounded on abounded set, at least one of the continuousconvex functions
must be unbounded on a bounded set. From this, [6, Lemma 2.3] immediately produces
aseguencein the dual spherethat convergesweak* to 0. Therefore, the highly nontrivial
Josefson-Nissenzweig theorem is a direct corollary of Theorem 1(c). This providesjus-
tification to our use of deep structural properties in Banach spaces, namely Rosenthal’s
(4 theorem and Hagler and Johnson's[9, Corollary 1].

We should add that Theorem 1(a) largely answersthe main open question in our arti-
cle[7]. However, oneissue remains: in a sequentially reflexive space, whenever the di-
rectional derivative for a convex continuous function is approached uniformly on weak
compact sets, is it approached uniformly on bounded sets? In other words, if the func-
tion is directionally weak Hadamard differentiable is it perforce directionally Fréchet
differentiable even at points of non differentiability? This question wasfirst answered by
John Giles and Scott Sciffer, who informed us—immediately upon receiving an earlier
version of this note which did not contain any of the results listed hereunder—that they
have constructed an example showing the answer is negative on cp. This motivated us
to re-examine the consegquencesof Theorem 1(a), and indeed one can useit to provide a
negative answer to the preceding question on all nonreflexive spaces:

COROLLARY 5. On each nonreflexive spacethereis a Lipschitz convex function that
is directionally weak Hadamard differentiable at O, but such that it is not directionally
Fréchet differentiable at O.

PrROOF. By Theorem 1(a), there is a sequence of uniformly bounded norms {v,}2
decreasing to anorm v uniformly on weakly compact sets, but not uniformly on bounded
sets. Therefore, we can find 6 > 0 and {x,}2; bounded such that vn(xn) > v(X,) + 25.
Now let

109 1= max {13, Sup[() a0

and define f,(x) := n[f(0 + x/n) — f(0)]. Then f,(x) = nf(x/n), and d*f(0)(x) =
limp_. fa(X) whered*f (0)(x) denotesthe directional derivativeof f at 0in the direction x
(see[11, Section 1] for basic properties of directional derivatives). We shall show that f,,
convergesto v uniformly on weakly compact sets, but not on bounded sets; consequently
f isdirectionally weak Hadamard differentiable at 0, with d*f (0)(x) = v(x).

Let W beaweakly compact setandlet e > 0. Wefix N € N suchthat vp(w) < v(w)+e
foral n> Nandw € W. Then choose M € N such that

z/n(w/M)—%gomrallweW, neN.

Using thisfor w € W and n > max{M, N}, we have
(W) < () = nmax{u(w/n), suplidw/m) -5/}

< nmax{(w/n), max[u(w/) — & /N], suplvi(w/m) — 5 /K]}
< k>N
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1
< nmax{y(w/n), 0, sup—uk(w)}
k>N N

< nmax {I/(W/n), %(V(W) +e)}
= (W) +e.

Finally, we shall show the limit is not uniform on the bounded set {x,}52, (and so f
is not directionally Fréchet differentiable at 0). Indeed:

fa(Xn) > n[vn(Xn/N) = 6/N] = vn(X%n) — 6 > v(Xn) +6.

So we've shown all we wish to show. ]
As aconsequenceof Corollary 5, one also obtains the following result that is slightly
weaker than Theorem 1(b), in that the functions obtained are not norms.

COROLLARY 6. If Xisa nonreflexive Banach space, then thereis a difference of two
Lipschitz convex functions that is weak Hadamard but not Fréchet differentiable at 0.

PROCOF. Letf be afunction as guaranteed by Corollary 5. Then one can verify that
f(x) — d*f(0)(x) is the desired difference of Lipschitz convex functions. ]

We close, by considering briefly a different class of spaces. Asin [5], we shall say
that X has the DP* property if weak* and Mackey convergence coincide sequentially
in X*. Also, recall that a Banach space has the Schur property if its weakly compact
sets are norm compact. Notice that all spaceswith Schur property trivially have the DP*
property, while the conversefails. Indeed, any spacewith the Grothendieck and Dunford
Pettis properties, suchas ¢, hasthe DP* property; see[8, 5] for more. Infact, therelation
between the Schur property and the DP* property is analogous to the relation between
reflexivity and sequential reflexivity. Moreover, the results of [4] and [6] combine to
immediately provide the following result which parallels Theorem 2.

THEOREM 7. For a Banach space X, the following are equivalent.

(a) X hasthe DP* property.

(b) Gateaux and weak Hadamard differentiability coincide for continuous convex
functions on X.

(c) Each continuous convex function on X is bounded on weakly compact sets.

In contrast to this, we have the following analog of Corollaries 5 and 6.

PROPOSITION 8.  Suppose X does not have the Schur property. Then:

(a) thereisa continuous convex function for which weak Hadamard directional dif-
ferentiability and (Gateaux) directional differentiability do not agree;

(b) thereis a difference of Lipschitz convex functions that is Gateaux but not weak
Hadamard differentiable at O.

PROOF. Let {wn} C Sx converge weakly to 0. Because {wn}2, is not relatively
norm compact, it is easy to construct a system {xn, #n} C X x X* where {x,} isasubse-
quenceof {wy}, {¢n} isnorm bounded, and ¢n(xn) = 2 while ¢n(xm) = Ofor n > m(see
for instance the proof of [5, Theorem 3.4]). Now we define f(X) := sup,[#n(X) — 1/n].
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An argument similar to the proof of Corallary 5 showsd*f (0)(x) = limsup,,_,., #n(X).
Consequently, d*f(0)(x,) = 0 for each n because limy,_., #m(X,) = O for each n. How-
ever, nf(x,/n) > 1 and so the difference quotients do not converge uniformly to the
directional derivative on the weakly compact set {x,}r>, U {0}. This proves (a). To
prove part (b), simply consider f(x) — d*f (0)(x). ]

By comparing Proposition 8 with Corollaries 5 and 6, one might guess an analog for
Theorem 1(c): on any space which does not have the Schur property, thereis adifference
of continuous convex functions that is unbounded on some weakly compact set. Curi-
oudly, thisis not the case. Indeed, if X has the DP* property and f and g are continuous
convex functions, then Theorem 7 ensuresthat f and g are bounded on weakly compacts
sets and hencef — g isalso. This serves as a further reminder of the subtleties one can
encounter when dealing with convex functions.
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