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COMPATIBLE TIGHT RIESZ ORDERS II
A. M. W. GLASS

R. N. Ball (unpublished) and G. E. Davis and C. D. Fox [1] established that
if @ is a doubly homogeneous totally ordered set, the l-group 4 () of all order-
preserving permutations of @ endures a compatible tight Riesz order. Speci-
fically T = {g € A(Q)* : supp (g) is dense in Q} is a compatible tight Riesz
order for 4(Q). Using this fact, I inserted Theorem 3.7 into [2; MR 53
(1977), #13070] at the galley proof stage. (It was also included in MR 5
(1977), #7350 and [3; p. 472].) Theorem 3.7 stated: Let @ be homogeneous.
Then A4 (Q) endures a compatible tight Reisz order if and only if Q is dense.
I stated that it was obvious that if @ were homogeneous and discrete, 4 (Q)
could not endure a compatible tight Riesz order. This “obvious’ is neither
obvious nor true. My purpose in this note is to prove in a unified way (and
without recourse to the machinery developed in [2]):

THEOREM. Let Q be a homogeneous linearly ordered set. Then A (Q) endures a
compatible tight Riesz order if and only if Q is not ordermorphic to Z.

Let @ be a homogeneous linearly ordered set (i.e., 4 (Q) is transitive). The
set of A4 (Q)-congruences on @ forms a chain (under inclusion), and for each
a, B € Q@ with a # 8, there exists a (unique) convex 4 (2)-congruence %, on Q
that is maximal with respect to a4, # 8% ,. Let € be the intersection of all
convex A (Q)-congruences % on Q such that a4 8. Then a4 78 and € covers
%, (in the set of all convex 4 (Q)-congruences on Q). Let v = Val (o, 8) =
(¢,, €7), and let T be the set of all such v (as «, 8 range over @ with a # 8)
totally ordered by: v1 = v, if and only if Cgh - (572. Let Q(y) = a¥7/%,. If
g € A(Q) is such that a%ag, let g, € A(Q(y)) be obtained from g by:
(BE ) gary = BgE (B € a¥7). Observe that for each o € Q,

{gan € 4(Q(¥)) 1 g € A(Q) and aBrag} = A(Q(y)).

{A(Q(v)) : v € T} is called the set of o-primaitive components of A (). For each
v € T, A(Q(y)) is 0-2 transitive (and divisible), isomorphic to Z, or Ohkuma
(i.e., Q(y) is ordermorphic to a dense subgroup of R—and so has cofinality
No—and 4 (Q(y)) is just the right regular representation of Q(v)). If 2(v) is an
Ohkuma set, 4 (2(y)) is a dense totally ordered group and hence

T={gcdAd@M):g>el ={gec Q)" :¢7#¢
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is a compatible tight Riesz order on A (Q(y)). (T is a compatible tight Riesz order
on an [-group G provided

1. T is a proper filter on GT,

2. T is G-invariant [f € T implies (Vg € G)(g~Yg € T)],
3.7T-T =T, and

4. inf T = e).

Note that 4(Z) = Z and so, by 3, cannot endure a compatible tight Riesz
order. Finally, if € is a convex 4 (Q)-congruence on Q, let

L(%) ={g€c AQ):a%agforalla € Q}.

L(¥%) is an l-ideal of 4 (Q). For proofs and further details of these facts, see [3].
Throughout this paper, assume that Q is a homogeneous linearly ordered set.

LemMA 1. If A(Q) has an o-primitive component that is 0-2 transitive, then
A (Q) endures a compatible tight Riesz order.

Proof. Let v € T be such that 4 (Q(y)) is 0-2 transitive. Let
T, = {f € AQ())* : supp (f) is dense in Q(y)},
a compatible tight Riesz order on 4 (2(y)). Let
T" = {g € L(ZM)*: (VB € Q) (g € T

T’ is an A (Q)-invariant subset of 4 (Q)* that satisfies 77 - T’ = T’ (since
A (Q(v)) is divisible). Moreover, f, g € T’ implies f A g € T’. Let « € Q and
h € T.,. There exists g,, € T, such that «%, is fixed by g, .. Let g € 4(Q)*
be such that gs, = eif ¥' < v and B% ", and

{gM if B
88y =

h otherwise.
Then g € T and ag = a. Consequently, inf 77 = e. Therefore
T={g€AQ):g=fforsomef € T}
is a compatible tight Riesz order on 4 ().

LeMMmA 2. If A(Q) has a non-maximal o-primitive component that 1s Ohkuma,
then A (Q) endures a compatible tight Riesz order.

Proof. Let v € T be such that 4(Q(y)) is Ohkuma. Let
T, ={fed@@)*t:fel,
a compatible tight Riesz order on 4 (2(y)). Let

T'={gecL(EN)*: Ao, 7€ <7 and (VB E Q)
[(B<o or 7<B)— (g€ Ty}
T’ is an A4 (Q)-invariant subset of 4 (Q)* that satisfies 77 - 77 = T” (since T,
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has no least element and is totally ordered). Moreover, f, g € 7" implies
S A g€ T Leta € Q. Since v is non-maximal, there exist ¢, 7 € Q such that
067 < a¥" < 7€7. Let h € T,. Define g € A(Q)* such that gs, = & for all
B € Q for which 867 £ ¢%7 or € = r€¢" and g5, = e for all ¥/ < v and
8 € Q for which ¢47 < BE* < 7%". Then g € T’ and ag = a. It follows that
inf 77 = e. Therefore

T =1{g€ A(Q):g = fforsomef € T}
is a compatible tight Riesz order on 4 (2).
Note that T defined above is equal to
{g € A@)*: Jo,r€ Q) (e <7 and
(VBB <o or 7<pB)—Val (B2 =D}

LemMmA 3. If there exists {v, :n € Z+} C T with v1 > v2 > v3 > ..., then
A (Q) endures a compatible tight Riesz order.

Proof. In view of Lemmas 1 and 2, we may assume that 4 (Q(y)) =< Z for
all v € T\{~:}. Let

T={gcd@t: An € Z")Jo, 7€ 2)(c <7 and
(WVBEQ[B<o or 7<B)—Val (8,82) = v.])}-

Clearly T is an A (Q)-invariant subset of 4(Q)*. Let 7, = {f € Z* : f 5 e}.
The proof in Lemma 2 that inf 77 = e shows that inf 7" = e (replace v by v3).
Finally, let g € T. Let#n, o, r show this. Define o € L(%""+1) so that ks, = 0 if

a-(g‘yn+l é 6%7"+1 _S_ T%‘Y"‘Fl and Y é Ynt1y
and hs,, ., = +1if
IB%‘Y”‘H < cE 1 or 6(57,‘4-1 > 7E 41,

Thenif 3 < gorr < B, Val (8,8h) = vpp1;80h € T.Sincehg, = 0if v = vp41
and ¢@ "1 £ BE "+ £ 7%=+ and Val (8, Bg) = v, if B <o or 7 < B,
gh—' > e and Val(B, Bgh~!) = v, if 8 <o or 7 <B. Thus gh~' € T and as
g=gh™'-h, T -T = T. Consequently, T is a compatible tight Riesz order
on 4 (Q).

LeEMMA 4. If A is ordermorphic to Z or an Ohkuma set, then A (Z X A) endures
a compatible tight Riesz order.

Proof. A(Z X A) =
(U N€E AL g g€ A4(A) and (VM€ A)(n € Z)).
LetT =

{{ex:N€eALg):g>0 or (g=0,allgy =20 and
(Wn € ZT)(AN, € A) (g = nforall A = \,))}.
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Clearly T is an A(Z < A)-invariant filter on 4(Z % A)*t and inf T = e. Let
g€ T.Ifg>0,letf = ({fi: N € A},0) where

f_{n if N€lmn+1) and n>0
*“ o if a<o.
f€7T and gf' =35 > 0. Hence gf~' € T and g = gf-!-f If
g=0,let {\,:7 € Z*} show that g € T. Letf = ({f» : X € A}, 0) where

A= {g)\/Q if g\ iseven

T U4+ 1)/2 if grisodd.
Then f € T and gf~' € T since fa, (gf " Z2n if X =2 Xyy. So T-T =T.
Consequently, T is a compatible tight Riesz order on 4 ().

The technique employed in the above proof is due to N. R. Reilly [4, p. 159].

Lemma 5. If |T| = 2 and A (Q) has a minimal O-primative component that is
isomorphic to L, then A (Q) endures a compatible tight Riesz order.

Proof. By Lemmas 1 and 3, we may assume that no o-primitive component
of 4(Q) is 0-2 transitive and that T is well-ordered. Let v, be the least element
of T and v; its successor. Then A = Q(y,) is an Ohkuma set or Z. By Lemma 4,
AZ < A) endures a compatible tight Riesz order, say 77. Let

T={g€ L& )": Va€ gy, € T} and
T ={g€A(@Q):g=fforsomefc T'}.

Then T is a compatible tight Riesz order on 4 (2).
By Lemmas 1-5, the theorem follows.
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