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A mesoscopic lattice Boltzmann model is implemented for modelling isothermal
two-component evaporation in porous media. The model is based on the pseudopotential
multiphase model with two components to mimic the phase-change component (e.g. water
and its vapour) and the non-condensible component (e.g. dry air), and the cascaded
collision operator is used to enhance the numerical performance. The model is first
analysed based on Chapman–Enskog expansion and then validated by the theoretical
solution of an isothermal diffusive evaporation problem. We then discuss in detail
the implementation of wettability based on a geometric function scheme and further
validate the model with microfluidic evaporation experiments. We apply the method to
simulate the convective evaporation of a dual-porosity medium and investigate the effects
of inflow vapour concentration (Yvapour,in) and contact angle (θ ) on the evaporation.
Simulation results reproduce the typical transition from the constant evaporation regime
(CRP) at large liquid saturation (S) to the receding front period (RFP) at small S,
with an intermediate falling rate period in between. The dependence of the average
evaporation rates on Yvapour,in and θ during CRP and RFP is investigated. A universal
scaling formulation for the evaporation rate during CRP is found with respect to the
concentration-related mass transfer number BY , contact angle θ and inflow Reynolds
number Re, i.e. ERCRP = k3 ln (1 + BY) · [ln (1 + Re)+ k2] [cos(θ)+ k1], where k1, k2
and k3 are fitting parameters.
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1. Introduction

Evaporation in porous media is a ubiquitous phenomenon in nature and industrial
applications, for example, drying of building materials after rainy days (Defraeye et al.
2012) and drainage in proton exchange membrane fuel cells (Wu et al. 2017). Therefore,
its study is of great interest to the advancement in many fields of science and technology.
Like usual evaporation phenomena, evaporation in porous media is triggered when
the surrounding vapour is unsaturated, which can be achieved via (i) increasing the
environmental temperature in single-component liquid–vapour systems (Qin et al. 2019),
(ii) decreasing the environmental pressure in isothermal single-component liquid–vapour
systems (Qin et al. 2021; Zhao et al. 2022), (iii) decreasing the environmental vapour
concentration in isothermal–isobaric multicomponent liquid–gas systems (Coussot 2000;
Yiotis et al. 2007) or (iv) combining different pressure, temperature and concentration
gradients (Fei et al. 2022a). Evaporation in porous media is a typical multiscale problem,
involving micropore to the environment lengths, convection to diffusion time scales,
whose complexity is further increased with the multiple physical processes at play, such
as phase change, interfacial flows and coupled heat and mass transfer (Qin et al. 2019; Fei
et al. 2022b). For such a problem, the extraction of detailed information at the pore scale
is challenging even with the most advanced imaging techniques. Pore-scale investigation
is essential since it not only helps to elucidate the underlying mechanisms of behaviour at
the macroscale, but also provides guidelines for constructing macroscopic models using
various upscaling techniques, such as the homogenization technique (Whitaker 1977),
the volume averaging method (Ahmad et al. 2020) and thermodynamically constrained
averaging theory (Jackson, Miller & Gray 2009). Besides, statistical information from
pore-scale data can be used to validate the upscaled models (Lasseux & Valdés-Parada
2022). Therefore, there is an increasing need for reliable numerical models able to allow
pore-scale investigations of flows in porous media coupled with liquid–vapour phase
change (Ackermann, Bringedal & Helmig 2021; Vorhauer-Huget & Shokri 2022).

Various numerical models have been developed to investigate evaporation in porous
media, including continuum models (Defraeye 2014; Le, Tsotsas & Kharaghani 2018),
pore-network models (PNMs) (Surasani, Metzger & Tsotsas 2008; Wu et al. 2017;
Vorhauer-Huget & Shokri 2022) and lattice Boltzmann models (LBMs) (Qin et al. 2019;
Zachariah, Panda & Surasani 2019). In addition, some efforts have been made to construct
multiscale models by coupling different models, such as an LBM–PNM (Zhao et al. 2022)
and a PNM–finite volume model (Weishaupt & Helmig 2021). Increasingly used, the
LBM is particularly well suited for pore-scale modelling of evaporation in porous media.
Different from the continuum models, the LBM is a solver of a specific discrete Boltzmann
equation, designed to recover the Navier–Stokes equations in the low-Mach-number limit
(Qiand, d’Humières & Lallemand 1992; Chen & Doolen 1998; Shan 2006; Guo & Shu
2013; Succi 2018). The mesoscale nature of the LBM allows the natural incorporation of
micro- and mesoscale physics, leading to straightforward treatment of multiphase interface
dynamics, such as phase separation and breakup and/or merging of phase interfaces (Shan
& Chen 1993, 1994; Succi 2015; Li et al. 2016; Gan et al. 2022; Huang, Li & Adams
2022). Compared with PNMs, the LBM is a more accurate pore-scale method since
the bounce-back type of boundary schemes in the LBM is very suitable for realistic
and complex pore structures (Liu et al. 2016; Chen et al. 2022), discarding the need
for large simplification of real geometries. Finally, the ‘collision-streaming’ algorithm in
the standard LBM involves information exchange only among neighbouring lattice nodes,
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making it highly efficient in large-scale parallel computations (Peng, Ayala & Wang 2019;
Fei et al. 2020; Peng, Ayala & Wang 2020; Wang, Fei & Luo 2022).

In 2013, El Abrach, Dhahri & Mhimid (2013) proposed the simulation of heat and
mass transfer during drying of deformable porous media using the LBM. In their model,
the porous media are modelled at the representative element volume scale, which,
however, did not resolve pore-scale information. Recently, the LBM has been extended
to simulate single-component evaporation in porous media at pore scales. Qin et al.
(2019) constructed a hybrid non-isothermal LBM to study the evaporation in synthetic
pore structures driven by temperature gradient and achieved satisfactory agreement with
experiment results. In their model, the flow fields of liquid and vapour are solved by a
single-component pseudopotential LBM and the temperature field by a finite-difference
scheme. Further coupling to a nanoparticle transport model allows the investigation of
nanoparticle depositions during drying in porous media (Qin et al. 2020). We note that, in
many cases, although a temperature variation may occur due to latent heat, the evaporation
is mainly driven by the vapour concentration gradient (Coussot 2000; Yiotis et al.
2007). For such evaporation, the diffusion among gas components, e.g. dry air and water
vapour, needs to be taken into account. Therefore, a multicomponent approach considering
component diffusion is more suitable and allows one to model also the developing vapour
boundary layers. Based on a multicomponent pseudopotential LBM, Zachariah et al.
(2019) proposed a two-component isothermal model to investigate invasion patterns and
cluster formation during convective drying of porous media. However, the convective
inflow Reynolds number (Re) range is limited to values smaller than 0.05, possibly because
the adopted LBM collision, forcing and boundary schemes are limited to low-Re problems.
In addition, the ability of multicomponent LBMs to simulate the effect of non-condensible
gas (NCG) and component diffusion in gas mixtures is still not yet satisfactorily explored.
In the literature, the concentration of NCG is mainly limited to small values (Zheng et al.
2019; Fei et al. 2022b), i.e. 1 %–2 % and 10 %–15 % under non-isothermal and isothermal
evaporation cases, respectively, which are much smaller than the value in the natural
environment (>97 %).

In the work described above, the LBMs for multicomponent evaporation are not
sufficiently developed, making it challenging for a systematic study of the drying of
porous media in wide governing parameter ranges. As the first step towards this problem,
we simplify the system to be of two components (Shokri, Lehmann & Or 2009), one
a volatile component (water and its vapour) and the other a NCG (dry air). We further
consider the isothermal evaporation in porous media, where the evaporation is induced
by a vapour concentration gradient from the unsaturated gas mixture to the liquid–gas
interface. Recently, we have proposed to model such evaporation phenomena based on the
two-component two-phase pseudopotential LBM (Shan & Chen 1993, 1994). However, a
detailed model analysis is still missing and the preliminary simulations are limited to a
small dry air concentration (�15 %) and narrow contact angle range (20◦ � θ � 60◦) (Fei
et al. 2022b). In this work, we particularly aim to describe the model in detail regarding
the diffusion mechanism, the achievement of large dry air concentration in the gas phase
and the implementation of a wider contact angle range in the two-component system. In
addition, applications of the model to convective evaporation of a dual-porosity medium
are presented, and parametric studies are carried out. We aim to demonstrate that the
proposed numerical model can be used to simulate the pore-scale interface dynamics of
two-component evaporation in heterogeneous porous media at moderate Reynolds number
with wide ranges of contact angle and water vapour concentration.
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The remainder of the paper is organized as follows. In § 2, we give the details of model
development and theoretical analysis. The achievement of a large dry air mass fraction, the
implementation of wettability on the curved boundary in the two-component two-phase
system and the validation of the model with microfluidic experiments are given in § 3. The
application of the model to convective evaporation in a specifically designed dual-porosity
medium is presented and a systematic study is carried out in § 4. Finally, in § 5, we evaluate
the proposed model and conclude the paper.

2. Model development

In this section, a two-component LBM is constructed to simulate isothermal
two-component flows. In the lattice Boltzmann community, various collision schemes,
such as those of single relaxation time (Qian et al. 1992), multiple relaxation time
(Lallemand & Luo 2000), cascaded or central moment (Geier, Greiner & Korvink 2006)
and entropic multiple relaxation time (Karlin, Bösch & Chikatamarla 2014), can be
employed to suit the problems under investigation. These schemes have been discussed
in detail and integrated into a unified framework (Luo, Fei & Wang 2021). In this work,
the cascaded scheme is used as it possesses excellent numerical stability (Geier et al.
2006; Fei et al. 2020), while it allows achieving non-slip boundary condition (Fei & Luo
2017; Fei, Luo & Li 2018a) and tuning the Schmidt number (as shown below). To mimic
the isothermal liquid–vapour phase change, we propose to appropriately incorporate
two-component two-phase pseudopotential interactions (Shan & Chen 1993, 1994) into
the present model. Finally, to deal with different wettability, the geometry-function-based
contact angle scheme, originally developed for single-component systems (Ding & Spelt
2007; Li, Yu & Luo 2019), is extended to two-component systems. The present work is
limited to two dimensions.

2.1. Two-component cascaded LBM
Following the standard LBM algorithm, the cascaded LBM (CLBM) first executes
the collision in the central moment space, then the post-collision distributions are
reconstructed from their central moments and finally the streaming step is carried out in
discrete velocity space. Here, a raw moment is the moment representation of the density
distribution functions (DDFs) based on the discrete velocity set, and a central moment
corresponds to a raw moment displaced by the macroscopic fluid velocity, as defined in the
following (equation (2.5a,b)). The above-mentioned steps can be integrated into a uniform
framework (Fei & Luo 2017; Fei et al. 2018a; Luo et al. 2021), written as the following
two-component cascaded lattice Boltzmann equation:

f k
i (x + ei�t, t +�t) = f k

i (x, t)− (M−1N−1SNM)
(

f k
i − f k,eq

i

)∣∣∣
(x,t)

+ �t
2

[
Rk

i

∣∣
(x,t) + Rk

i

∣∣
(x+ei�t,t+�t)

]
, (2.1)

where f k
i (x, t) is the DDF of component k (= A,B) at the space–time position (x, t),

moving along the ith lattice direction by discrete velocities ei. The left-hand side of (2.1)
represents molecular free streaming, while the right-hand side stands for time relaxation
towards the local equilibrium state due to molecular collisions and Rk

i (x, t) are the forcing
terms in discrete velocity space. To eliminate the implicitness, (2.1) can be rewritten by
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introducing f̄ k
i = f k

i − 0.5�tRk
i :

f̄ k
i (x + ei�t, t +�t)− f̄ k

i (x, t) = (M−1N−1SNM)
(

f̄ k
i − f k,eq

i

)∣∣∣
(x,t)

+�tM−1N−1(I − S/2)NMRk
i (x, t), (2.2)

where I is the unit matrix and S is the relaxation matrix, whose elements are the relaxation
rates for each central moment. The transformation matrix M is used to transfer f̄ k

i to their
raw moments Tk

i , as does the shift matrix N for the shift between Tk
i and the central

moments T̃k
i , namely

∣∣∣T̃k
i

〉
= N

∣∣∣Tk
i

〉
= NM

∣∣∣f̄ k
i

〉
. (2.3)

In this work, the two-dimensional nine-velocity lattice (D2Q9) (Qian et al. 1992) is used.
The lattice speed c = �x/�t = 1 and the lattice sound speed cs = c/

√
3 are adopted,

with lattice spacing�x = 1 and time step�t = 1. The discrete velocities ei = [|eix〉, |eiy〉]
(i = 0, 1, . . . , 8) are defined as

|eix〉 = [0, 1,−1, 0, 0, 1,−1, 1,−1]�,

|eiy〉 = [0, 0, 0, 1,−1, 1,−1,−1, 1]�.

}
(2.4)

Let us use the symbols |·〉 and � to denote a nine-column vector and the transpose operator,
respectively. To construct the CLBM, the raw and central moments of f̄ k

i are introduced:

kk
mn =

〈
f̄ k
i |em

ixen
iy

〉
, k̃k

mn =
〈
f̄ k
i |(eix − ux)

m(eiy − uy
)n
〉
, (2.5a,b)

where u = [ux, uy] is the macroscopic velocity of the two-component mixture and m and n
are positive integers. The equilibrium raw and central moments, kk,eq

mn and k̃k,eq
mn , are defined

consistently by replacing f̄ k
i with their equilibrium counterparts f k,eq

i . Then, one needs to
choose an appropriate moment set. As suggested in Geier et al. (2006), Fei & Luo (2017),
Premnath & Banerjee (2009), Fei et al. (2018b) and De Rosis (2017), the following raw
moment set is used in the present work:

∣∣∣Tk
i

〉
=
[
kk

00, kk
10, kk

01, kk
20 + kk

02, kk
20 − kk

02, kk
11, kk

21, kk
12, kk

22

]�
, (2.6)

and accordingly the central moment set T̃k
i is determined. In (2.6), the first three moments

represent the component density and momentum, and the middle and last three stand for
the viscous stress and high-order non-hydrodynamic moments, respectively. For such a
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choice, one can write M and N explicitly according to the relation in (2.3):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 1 1 1 2 2 2 2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.7)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0

u2
x + u2

y −2ux −2uy 1 0 0 0 0 0
u2

x − u2
y −2ux 2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0
−u2

xuy 2uxuy u2
x −uy/2 −uy/2 −2ux 1 0 0

−u2
yux uy

2 2uxuy −ux/2 ux/2 −2uy 0 1 0
u2

xu2
y −2uxu2

y −2uyu2
x u2

x/2 + u2
y/2 u2

y/2 − u2
x/2 4uxuy −2uy −2ux 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.8)

Due to the physical definitions of M and N , both of them are invertible. Moreover, N−1 has
a quite similar formulation to N , and can be obtained by reversing all the odd-order velocity
terms in (2.8). For more details, the interested reader is directed to Fei & Luo (2017). In
addition, the relaxation matrix is diagonal, S = diag(s0, s1, s1, sb, sv, sv, s3, s3, s4), where
we consider the relaxation rates identical for each component.

In the numerical implementation, the matrix calculations for f k,eq
i and Rk

i are not needed
because their central moments are defined by matching the continuous integration of the
Maxwellian distribution (Fei & Luo 2017; Fei et al. 2018b):〈

f k,eq
i |(eix − ux)

m(eiy − uy
)n
〉
=
∫ +∞

−∞

∫ +∞

−∞
f k
M(ξx − ux)

m(ξy − uy)
n dξx dξy,

〈
Rk

i |(eix − ux)
m(eiy − uy

)n
〉
=
∫ +∞

−∞

∫ +∞

−∞
Rk

M(ξx − ux)
m(ξy − uy)

n dξx dξy,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

where f k
M is the Maxwellian equilibrium distribution in continuous velocity space ξ =

[ξx, ξy] for molecules of component k and Rk
M is the forcing effect approximation in the

Boltzmann equation of He, Chen & Doolen (1998). As a result, the equilibrium central
moments and the forcing terms in the central moment space (|Ck

i 〉 = NM|Rk
i 〉) can be

obtained (Fei & Luo 2017):∣∣∣T̃k,eq
i

〉
=
[
ρk, 0, 0, 2ρkc2

s , 0, 0, 0, 0, ρkc4
s

]�
,∣∣∣Ck

i

〉
=
[
0,Fk

x,Fk
y, 0, 0, 0,Fk

yc2
s ,Fk

xc2
s , 0

]�
,

⎫⎪⎬
⎪⎭ (2.10)

where ρk and F k = [Fk
x,Fk

y] are the component density and forcing field, respectively.
Based on the above definitions, one can solve f̄ k

i by iterating (2.1). After each iteration
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step, the macroscopic variables are updated by (Shan & Chen 1993; Chai & Zhao 2012)

ρ =
∑

k

ρk =
∑

k

∑
i

f̄ k
i , ρu =

∑
k

ρkuk =
∑

k

(∑
i

f̄ k
i ei + 0.5�tF k

)
. (2.11a,b)

Using the Chapman–Enskog analysis (see Appendix A), the above two-component
CLBM reproduces the following macroscopic Navier–Stokes equations and the
convective–diffusion equation for the mixture fluid in the low-Mach limit:

∂tρ + ∇ · (ρu) = 0,

∂t(ρu)+ ∇ · (ρuu) = −∇(ρc2
s )+ F + ∇ ·

[
ρν

(
∇u + ∇u�

)
+ ρ(νb − ν)(∇ · u)I

]
,

∂tYk + u · ∇Yk = α0∇2Yk,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

where F = ∑
k F k is the force field imposed on the system, Yk = ρk/ρ is the component

mass fraction and ν = c2
s�t(1/sv − 1/2), νb = c2

s�t(1/sb − 1/2) and α0 = (1/sk
1 −

1/2)c2
s�t are the mixture kinetic viscosity, bulk viscosity and binary diffusivity,

respectively. Here, it may be noted that the kinetic viscosity and binary diffusivity
can be tuned independently due to the use of the cascaded collision scheme,
relaxing the limitation of the unity Schmidt number (Sc = ν/α0 = 1.0) in the classical
single-relaxation-time scheme. Due to mass conservation, the first relaxation rate can be
chosen arbitrarily and is fixed as s0 = 1.0 in the following. Unless otherwise specified,
the other relaxation rates are set as s3 = (16 − 8s2)/(8 − s2) and s4 = 1.0 to achieve the
non-slip boundary condition (Pan, Luo & Miller 2006; Guo & Zheng 2008; Fei & Luo
2017) while maintaining numerical stability.

2.2. Two-component two-phase pseudopotential interactions
In our case, the water component (k = A) is the phase-change component, which
means the intra-component interaction between liquid water and its vapour must be
taken into account. The non-condensible dry air component (k = B) is miscible with
water vapour but almost insoluble in liquid water. To mimic such behaviours, an
appropriate inter-component interaction is needed. To this aim, we use the pseudopotential
interaction model originally proposed by Shan & Chen (1993, 1994), due to its simplicity
in implementation and in handling different types of isothermal or non-isothermal
multiphase systems (Li et al. 2015; Fei et al. 2019; Qin et al. 2019; Fei et al. 2020;
Wang et al. 2022). The following intra- and inter-component interaction forces are used:

F AA = −GAAψ(x)
∑
i /=0

w
(
|ei|2

)
ψ(x + ei�t)ei,

F AB = −GABρA(x)
∑
i /=0

w
(
|ei|2

)
ρB(x + ei�t)ei,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.13)

where ψ(x) is the pseudopotential function and w is the interaction weight with w(1) =
1/3 and w(2) = 1/12. Parameters GAA and GBB are interaction strengths. Due to the
symmetry, we have F AB = F BA.

To incorporate the non-ideal gas equation of state (EOS) for the description of the
water-to-vapour phase transition, the following pseudopotential function is employed
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(Yuan & Schaefer 2006):

ψ =
√

2(pEOS − ρAc2
s )

GAAc2 , (2.14)

where GAA = −1 and pEOS is the pressure calculated by the EOS. Here, the
Peng–Robinson non-ideal gas EOS is applied (Peng & Robinson 1976):

pEOS = ρART
1 − bρA

− aϕ(T)ρ2
A

1 + 2bρA − b2ρ2
A
, (2.15)

where ϕ(T) = [1 + (0.37464 + 1.54226� − 0.26992� 2)(1 − √
T/Tcr)]2, with the

acentric factor � = 0.344, and R = 1 is the gas constant. The critical pressure pcr
and temperature Tcr are determined by a = 0.4572R2T2

cr/pcr and b = 0.0778RTcr/pcr
(Peng & Robinson 1976). When such a square-root-form pseudopotential in (2.14)
is used, the system suffers from the so-called thermodynamic inconsistency that the
liquid–vapour coexistence densities by the mechanical stability solution deviate from
those of the Maxwell construction. To solve the problem, Li, Luo & Li (2012, 2013)
proposed adjusting the mechanical stability condition to be consistent with the Maxwell
construction. Recently, such an adjustment method has been extended to the CLBM for
single-component non-isothermal multiphase systems, such as 2-D convective boiling
(Saito et al. 2021) and three-dimensional (3-D) pool boiling (Fei et al. 2020). For the
present two-component multiphase system, the central-moment forcing terms for the water
component in (2.10) are slightly modified:∣∣∣CA

i

〉
=
[
0,FA

x ,FA
y , η, 0, 0,FA

y c2
s ,FA

x c2
s , ηc2

s

]T
, (2.16)

where η = 4σ |F AA|2/[ψ2�t(1/sb − 0.5)] with an adjustment factor σ , whereas no
adjustment is needed for the dry air component. Based on the interaction forces in (2.13),
the total pressure of the system is given by

p = pEOS + ρBc2
s + GABρAρB, (2.17)

where the first and second terms are the component partial pressure according to the EOSs
and the third term is the pressure contribution due to the inter-component interaction.

We stress that in (2.12) the binary diffusivity is derived based on the ideal gas EOS
for each component, i.e. pk = ρkc2

s . However, in this subsection, to describe the phase
transition in the water component, its EOS has been updated as the non-ideal gas EOS
in (2.15). Thermodynamically, water vapour can be assumed to be an ideal gas, but its
equivalent sound speed in the vapour region of the Peng–Robinson EOS is different
from cs, leading to a deviation of the effective binary diffusivity α from the theoretical
diffusivity α0 in (2.12). In the following, the effective binary diffusivity α is obtained
based on canonical tests.

2.3. Geometric-function-based two-component contact angle scheme
To simulate evaporation in porous media, a numerical scheme is required to implement the
contact angle at curved solid boundaries. In the pseudopotential LBM, the contact angle is
often realized by employing another solid–fluid interaction at the boundary nodes (Martys
& Chen 1996; Li et al. 2014) or specifying a constant virtual wall density/pseudopotential
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(Benzi et al. 2006) when calculating the pseudopotential interactions in (2.13). They
are often denoted as the solid–fluid interaction scheme and the virtual-density scheme,
respectively. As discussed by Li et al. (2019), the solid–fluid interaction scheme leads
to large spurious currents, and the virtual-density scheme produces an artificial liquid
film near the solid boundary. For evaporation in porous media, such artificial liquid film
results in reconnection of the otherwise discontinuous liquid network, like the effect
of a corner film (Chauvet et al. 2009), leading to higher evaporation rate. Moreover,
in both the two schemes, the local geometry information (e.g. local curvature) is not
explicitly incorporated, indicating inconsistency of measured contact angles in different
pore structures, as also noted in Coelho et al. (2021).

Alternatively, one can accurately implement the contact angle in complex geometries
using a geometric function scheme originally proposed for a phase-field method (Ding
& Spelt 2007). Such a method was recently extended to the pseudopotential LBM by Li
et al. (2019) and further coupled with contact angle hysteresis by Qin et al. (2021), while
still limited to single-component multiphase systems. In this work, we extend this method
to two-component multiphase systems. The geometric formulation scheme also allocates
a solid density value to the solid point so that the required contact angle is achieved by
substituting the density into the interactions in (2.13), but the solid density is self-adaptive
at each lattice node at every time step, rather than a constant value as in the virtual density
scheme. As sketched in figure 1, the dashed curve is the physical boundary and the solid
zigzag line ∂w connects all the solid nodes neighbouring the flow field. To achieve a
prescribed contact angle θp at a solid point S ∈ ∂w, a solid density of the water component
is given by (Li et al. 2019)

ρA,S =
{

max(ρA,D1, ρA,D2), θp � π/2,
min(ρA,D1, ρA,D2), θp > π/2, (2.18)

where ρA,D1 and ρA,D2 are the densities at the two interaction points D1 and D2 along two
characteristic lines L1 and L2. If D1 and D2 are located between liquid points, as the case
in figure 1(a), ρA,D1 and ρA,D2 are calculated by linear interpolation. Otherwise, linear
extrapolation schemes are used. The two characteristic lines are in the directions of the
two unit vectors l1 and l2, defined as

l1 = [
ns,x cos(θc)− ns,y sin(θc), ns,x sin(θc)+ ns,y cos(θc)

]
,

l2 = [
ns,x cos(θc)+ ns,y sin(θc),−ns,x sin(θc)+ ns,y cos(θc)

]
,

}
(2.19)

where θc = π/2 − θp is the complementary angle and ns = [nsx, nsy] is the normal vector
of the curved surface at the local point S. Following Li et al. (2019) and Qin et al. (2021),
ns is evaluated by the eighth-order isotropic scheme based on the D2Q25 lattice
(figure 1b):

ns(x) =

a=24∑
a=1

p
(
|ea|2

)
sw(x + ea�t)ea

∣∣∣∣∣
a=24∑
a=1

p
(
|ea|2

)
sw(x + ea�t)ea

∣∣∣∣∣
, (2.20)

where the weights are p(1) = 4/63, p(2) = 4/135, p(4) = 1/180, p(5) = 2/945 and
p(8) = 1/15 120 (Sbragaglia et al. 2007). The index function sw(x + ea�t) equals 0 for
a fluid point and 1 for a solid point.
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21

Figure 1. (a) Sketch of the geometric function scheme to achieve a prescribed contact angle θp at the solid
point S on a curved surface. (b) The D2Q25 lattice is used to calculate the unit normal vector ns in (a).

In the literature, the effect of the dry air component in the implementation of contact
angle is often ignored since its mass fraction is considered to be small (Zheng et al. 2019).
However, it indeed plays a role when its mass fraction is large, as in the cases considered
in the following. To this aim, we suggest determining the solid density of the dry air
component as

ρB,S =
{

min(ρB,D1, ρB,D2), θp � π/2,
max(ρB,D1, ρB,D2), θp > π/2, (2.21)

where the intersection densities ρB,D1 and ρB,D2 are calculated using the same method
described above. Such a choice is consistent with the physics that the two components
have complementary wettabilities. We demonstrate in the following that the present
scheme can accurately implement contact angles on curved solid walls over a wide range,
independently of component mass fractions in the gas phase.

3. Model validation

In this section, we validate our proposed model in terms of three aspects: (1) ability to
simulate two-component two-phase evaporation with a large dry air mass fraction in the
gas phase; (2) flexibility to tune the contact angle independently of the mass fraction; and
(3) capacity to reproduce a microfluidic evaporation experiment. We set GAB = GBA =
0.15 to provide a suitable miscible state between water vapour and dry air (Zheng et al.
2019). Following Li et al. (2015), the saturation temperature is set as Tsat = T/Tcr =
0.86, and a = 3/49 and b = 2/21 are chosen, leading to saturated liquid water density
ρs

l ≈ 6.5 and water vapour density ρs
v ≈ 0.38. The liquid vapour saturation density ratio

and viscosity ratio are fixed at values of 17 and 1, respectively. Following LBM convention,
lattice units are used here. We recall that the unit conversion from lattice to physical units
can be conducted based on characteristic variables (Fei et al. 2022a). For convenience,
components A and B are denoted as water (vapour) and air, respectively.

3.1. Achievement of large dry air mass fraction
We first validate the ability of the model to simulate two-component two-phase
evaporation with a large dry air mass fraction in the gas phase. One may notice that in
realistic cases, wet air is a gas mixture including nitrogen, oxygen, water vapour and other
components. Here, we simplify it to be a two-component mixture (Weishaupt, Koch &
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Gas: Yvapour + Yair = 1.0

Yvapour |y = L = Yvapour,2

Yvapour |y = 0 = Yvapour,1

Liquid: Ywater + Yair = 1.0

Evaporation
L

Figure 2. Schematic representation of the Stefan problem.

Helmig 2022) composed of water vapour and pseudocomponent dry air, since dry air,
as a gas mixture, behaves similarly to its gas components taken separately and is almost
insoluble in liquid water. The mass fraction of water vapour in wet air is usually below 3 %
(Yvapour � 3 % or Yair � 97 % ) in ambient conditions, but may vary greatly depending on
environment temperature and relative humidity. In contrast, in previous lattice Boltzmann
modelling, water vapour is often the main component in the gas phase and the dry air
mass fraction is low, i.e. only Yair = 1 %–2 % for non-isothermal cases (Zheng et al. 2019)
or Yair = 10 %–15 % for isothermal cases (Fei et al. 2022b). In this subsection, we first
determine the maximum achievable dry air mass fraction Yair in our model.

The considered problem is the isothermal Stefan problem, as represented in figure 2,
where the bottom and the top parts are the liquid and gas phases, respectively. Both phases
are composed of two components: liquid water and a very small amount of dissolved air
in the liquid phase; water vapour and dry air in the gas phase. The top boundary is open to
the surrounding gas (with fixed component concentrations), and the water vapour fraction
at the phase interface (y = 0, subscript 1) is larger than its value at the boundary (y = L,
subscript 2), i.e. Yvapour,1 > Yvapour,2, driving the vapour diffusion from the interface to
the environment, with an analytical diffusion flux (Turns 1996)

flux = ρα

L
ln (1 + BY) , (3.1)

where L is the distance from the interface to the boundary and BY is the mass
transfer number defined as BY = (Yvapour,1 − Yvapour,2)/(1 − Yvapour,1). The liquid water,
therefore, evaporates to balance the mass flux due to diffusion in the gas phase, leading
to the receding of the interface (increasing L). In the simulation, we vary the vapour
fraction at the boundary Yvapour,2 by changing the boundary densities (ρvapour,2 and ρair,2)
simultaneously so that the total pressure p by (2.17) is kept constant. The computational
domain is resolved by 2�x × 500�x, with periodic boundary conditions in the horizontal
direction and the bounce-back scheme on the bottom boundary.

For the top boundary, the unknown DDFs can be approximately reconstructed based on
the non-equilibrium extrapolation (NEQ) scheme (Guo, Zheng & Shi 2002):

f̄ k
i (x0, t) ≈ f̄ k,×

i (x0, t) = f k,eq
i (ρk,2,u1)+ f k,neq

i (x1, t), i = 4, 7, 8, (3.2)
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Figure 3. Simulation results of the Stefan problem. (a) Flux curves for cases with different σ at Yair,2 = 0.24.
(b) Flux curves for cases with different Yair,2 at σ = 0.09 using NEQ scheme. (c) Flux curves for cases with
different Yair,2 at σ = 0.09 using eNEQ scheme. (d) Spatially averaged binary diffusivity α for cases in (b,c),
plus for ν = 0.05 using eNEQ scheme.

where x0 = [x, L] and x1 = [x, L − 1] are the boundary nodes and neighbouring fluid
nodes, respectively, and u1 is the mixture velocity at x1. The viscosity is first set as
ν = 0.1 and the second-order truncated equilibrium distribution function (Qian et al.
1992) is used to calculate f k,eq

i . We first test the effect of the adjustment factor σ in (2.16)
by changing σ progressively but fixing Yair,2 = 0.24. As shown in figure 3(a), for the
case σ = 0.099, the flux curve fluctuates significantly. With decreasing σ , the flux curve
gradually smooths and decreases with distance L, following the trend in (3.1). Actually,
by setting σ = 0.090, for the standard single-component planar interface problem (Shan
2008), our model reproduces thermodynamically consistent liquid–vapour coexistence
densities. Therefore, such a setting is used in the following. According to the suggestion by
Turns (1996), Yvapour,1 is defined at the location where ρvapour = ρs

v , and for the present
settings, its value is almost constant (Yvapour,1 ≈ 0.99).

According to (3.1), larger Yair,2 (corresponding to smaller Yvapour,2 and larger mass
transfer number BY ) gives larger flux, which is confirmed when Yair,2 � 0.5, as seen in
figure 3(b). On the contrary, when Yair,2 is further increased, the evaporation flux begins
to decrease. By carefully probing the results, it is found that, when Yair,2 is large, the
density gradient magnitude in each component |∂ρk/∂x| becomes too large, leading to
inaccuracy in the approximation in (3.2). More specifically, the boundary density obtained
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based on the NEQ scheme in (3.2) is

ρ×
k,2=

∑
i /= 4,7,8

f̄ k
i (x0, t)+

∑
i=4,7,8

f̄ k,×
i (x0, t), (3.3)

which deviates strongly from the value it should be, i.e. ρk,2. To eliminate the mismatch,
ρ×

k,2 /= ρk,2, inspired by the discussion for the single-component single-phase system (Ju
et al. 2021), we propose to reconstruct the unknown DDFs at the boundary via the
following exact NEQ (eNEQ) scheme:

f̄ k
i (x0, t) = f̄ k,×

i (x0, t)+ βk
i i = 4, 7, 8, (3.4)

where the correction term βk
i is explicitly expressed as

βk
i = w(i)∑

w(i)

(
ρk,2 − ρ×

k,2

)
i = 4, 7, 8. (3.5)

The flux curves using the eNEQ scheme are shown in figure 3(c), and we can see that the
diffusion flux can be increased by increasing Yair,2 up to 0.9. Afterward, the diffusion flux
slightly decreases, as seen for the case Yair,2 = 0.95. The effective binary diffusivity α
can be measured by fitting the diffusion flux curves with (3.1) and the results are plotted
in figure 3(d). It should be noted that the measurement of a binary diffusion coefficient
based on the isothermal Stefan problem has also been validated in experiments (Slattery
& Mhetar 1997). It is seen that, for the NEQ scheme, the measured α is decreasing with
Yair,2, mainly due to the above-mentioned mismatch effect. By eliminating the defect using
the eNEQ scheme, the measured α is almost independent of the boundary component
mass fraction at Yair,2 � 0.9, following the classical Fick’s law (Turns 1996). In addition,
we also test the cases with a different mixture viscosity (ν = 0.05), and the results are
identical to ν = 0.1 cases, indicating that the Schmidt number (SC = ν/α) can be tuned in
the present model. The above results confirm that our proposed model is able to simulate
two-component two-phase evaporation problems with a large dry air mass fraction, up to
90 % in the gas phase.

3.2. Mass-fraction-independent contact angles
To validate the capability and accuracy of the two-component geometric function contact
angle scheme introduced in § 2.3, we simulate a single droplet sitting on a curved surface
with different water vapour mass fractions in the gas at different prescribed contact angles.
The computational domain is a box of size 300�x × 300�x. A solid cylinder with a radius
of Rc = 60�x is located at (150, 80) and a droplet with radius R0 = 50�x is initially
placed on the cylinder with its centre at (150, 180). The periodic boundary condition
is applied in all directions, and the halfway bounce-back scheme is used to treat the
solid boundary. We consider three different gas mixtures by initializing the gas phase
with (Yvapour,i, Yair,i) = (95 %, 5 %), (50 %, 50 %) and (10 %, 90 %), respectively. The
prescribed contact angle ranges from θp = 15◦ to θp = 135◦.

The steady state for different cases is shown in figure 4, where the black solid line
indicates the location of liquid–gas interface and the contours are for the vapour mass
fraction Yvapour. Despite the different component mass fraction distributions in the gas, the
droplet profiles for different Yvapour,i cases are essentially identical, with some very small
differences at the smallest contact angle θp = 15◦. The contact angle θm measured with
ImageJ Fiji software for all the cases is plotted in figure 5(a), where we can see that the
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Figure 4. Validation of contact angle implementation scheme at different prescribed contact angles: θp = 15◦,
θp = 60◦, θp = 90◦ and θp = 135◦. Three initial water vapour mass fractions in the gas phase are considered:
(a) Yvapour,i = 0.95, (b) Yvapour,i = 0.5 and (c) Yvapour,i = 0.1.

measured θm values for different Yvapour,i cases collapse and are consistent with θp values.
The maximum errors are around +3◦ and −2◦ at the minimum and maximum prescribed
contact angles (θp = 15◦ and θp = 135◦), respectively. Figure 5(b) shows the maximum
spurious velocity magnitude for different cases. The neutral wetting cases have smaller
spurious currents compared with the hydrophilic and hydrophobic cases, and the spurious
currents slightly increase for smaller vapour mass fraction. Generally, the maximum
spurious current for all the cases considered is below 0.0066, which is comparable with
single-component cases in the literature (Li et al. 2019). The above results confirm that
our two-component contact angle implementation shows the flexibility to tune the contact
angle independently of the component mass fraction and can well control the spurious
currents.

3.3. Validation with microfluidic evaporation experiment
To further validate our model for evaporation in porous media, we compare simulation
results with microfluidic evaporation experimental results of Wu, Kharaghani & Tsotsas
(2016). The experiment is conducted in a custom-designed network which consists of
regular pores and throats. As sketched in figure 6(a), a set of 5 × 5 equal-size square
pores are connected by rectangular throats of different widths. The side length of the
pores and the distance between centres of two neighbouring pores are fixed at l = 1 mm
and a = 2 mm, respectively. The throat widths are uniformly distributed within the range
0.14 � w � 0.94 mm, with an increment of 0.02 mm. The depth perpendicular to the plane
in figure 6(a) is h = 0.1 mm. The evaporation is driven by the vapour diffusion along the
top middle pore, which is open to the environment. The contact angle of deionized water on
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Figure 6. Validation with microfluidic evaporation experiment. (a) Structure of the network taken from Wu
et al. (2016), copyright Elsevier (PDMS, polydimethylsiloxane). (b) Variation of the liquid saturation with
drying time normalized by the total drying time.

the polydimethylsiloxane network material is about 69◦. In the simulation, the network is
resolved by 684�x × 730�x lattices, leading to 11�x for the minimum throat width. Such
a resolution is recognized to be sufficiently fine for accurate lattice Boltzmann simulations
of multiphase flows in porous media (Zhao et al. 2020; Fei et al. 2022b). A concentration
boundary condition with (Yvapour,out, Yair,out) = (10 %, 90 %) is imposed at the outlet and
the halfway bounce-back scheme is applied at the solid boundary.

As shown in figure 6(b), the normalized time evolution of the liquid saturation by our
simulation coincides with the experiment results. Saturation decreases almost linearly
with time in both simulation and experiment, indicating evaporation undergoes a constant
rate period (CRP). As further illustration, the liquid distribution in the network at
different liquid saturations S is presented in figure 7, showing that the top right corner
remains filled with liquid until the end and therefore that the evaporation regime remains
in CRP. For different liquid saturation values, the liquid distributions by our simulation
are well consistent with the experiment, despite some minor differences. Some residual
liquid patches are seen in simulation, but not in experiment. At S = 0.49, the left top
corner is dried out in simulation while it is still filled with liquid in experiment. One
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Figure 7. Evolution of the liquid distribution in the network at different liquid saturations S. (a) The LBM
simulations in the present work. (b) Experimental images taken from Wu et al. (2016), copyright Elsevier.

of the reasons for the small differences is that the simulations are carried out in two
dimensions, but the experiments are conducted in three dimensions, as analysed by Liu
et al. (2021). In Appendix B, a preliminary 3-D simulation is conducted using the 3-D
multiphase CLBM (Fei et al. 2020). Compared with the current 2-D simulation, the main
liquid configuration remains the same, indicating the acceptable accuracy of the 2-D
simulation. The improvement of 3-D simulation lies in that the isolated liquid patches
almost disappear, as shown in figure 20. In addition, leaving out contact angle hysteresis
in the proposed algorithm may also result in some differences (Xu, Liu & Valocchi 2017).
Generally, the accuracy of the present simulation is within an acceptable range.

4. Numerical results and discussion

4.1. Simulation set-up
In this section, the model proposed above is applied to study convective evaporation
in a synthetic porous medium. The porous medium is designed with a dual-porosity
geometry by filling a rectangular domain (L × H = 481�x × 401�x) with larger solid
cylinders on both sides and smaller cylinders in its middle region, leading to porosities
of φ1 ≈ 0.64 and φ1 ≈ 0.82 in each region, respectively. The mean porosity is φ̄ ≈ 0.72.
Such dual-porosity configuration is retained to mimic the capillary pumping effect induced
by the heterogeneous pore structures in real porous media, an approach similarly applied in
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Figure 8. (a) Simulation set-up. A dual-porosity medium filled with liquid water is installed in the middle
bottom. A mixture gas (dry air + water vapour) is convectively blown in the top channel, with a Poiseuille
inflow velocity profile. (b) Development of vapour boundary layer thickness for a typical case. The solid line is
the Blasius solution.

the literature (Qin et al. 2019, 2021; Gu, Liu & Wu 2021). To ensure numerical accuracy,
the smallest cylinder diameter is set as Dm = 15�x, which is three times the interface
thickness showing the resolution needed for pore-scale simulations (Zhao et al. 2020; Fei
et al. 2022b). The porous medium is installed in the middle bottom of the computational
domain and initially filled with liquid water, as sketched in figure 8(a). Its top surface is
exposed to a gas mixture that is blowing over it with a Poiseuille inflow (with peak velocity
Um = 0.08), purging the vapour by convection and diffusion. The channel height H1 is
chosen to be large enough to resolve the fully developed vapour boundary layer thickness.
For a free-stream flow over an impermeable flat plate, the vapour boundary layer thickness
can be approximated by the following expression (Leal 1992):

δm = δSc−1/3 ≈ 4.64XRe−1/2
x (ν/α)−1/3. (4.1)

Here δ is the momentum boundary layer thickness and Rex = U∞X/ν is the local Reynolds
number defined based on the downstream location X and the free-stream gas velocity.
For our cases, the boundary layer is affected by two other factors: the top surface of the
porous medium (y = H) is permeable and its vapour concentration is non-uniform and
variable. For a typical case, the vapour boundary layer thickness profile follows (4.1) in
the beginning at the upstream, and gradually decreases with time, as shown in figure 8(b).
To resolve the boundary layer, the channel height is chosen as H1 = 100�x, leading to
an inflow Reynolds number Re = UmH1/2ν = 100 with ν = 0.04. Based on preliminary
tests, we set the inlet section length L1 = H1 and the outlet section length L2 = 2H1 to
eliminate inlet/outlet effects.

In the simulations, the convective boundary condition (Lou, Guo & Shi 2013) is imposed
at the outlet and the halfway bounce-back scheme is applied to deal with the non-slip
boundary conditions at the channel walls and the porous medium solid matrix. The
flexibility of the present model makes it possible to conduct a systematic parametric study
of evaporation in porous media at the pore scale. To highlight this, we probe the effects
of two key parameters, inflow vapour concentration Yvapour,in and contact angle θ , on the
evaporation dynamics. To study the effect of inflow vapour concentration, we first fix the
contact angle and vary Yvapour,in from 0.95 to 0.1 (marked as Group 1 in table 1). Similarly,
we then consider the effect of contact angle by fixing the inflow vapour concentration
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Group Contact angle (θ ) Inflow vapour concentration (Yvapour,in)

Group 1 15◦ 0.95, 0.9, 0.8, 0.7, 0.5, 0.3, 0.1
45◦ 0.95, 0.9, 0.8, 0.7, 0.5, 0.3, 0.1
60◦ 0.95, 0.9, 0.8, 0.7, 0.5, 0.3, 0.1

Group 2 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦ 0.1
15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦ 0.5
15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦ 0.85

Group 3 60◦ 0.96,0.97,0.98
75◦ 0.96,0.97,0.98

Table 1. Cases considered for the effect of contact angle (θ ) and inflow vapour concentration (Yvapour,in).

while changing θ from 15◦ to 105◦ (marked as Group 2). It may be noted that the capillary
pumping effect plays a role for hydrophilic conditions, and therefore we mainly consider
cases with θ � 90◦. An additional contact angle θ = 105◦ is also included to show the
evaporation patterns for slightly hydrophobic conditions. In addition, we consider another
six cases (marked as Group 3) for completeness of our considered parametric space. The
considered cases spread within a wide range of the parameters, i.e. 0.1 � Yvapour,in � 0.98
and 15◦ � θ � 105◦, as summarized in table 1.

4.2. Effect of inflow vapour concentration Yvapour,in

The snapshots of the convective evaporation with θ = 15◦ and three typical inflow vapour
concentration cases, Yvapour,in = 0.9, 0.5 and 0.1, are presented in figure 9 (see also
supplementary movies 1, 2 and 3 available at https://doi.org/10.1017/jfm.2022.1048). For
each case, it is clearly shown that the liquid–gas interface (indicated by the solid black
line) recedes first from the middle region. When the middle region is almost completely
dried, the evaporation front starts to recede in the side regions. Such behaviour is directly
attributed to the capillary pumping effect. The capillary pressure pc, defined based on the
surface tension γ and the radius of curvature in the local pores r by pc = γ cos(θ)/r, is
larger in the smaller pores on both side regions than that in the middle larger pores. Since
in our case the mixture gas in the channel is open to the environment and kept at constant
gas pressure pg, the liquid pressure (pl = pg − pc) is higher in the middle region than that
in side regions. Such a liquid pressure difference keeps pumping the liquid from the larger
pores to the smaller pores, leading to the evaporation front receding in the middle but
remaining pinned at the channel level in the side regions. As the middle region dries, the
evaporation front gradually penetrates deeper and finally percolates through the porous
medium, e.g. t = 1.0 × 106 in figure 9(a), then the capillary pumping effect is weakened
and can no longer supply sufficient liquid to the smaller pores. Afterward, the evaporation
begins to recede in the side parts, showing a decrease in the global evaporation rate.
By decreasing the inflow vapour concentration from Yvapour,in = 0.9 to Yvapour,in = 0.5,
the evaporation rate is significantly increased up to t = 1.0 × 106, as evidenced by the
difference in the penetration depths and dried out structures. The global drying curves
for different cases are discussed later in figure 11. It is as expected because the main
evaporation driving force, i.e. vapour concentration gradient from the channel to the
liquid–vapour interface, is larger in figure 9(b) than in figure 9(a). By further decreasing
Yvapour,in to 0.1, the evaporation rate can be further increased but not so remarkably, as
seen in figure 9(c).
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Figure 9. Time evolution of liquid distribution in the porous medium for cases with θ = 15◦. The arrows show
the velocity field, the solid black lines indicate the liquid–gas interface locations and the contours present the
vapour mass fraction: (a) Yvapour,in = 0.9 (supplementary movie 1), (b) Yvapour,in = 0.5 (supplementary movie
2) and (c) Yvapour,in = 0.1 (supplementary movie 3).

Benefiting from the present pore-scale model, we can quantify the local degrees of
evaporation by explicitly obtaining the pore-scale information from our simulation results.
We first consider the vertical profiles of saturation, Sy, defined as the ratio of pore cells
occupied by liquid phase to the total pore cells at a certain height y. The time evolution
of the saturation profiles for the case with θ = 15◦ and Yvapour,in = 0.9 is plotted in
figure 10(a). At the very beginning (t = 1.0 × 104), the porous medium is almost fully
filled, showing a step change from Sy = 1.0 to 0 close to y = H. With ongoing time,
the profiles are gradually smoothed out by widening the unsaturated zone (0 < Sy < 1.0)
and thinning the fully filled zone (Sy = 1.0). At t = 1.0 × 106, the fully filled zone
disappears as the evaporation front in the middle region has reached the bottom, seen also
in figure 9(a). The vertical saturation profiles then decrease entirely, but very slowly due to
the decreased evaporation rate mentioned above. For the cases with different Yvapour,in, the
time evolution of Sy profiles has the same trend, as seen, for example, in figure 10(b) for
Yvapour,in = 0.1. Compared with figure 10(a), the major difference is that the fully filled
zone disappears earlier at t = 5.0 × 105 due to its larger evaporation rate. Figures 10(c)
and 10(d) show the local evaporation rates at the top surface of the porous medium,
corresponding to figures 10(a) and 10(b), respectively. Initially, the evaporation is strongest
at the leftmost throat, where the inflowing gas mixture is at the lowest vapour concentration
Yvapour, and continues to decrease along the downstream direction as the gas mixture
gets more and more saturated with water vapour. The evaporation rate at the left throats
decreases dramatically from t = 1.0 × 106 to t = 2.0 × 106 in figure 10(c) (similarly, from
t = 7.5 × 105 to t = 1.0 × 106 in figure 10d), since the capillary pumping effect is no
longer at play and the evaporation front begins to recede in the side regions. However,
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Figure 10. Pore-scale evaporation behaviours. Saturation profiles over height (Sy) for cases with (a)
Yvapour,in = 0.9 and (b) Yvapour,in = 0.1. Pore-local evaporation rates at the top surface of the porous medium
(y = H) for (c) Yvapour,in = 0.9 and (d) Yvapour,in = 0.1.

the evaporation rate at the rightmost throat remains almost unchanged, mainly because
the convective flow enters the porous medium, flows parallel to the surface, continues to
accumulate vapour and exits again at the rightmost throat. As a result, we can see a clear
pattern transition, from left–high–right–low to left–low–right–high, in both figures 10(c)
and 10(d), which is consistent with the convective evaporation dynamics in a homogeneous
porous medium reported by Weishaupt & Helmig (2021).

To probe the global evaporation dynamics, the time evolution of the residual liquid mass
for the cases with θ = 15◦ is shown in figure 11(a). It can be seen that, with the decrease of
Yvapour,in, the residual liquid mass drops faster, because a larger concentration difference
leads to a larger evaporation rate. For each case, the slope of the curve is steeper in the early
stage but flattens in later stages. The completion of the evaporation takes a very long time,
so our simulations are stopped when the global saturation S < 0.1 for all cases (except for
the slowest case Yvapour,in = 0.95). For a better understanding of the cause of the change
in these curve slopes, we plot the data as drying curves, i.e. evaporation rate versus mean
liquid saturation, in figure 11(b). For classical drying curves of porous media, three main
periods have been widely identified (Chauvet et al. 2009). In the first period, referred to as
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Figure 11. Global evaporation behaviours. (a) Time evolution of the residual liquid mass for cases with θ =
15◦. Evaporation curves (evaporation rate versus mean liquid saturation) for cases with θ = (b) 15◦, (c) 45◦
and (d) 60◦.

the CRP, the evaporation rate is essentially constant. The last period is the receding front
period (RFP), characterized by a significant evaporation front receding into the porous
medium, whereas the transition period, the falling rate period (FRP), is an intermediate
crossover period characterized by a fast drop in the evaporation rate. Figure 11(b) shows
that our present model well captures the three typical evaporation periods. We emphasize
that the evaporation rate in the CRP is not actually constant (Coussot 2000) and a slightly
decreasing trend similar to our cases is often seen (Chauvet et al. 2009). It is non-trivial to
define strict boundaries between the three periods. For our cases, the CRP is sustained by
continuously supplying liquid water to the smaller pores via capillary pumping. Since the
pore volume of the middle pores makes up approximately half of the total pore volume,
we define the CRP as the evaporation period at S > 0.5. The FRP is defined between
S = 0.5 and S = 0.25 as the evaporation rate is significantly decreased within this range.
For other cases in Group 1, i.e. Yvapour,in = [0.95, 0.9, 0.8, 0.7, 0.5, 0.3, 0.1] at θ = 45◦
and θ = 60◦, the evaporation curves are similar and we can also observe the three main
periods, as shown in figures 11(c) and 11(d). It is also seen that, with increasing contact
angle, the transition from CRP to RFP is smoothed out because the capillary pumping
effect is gradually weakened.
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Figure 12. (a) Dependence of the average evaporation rate in CRP (ERCRP) on inflow
vapour concentration (Yvapour,in). (b) Dependence of ERCRP on the mass transfer number
BY = (Yvapour,1 − Yvapour,in)/(1 − Yvapour,1). The plot is on a semi-log scale.

From figure 11(b–d), we can see that the evaporation rate increases with decreasing
Yvapour,in, i.e. increasing inflow dry air mass fraction Yair,in, thus approaching common
conditions. To quantify this dependence, we plot the average evaporation rate in the CRP
(ERCRP) versus Yvapour,in at different contact angles in figure 12(a). We observe that, at a
given Yvapour,in, ERCRP is larger for the smaller-contact-angle case due to its significantly
stronger capillary pumping effect. Moreover, at each contact angle, ERCRP increases
nonlinearly with decreasing Yvapour,in. To interpret the underlying mechanism, we refer
again to the Stefan evaporation model introduced in § 3.1. As shown in (3.1), for the pure
diffusion evaporation, the evaporation rate is proportional to ln(1 + BY) rather than to the
vapour concentration difference. In our present cases, the mass transfer number BY can
straightforwardly be defined based on the vapour concentration at the liquid–gas interface
(Yvapour,1) and the inlet (Yvapour,in) by BY = (Yvapour,1 − Yvapour,in)/(1 − Yvapour,1). The
dependence of ERCRP on (1 + BY) is plotted on a semi-log scale in figure 12(b). The linear
fitting for all three contact angle configurations confirms the log-law scaling dependence:

ERCRP ∝ ln(BY + 1). (4.2)

Further, with ongoing evaporation, the liquid saturation decreases to be small enough
and the system goes into the RFP. In this period, the evaporation rate does not increase
significantly with decreasing Yvapour,in, as seen in figure 11(b–d). Actually, when the
liquid saturation is small enough (S = 0.2), the evaporation front has receded deeply into
the porous medium. At such a stage, the vapour concentration profile inside the porous
medium changes slightly, although the inflow vapour concentration varies largely, as seen
in figure 13(a). It is found that the log-law scaling in (4.1) still works for the average
evaporation rate in RFP (ERRFP) but with a smaller prefactor than in CRP, as shown in
figure 13(b). Contrary to ERCRP, ERRFP is larger for the larger-contact-angle case. These
different effects of contact angle on CRP and RFP are analysed in the next subsection.

4.3. Effect of contact angle θ
To study the effect of contact angle on the evaporation dynamics, we vary the contact angle
θ at a fixed inflow vapour concentration. The time evolution of the liquid distribution in the
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Figure 13. (a) Comparison of the vapour concentration profiles for different cases with θ = 15◦ at S = 0.2.
(b) Dependence of the average evaporation rate in RFP (ERRFP) on the mass transfer number BY for different
contact angles. The plot is on a semi-log scale.

porous medium for different contact angles θ = 30◦, θ = 60◦ and θ = 105◦ is shown in
figures 14(a)–14(c), respectively (see also supplementary movies 4, 5 and 6). For all cases,
we see that the evaporation front recedes first in the middle and then in the side regions,
similar to figure 9. As we have discussed, for the hydrophilic cases, the capillary pumping
effect leads to such an evaporation pattern. For a larger contact angle, the capillary
pumping is less significant. As a result, the case with θ = 60◦ evaporates slower than
the θ = 30◦ case, as evidenced at t = 1.0 × 106 that the evaporation front has penetrated
through the middle large pores for θ = 30◦ in figure 14(a) but not yet for θ = 60◦
in figure 14(b). For the weak hydrophobic case θ = 105◦, the capillary pressure pc =
γ cos(θ)/r is negative. Therefore, the liquid pressure in the smaller pores is larger than
that in the larger pores, leading to weak pumping flow from the side parts to the middle
part, explaining why the evaporation front recedes from the beginning (t = 1.0 × 105) over
the total surface. For the larger pores, although liquid is partially supplied from smaller
pores, the evaporation front still recedes faster because they show wider vapour diffusion
pathways (larger vapour permeability). Nevertheless, the competing effects of the above
two phenomena result in a more compact evaporation pattern, and therefore it takes much
longer for the evaporation front to completely penetrate through the middle part, as seen
in figure 14(c). In addition, at a smaller contact angle, the liquid–vapour interface is more
curved together with more isolated liquid islands, and its length is longer (as also seen in
the supplementary movies), which helps to increase evaporation since the evaporation rate
is generally proportional to the area of the liquid–vapour interface (Qin et al. 2019).

In terms of the global evaporation behaviour, the time evolution of the residual liquid
mass for the cases with Yvapour,in = 0.1 and different θ is shown in figure 15(a). The
liquid mass decreases faster for smaller θ , mainly due to its more significant capillary
pumping effect. For all cases (except for θ = 105◦), we can see a clear phase transition,
from a fast evaporation stage in the beginning to a slow evaporation stage in the end,
experiencing different evaporation periods. The corresponding evaporation curve is shown
in figure 15(b). It is clearly shown that for most of the cases, the evaporation goes through
a CRP at large saturation levels, followed by a fast FRP and finally enters into the RFP. At
smaller contact angles (θ � 45◦), the CRP is well sustained by the sufficient liquid supply
pumped from the larger pores, as evidenced by the plateaus in figure 15(b–d). When θ
increases, the pumping effect weakens not providing sufficient liquid supply leading to a
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(a)

(b)
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Figure 14. Time evolution of the liquid distribution in the porous medium for cases with Yvapour,in = 0.1. The
arrows show the velocity field, the solid black lines indicate the liquid–gas interface locations and the contours
are for the vapour mass fraction distributions. Contact angle (a) θ = 30◦ (supplementary movie 4), (b) θ = 60◦
(supplementary movie 5) and (c) θ = 105◦ (supplementary movie 6).

slightly decreasing evaporation rate in drying curves at S � 0.5. For the weak hydrophobic
case (θ = 105◦), the evaporation rate keeps decreasing, and thus a CRP cannot be
identified. To be consistent throughout the paper, the region S � 0.5 is identified as CRP
although the transition point from CRP to FRP occurs at a higher degree of saturation for
the higher contact angles. Such results are consistent with figure 14(c) showing that the
evaporation front keeps receding in both large and small pores, never being pinned at the
surface throughout the entire evaporation process. Similar to figure 15(b), the evaporation
curves for cases of intermediate and large inflow vapour concentration (Yvapour,in = 0.5
and 0.85) experience the three typical evaporation periods, as seen in figures 15(c) and
15(d).

To study the quantitative effect of the contact angle on the evaporation rate, we plot the
average evaporation rate in CRP (ERCRP) versus θ for all the Group 2 cases in table 1 in
figure 16(a). Generally, ERCRP decreases with θ and at given θ a larger ERCRP is seen at
smaller Yvapour,in. In our cases, CRP occurs due to the significant capillary pumping flow
from larger to smaller pores (or the opposite in the slightly hydrophobic case). Therefore,
one may expect that ERCRP depends on cos(θ). As shown in figure 16(b), very good linear
relations are found between ERCRP and cos(θ),

ERCRP ∝ cos(θ), (4.3)

which confirms that the capillary pumping effect is dominant in the CRP for the present
considered cases.

In contrast, it is interesting to see from figure 15(b–d) that in the RFP, the larger contact
angle leads to a higher evaporation rate, especially for large Yvapour,in in figure 15(d), as
also seen in the results of figure 13(b). Such an opposite dependence of evaporation rate in
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Figure 15. Global evaporation behaviour. (a) Time evolution of the residual liquid mass for cases with
Yvapour,in = 0.1 and different contact angles θ . Evaporation curves for cases with Yvapour,in = (b) 0.1, (c) 0.5
and (d) 0.85.
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Figure 16. (a) Dependence of average evaporation rate in CRP (ERCRP) on contact angle (θ ). (b) Dependence
of ERCRP on cos(θ).
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Figure 17. Normalized vapour pressure distribution with Yvapour,in = 0.5 at S = 0.2 for different contact
angles: (a) θ = 15◦, (b) θ = 60◦ and (c) θ = 105◦.

the RFP on the contact angle is related to the Kelvin effect. The Kelvin effect refers to the
change in vapour pressure above a curved interface by the following expression (Maalal,
Prat & Lasseux 2021):

Pr = pv
ps

= exp
[
− Mv

2RT
2γ cos(θ)
ρlr

]
, (4.4)

where Pr is the normalized vapour pressure (or relative humidity) and Mv is the vapour
molecular weight. Figure 17 shows the normalized vapour pressure distributions for three
different contact angle cases at a liquid saturation S = 0.2. The larger the contact angle, the
larger the vapour pressure near the liquid–gas interface, which is qualitatively consistent
with (4.4). Thus, the vapour concentration inside the porous medium is higher at a larger
contact angle, as shown in figure 18(a). Since the inlet vapour concentration in the channel
is fixed by Yvapour,in, the larger concentration gradient for the larger-contact-angle case
leads to a higher evaporation rate. If such an effect is dominant, one could expect the
logarithm of ERRFP to decrease linearly with cos(θ). As seen in figure 18(b), generally,
the linear relation ln(ERRFP) ∝ − cos(θ) works well, although some deviations can be
observed. Actually, the concentration difference due to the Kelvin effect is not large,
reaching only several per cent at most. If the vapour concentration in the channel is
large, such a concentration difference inside the porous medium will have a marked effect
and therefore the trend for Yvapour,in = 0.85 follows better the linearly decreasing scaling.
One may also notice that, for θ = 105◦, the evaporation front seen in figure 14(c) is very
compact, leading to a longer diffusion length from the liquid–gas interface to the channel
than other cases, which counters the advantage procured by the Kelvin effect and may
explain the local decrease of ERRFP for the Yvapour,in = 0.1 curve at θ = 105◦.

4.4. Universal scaling relation in CRP
Up to now, we have discussed that the evaporation rate in the CRP increases on decreasing
the inflow vapour concentration Yvapour,in and the contact angle θ distinctly. Two scaling
relations for the two parameters have been found, i.e. (4.2) and (4.3), respectively. In
addition, we have also shown that the inflow Reynolds number (Re) affects the evaporation
rate in the CRP by the following scaling (Fei et al. 2022b):

ERCRP ∝ ln (1 + Re) . (4.5)
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Figure 18. (a) Comparison of the vapour concentration profiles for different cases with Yvapour,in = 0.5 at
S = 0.2. (b) Average evaporation rate in RFP (ERRFP) versus cos(θ).

For practical drying applications, it is a common aim to prolong the CRP for as long as
possible and increase the evaporation rate in the CRP as high as possible. Therefore, it is
important to study a more general scenario: what will happen if Yvapour,in, θ and Re are
changed simultaneously? To this aim, we revisit the found scaling relations. It is noted that
evaporation also happens even without capillary pumping, i.e. with cos(θ) = 0, as long as
the pressure/concentration difference persists (Yvapour,in < Yvapour,1). Without convective
inflow (Re = 0), evaporation can be also purely induced by binary diffusion. Based on
these considerations, a more general scaling relation depending on the two parameters is
written as

ERCRP = k3 ln (1 + BY) [ln (1 + Re)+ k2] [cos(θ)+ k1] , (4.6)

where the bias factors k1 and k2 are used to estimate the evaporation rate at θ = 90◦ and
Re = 0, respectively. Here k3 is a global scaling parameter, since the other three terms in
the equation are dimensionless in BY , Re and cos(θ). This parameter includes the effects
of the binary diffusion coefficient, the surface tension and the porous geometry.

To verify its effectiveness, we have summarized all the cases of table 1 into one
plot, in figure 19. Since the evaporation rate in the CRP also slightly changes, here
we define ERCRP as the average evaporation rate over the CRP regime. To include the
effect of Re, we consider another group of cases (Group 4), by fixing θ and Yvapour,in
while varying Re from 5 to 150, as given in table 2. In total, 57 cases are considered,
excluding the repeated cases in Groups 1, 2 and 4. We note that, to optimize the
computational cost, the simulations for cases in Group 3 and Group 4 are stopped at
S = 0.5. From figure 19, we observe that all points tend to collapse, over a comparatively
wide range of the evaporation rate ERCRP = 0.05–0.61, spanning the parameter spaces
Yvapour,in ∈ [0.1, 0.98], θ ∈ [15◦, 105◦] and Re ∈ [5, 150], onto a single curve which is
well fitted by the linear scaling relation proposed in (4.6). The fitting parameters k1, k2
and k3 depend on other system parameters, such as porous medium geometry, having
k1 = 1.750, k2 = 8.195 and k3 = 0.00383 for the present configuration. One may note that
the capillary number Ca affects the capillary pumping effect, and the smaller the capillary
number, the stronger the pumping. It has been shown in drying experiments by Qin et al.
(2019) that a CRP characterized by a designed evaporation pattern can be guaranteed when
Ca < 10−2. As for our cases, the pore-scale liquid-phase average velocity can be estimated
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Figure 19. Universal scaling relation of average evaporation rate in CRP.

Yvapour,in θ Inflow Reynolds number (Re)

0.1 15◦ 5, 10, 20, 50, 100, 150
Group 4 0.5 45◦ 5, 10, 20, 50, 100, 150

0.9 75◦ 5, 10, 20, 50, 100, 150

Table 2. Cases considered for the effect of inflow Reynolds number (Re).

as ū = ERCRP/(ρllpnp), using the average pore size lp = 16�x and the number of pores in
each row np = 14, giving 3.38 × 10−5 � ū � 4.20 × 10−4. The surface tension measured
from the Laplace test is γ = 0.083. Based on the definition Ca = (vρlū)/γ , the capillary
number for the considered cases at CRP ranges from 1.06 × 10−4 to 1.31 × 10−3. The
pore-scale Reynolds number, defined as Re = ūlp/ν, ranging from 0.014 to 0.17, is also
comparable with that of the experiments by Qin et al. (2019).

5. Concluding remarks

In this work, a mesoscopic LBM is proposed and applied to simulate the two-component
multiphase evaporation in porous media at the pore scale. We consider isothermal systems,
and the evaporation in porous media is driven by the difference in vapour concentration
from the liquid–gas interface to the far field. Our model is constructed based on the
multicomponent multiphase pseudopotential model, with two lattice Boltzmann equations
for solving the volatile component (water and its vapour) and the non-condensible
component (NCG, dry air), respectively. The lattice Boltzmann cascaded collision operator
is employed to improve numerical stability and flexibility. Through Chapman–Enskog
multiscale analysis, we show that our model reproduces the Navier–Stokes equations for
the two-component mixture in the low-Mach-number limit. An effective binary transport
mechanism between vapour and dry air in the gas phase, resulting from the difference
between component velocity and mixture velocity, can be automatically captured in our
model. Based on the two-component Stefan problem, we show that our model follows
Fick’s diffusion law and has the flexibility to tune the mass fraction of NCG from 2 %
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up to 90 %. We propose a scheme to implement the contact angle by extending the
well-established single-component geometric function scheme to two-component systems.
Based on the steady droplet tests, we show that our proposed scheme can tune the contact
angle within a wide range, independently of the component mass fraction. Furthermore,
our model is well validated with an evaporation experiment in a microfluidic network.

Our model is applied to study the convective evaporation in a custom-designed
dual-porosity medium, characterized by blowing a drier gas mixture over the material
surface. Benefiting from its pore-scale feature, the detailed pore-scale dynamics, such
as the receding evaporation front and the changing vertical saturation profile, can be
directly resolved in our model. We observed a clear transition of the local pore evaporation
rate at the material surface, from inflow–high–outflow–low to inflow–low–outflow–high,
which is consistent with previous numerical study. Moreover, three main evaporation
periods in classical evaporation experiments, i.e. CRP, FRP and RFP, are reproduced in
our simulations. A systematic parameter study is carried out to investigate the effect of
inflow vapour concentration Yvapour,in and contact angle θ on evaporation dynamics. In
the CRP, the average evaporation rate is increased by decreasing Yvapour,in and scales with
the concentration-related mass transfer number BY by ERCRP ∝ ln(1 + BY). In the RFP,
the scaling relation is less prominent since the vapour concentration profiles inside the
porous medium are not sensitive to Yvapour,in. The effect of the contact angle θ is twofold:
in the CRP, the average evaporation rate increases with decreasing θ by ERCRP ∝ cos(θ)
since the capillary pumping effect is dominant; in the RFP, the average evaporation rate
drops with decreasing θ by ln(ERRFP) ∝ − cos(θ) when the Kelvin effect is significant.
Moreover, a universal scaling dependence of average evaporation in the CRP on the inflow
vapour concentration Yvapour,in, contact angle θ and inflow Reynolds number Re is found,
i.e. ERCRP = k3 ln(1 + BY)·[ln(1 + Re)+ k2]·[cos(θ)+ k1], over a comparatively wide
range of parameter values, Yvapour,in ∈ [0.1, 0.98], θ ∈ [15◦, 105◦] and Re ∈ [5, 150].

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.1048.
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Appendix A. Chapman–Enskog analysis

Taylor series expansion of (2.1) at (x, t) yields

�t(∂t + ei · ∇)f k
i + �t2

2
(∂t + ei · ∇)2f k

i + O(�t3)

= −(M−1N−1SNM)
(

f k
i − f k,eq

i

)
+�tRk

i + �t2

2
(∂t + ei · ∇)Rk

i . (A1)

Multiplying (A1) by M leads to

(I∂t + D)mk + �t
2
(I∂t + D)2mk = −N−1SN

�t
(mk − mk,eq)+ Ck + �t

2
(I∂t + D)Ck,

(A2)
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where mk = M| f k
i 〉, mk,eq = M| f k,eq

i 〉, Ck = M|Rk
i 〉 and D = M[(ei · ∇)I]M−1.

To perform the Chapman–Enskog analysis, the following multiscale expansions are
introduced:

f k
i = f k,(0)

i + εf k,(1)
i + εf k,(2)

i + · · · ,
∂t = ε∂t1 + ε2∂t2, ∇ = ε∇, F k = εF k,(1), Rk

i = εRk,(1)
i .

}
(A3)

Using these expansions, (A2) can be rewritten in the consecutive order of ε:

O(ε0) : mk,(0) = mk,eq, (A4)

O(ε1) : (I∂t1 + D1)mk,(0) = −N−1SN

�t
mk,(1) + Ck,(1), (A5)

O(ε2) : ∂t2mk,(0) + (I∂t1 + D1)mk,(1) + �t
2
(I∂t1 + D1)

2mk,(0)

= −N−1SN

�t
mk,(2) + �t

2
(I∂t1 + D1)Ck,(1). (A6)

According to (A5), (A6) can be rewritten as

O(ε2) : ∂t2mk,(0) + (I∂t1 + D1)

(
I − N−1SN

2

)
mk,(1) = −N−1SN

�t
mk,(2). (A7)

Here, we need the explicit expressions for D = M[(ei · ∇)I]M−1 and N−1SN , which can
be obtained by the software Matlab. According to (A5), we can obtain the continuity and
momentum equations at O(ε) level:

∂t1ρk + ∇1 · (ρku) = 0,

∂t1(ρku)+ ∇1 · (ρkuu) = −∇1(ρkc2
s )+ F k,(1) − sk

1
�t
ρk(uk − u).

⎫⎪⎬
⎪⎭ (A8)

Here, one may notice that the component velocity uk is not necessarily equal to
the velocity of the two-component mixture u. According to classical diffusion theory
(Shan & Doolen 1996), the velocity difference uk − u is the mass-average diffusion
velocity of component k towards the mixture, and therefore J k = ρk(uk − u) the mass
diffusion flux. Analogously, we have the equations at the O(ε2) level as follows:

∂t2ρk + ∇1 ·
[(

1 − s1

2

)
J k

]
= 0,

∂t2(ρkux)+ 1
2
∂x1

[(
1 − sb

2

)
mk,(1)

3 +
(

1 − sν
2

)
mk,(1)

4

]

+1
2
∂y1

[(
1 − sv

2

)
mk,(1)

5

]
+ ∂t1

[(
1 − s1

2

)
Jk,x

]
= 0,

∂t2(ρkuy)+ 1
2
∂y1

[(
1 − sb

2

)
mk,(1)

3 −
(

1 − sν
2

)
mk,(1)

4

]

+1
2
∂x1

[(
1 − sν

2

)
mk,(1)

5

]
+ ∂t1

[(
1 − s1

2

)
Jk,y

]
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

955 A18-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1048


Lattice Boltzmann modelling of isothermal evaporation

where we have assumed (ux − u) ∼ O(ε2) and the higher-order terms have been neglected
(Chai & Zhao 2012). By using the O(ε) equation once again, we can obtain

∂t1mk,eq
3 + ∂x1(m

k,eq
1 + mk,eq

7 )+ ∂y1(m
k,eq
2 + mk,eq

6 ) = − sb

�t
mk,(1)

3 + Ck,(1)
3 ,

∂t1mk,eq
4 + ∂x1(m

k,eq
1 − mk,eq

7 )− ∂y1(m
k,eq
2 − mk,eq

6 ) = − s2

�t
mk,(1)

4 + Ck,(1)
4 ,

∂t1mk,eq
5 + ∂x1mk,eq

6 + ∂y1mk,eq
7 = − s2

�t
mk,(1)

5 + Ck,(1)
5 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A10)

Here, the following relations can be obtained according to (A8):

∂t1(ρkuauβ) ≈ −uα∂β1(ρc2
s )− uβ∂α1(ρc2

s )+ uαFk,(1)
β + uβFk,(1)

α . (A11)

Substituting (A11) into (A10), we can obtain

mk,(1)
3 = −2�t

sb
ρkc2

s (∂x1ux + ∂y1uy),

mk,(1)
4 = −2�t

sν
ρkc2

s (∂x1ux − ∂y1uy),

mk,(1)
5 = −2�t

sν
ρkc2

s (∂x1uy + ∂y1ux).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A12)

Then, (A9) can be rewritten as

∂t2ρk + ∇1 ·
[(

1 − s1

2

)
J k

]
= 0,

∂t2(ρkux)+ ∂t1

[(
1 − s1

2

)
Jk,x

]
= ∂x1

[
ρkνb (∇1 · u)+ ρkν

(
∂x1ux − ∂y1uy

)]
+∂y1

[
ρkν

(
∂x1uy + ∂y1ux

)]
,

∂t2(ρkuy)+ ∂t1

[(
1 − s1

2

)
Jk,y

]
= ∂y1

[
ρkνb (∇1 · u)+ ρkν

(
∂y1uy − ∂x1ux

)]
+∂x1

[
ρkν

(
∂x1uy + ∂y1ux

)]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A13)

where ν = c2
s�t(1/sν − 1/2) and νb = c2

s�t(1/sb − 1/2) are the component kinetic and
bulk viscosities, respectively.

Combining (A8) and (A13) through ∂t = ε∂t1 + ε2∂t2, we can obtain

∂tρk + ∇ · (ρku)+ ∇ ·
[(

1 − s1

2

)
J k

]
= 0,

∂t(ρku)+ ∇ · (ρkuu)+ ∂t

[(
1 − s1

2

)
J k

]
= −∇(ρkc2

s )+ F k

+∇ ·
[
ρkν

(
∇1u + ∇1u�

)
+ ρk(νb − ν)(∇ · u)I

]
− s1J k/�t.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A14)

Due to the zero net mass diffusion flux, we have
∑

k J k = 0, and therefore we can further
obtain the Navier–Stokes equations for the mixture:

∂tρ + ∇ · (ρu) = 0,

∂t(ρu)+ ∇ · (ρuu) = −∇(ρc2
s )+ F + ∇ ·

[
ρν

(
∇u + ∇u�

)
+ ρ(νb − ν)(∇ · u)I

]
.

⎫⎬
⎭ (A15)
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According to the continuity equation for the mixture, we can rewrite the component mass
equation as

ρ(∂tYk + u∇Yk) = −∇ ·
[(

1 − s1

2

)
J k

]
. (A16)

The component momentum equation at t1 scale can be rewritten as

ρk(∂t1u + u∇1u) = −∇1pk + F k
1 − s1

�t
J k. (A17)

The mixture momentum equation at t1 scale can be written as

ρ(∂t1u + u∇1u) = −∇1p + F 1. (A18)

Therefore, we have

s1

�t
J k = −∇1pk + Yk∇1p + (1 − Yk)F k

1 − YkF k̄
1. (A19)

If the system is at mechanical equilibrium, the total pressure gradient is zero (at least for
the planar interface system). Far from the liquid–gas interface, the intra-component force
goes to zero and the inter-component forces approximately cancel with each other. Under
such conditions, (A19) can be further simplified as

(
1 − s1

2

)
J k = −

(
1
s1

− 1
2

)
�t∇1pk = −ρα0∇1Yk. (A20)

If both the components are ideal gases, i.e. pk = ρkc2
s , we have α0 = (1/s1 − 1/2)c2

s�t.
Substituting (A20) into (A16), the following convection–diffusion equation is obtained:

∂tYk + u · ∇Yk = α0∇2Yk. (A21)

Appendix B. Three-dimensional simulations

In this appendix, we consider a 3-D simulation of the microfluidic evaporation experiment
in § 3.3. In § 2.3, we have extended the geometric-function-based contact angle scheme
to two-component multiphase systems. However, the extension to three dimensions is
not straightforward due to the fact that in two dimensions there are only two possible
characteristic lines making a prescribed contact angle θp with ns (as shown in figure 1a),
but in 3-D space the characteristic lines that make an angle θp with ns form a circular
cone surface around ns (Akai, Bijeljic & Blunt 2018). Recently, Li et al. (2019) proposed
an improved virtual density scheme to implement the contact angle, which works well
in both two and three dimensions, while its extension to two-component systems has
not been developed yet. Since our aim is to show that some of the differences between
the 2-D simulations and the experiments can be improved when using 3-D simulations,
we only consider a single-component system (liquid water and water vapour). The
previously proposed 3-D CLBM based on the D3Q19 lattice (Fei et al. 2020) is used
in the single-component multiphase flow, and the contact angle scheme by Li et al.
(2019) is employed to implement the contact angle. Following Zhao et al. (2022), the
evaporation is triggered by setting a low boundary vapour density, i.e. ρout = 0.75ρs

v .
The computational domain is resolved by 684�x × 730�x × 10�x lattices, and the other
settings are kept the same as in 2-D simulations. The liquid distribution in the network at
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Figure 20. Evolution of the liquid distribution in the network at different liquid saturations S.

different liquid saturations S is presented in figure 20. Compared with the 2-D simulation
results in figure 7(a), it is seen that the isolated liquid patches almost disappear in
3-D simulations and the simulation results agree better with the experimental results in
figure 7(b). Nevertheless, the present 3-D simulation is preliminary and more elaborate
3-D simulations need to be conducted in the future with an appropriate extension of the
numerical model.
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