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Abstract

In this paper we consider some nonstandard renewal risk models with some dependent
claim sizes and stochastic return, where an insurance company is allowed to invest her/his
wealth in financial assets, and the price process of the investment portfolio is described
as a geometric Lévy process. When the claim size distribution belongs to some classes
of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms
of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of
discounted aggregate claims and ruin probabilities holding uniformly for some finite or
infinite time horizons.
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1. Introduction

We consider a nonstandard renewal risk model in which successive claim sizes {Xn, n ≥ 1}
form a sequence of identically distributed but not necessarily independent nonnegative random
variables (RVs) with common distribution F , and the interarrival times {θn, n ≥ 1} form
another sequence of independent and identically distributed (i.i.d.) nonnegative RVs, which
are independent of {Xn, n ≥ 1}. We suppose that the claim arrival times τn = ∑n

k=1 θk, n ≥ 1,
constitute a renewal counting process

N(t) = sup{n ≥ 0 : τn ≤ t}, t ≥ 0,

which represents the number of claims up to time t , with a finite mean function λ(t) =
E[N(t)] → ∞ as t → ∞. Suppose that the insurer is allowed to make risk-free and
risky investments. The price process of the investment portfolio is described as a geometric
Lévy process {eRt , t ≥ 0} with {Rt , t ≥ 0} being a Lévy process, which starts from 0 and has
independent and stationary increments. This assumption on price processes is widely used in
mathematical finance. The reader is referred to [4], [11], [15], [17], [18], [19], [20], [24], [26],
and [27], among others.
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As usual, we assume that {Xn, n ≥ 1}, {θn, n ≥ 1}, and {Rt , t ≥ 0} are mutually indepen-
dent. The discounted aggregate claims up to time t ≥ 0 can be expressed as

D(t) =
∞∑
k=1

Xke
−Rτk 1{τk≤t}, (1.1)

where 1A denotes the indicator function of an event A. Then, for any t ≥ 0, the discounted
value of the surplus process with stochastic return on investments of an insurance company is
described as

U(t) = x +
∫ t

0−
c(s)e−Rs ds −D(t),

where x ≥ 0 is the initial risk reserve of the insurance company and c(t) denotes the density
function of premium income at time t . Throughout the paper, we assume that the premium
density function c(t) is bounded, i.e. 0 ≤ c(t) ≤ M for some constantM > 0 and all t ≥ 0. In
this way, in the above renewal risk model, for any t ≥ 0, the finite-time ruin probability can be
defined as

ψ(x, t) = P

(
inf
s∈[0,t]U(s) < 0 | U(0) = x

)
and the infinite-time ruin probability as

ψ(x,∞) = P

(
inf
s≥0

U(s) < 0 | U(0) = x
)
.

In the present paper we shall investigate the asymptotics for the tail probability of dis-
counted aggregate claims or ruin probabilities, holding uniformly for all t , such that λ(t) is
positive. For this purpose, as in [22], define � = {t : 0 < λ(t) ≤ ∞} = {t : P(θ1 ≤ t) > 0}
with t = inf{t : λ(t) > 0} = inf{t : P(θ1 ≤ t) > 0}. Clearly,

� =
{

[t,∞] if P(θ1 = t) > 0,

(t,∞] if P(θ1 = t) = 0.

For the above risk model with a constant premium rate c > 0 (i.e. c(t) = c for all t > 0)
and a constant interest force δ > 0 (e.g. Rt = δt for all t > 0), for which the claim sizes
{Xn, n ≥ 1} and the interarrival times {θn, n ≥ 1} are i.i.d. RVs, some earlier works on ruin
probabilities can be found in [1], [10], [12], [13], and [21], among others; Tang [22] and Hao and
Tang [8] derived some uniform results in �. Ruin probabilities have also been investigated by
many researchers for claim sizes {Xn, n ≥ 1} that follow a certain dependence structure. Chen
and Ng [5] considered a dependent risk model, where the claim sizes are pairwise negatively
quadrant dependent (see the definition in Section 2.1) with common distributionF , belonging to
the class of extended regularly varying distributions. They obtained the following asymptotics
for the infinite-time ruin probability:

ψ(x,∞) ∼
∫ ∞

0−
F̄ (xeδu)λ(du).

Furthermore, assuming some restrictive dependence structure and heavy-tailed claim sizes,
Yang and Wang [25] showed that the relation

ψ(x, t) ∼
∫ t

0−
F̄ (xeδu)λ(du)

holds either for each fixed t ∈ � or uniformly for all t ∈ �.
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In the two recent interesting papers by Tang et al. [24] and Li [15] the above renewal risk
model with stochastic return was investigated, with the price process of the investment portfolio
being a geometric Lévy process under independence and dependence structures, respectively.
We note that Tang et al. [24] investigated the independent renewal risk model in which the
claim sizes {Xn, n ≥ 1} and the interarrival times {θn, n ≥ 1} are two sequences of i.i.d.
nonnegative RVs that are mutually independent, whereas Li [15] considered a more general
time-dependent renewal risk model in which {(Xn, θn), n ≥ 1} are assumed to be i.i.d. random
vectors with a certain dependence existing between Xn and θn for each fixed n. Motivated by
these two papers, the main goal of this paper is to establish some asymptotic formulae for the
tail probability of discounted aggregate claims and ruin probabilities, holding uniformly for
some finite or infinite time horizons, under the conditions that the claim sizes {Xn, n ≥ 1}
are dependent and have common distribution belonging to the class of long and dominatedly
varying tailed distributions or to the class of consistently varying tailed distributions.

The rest of the paper is organized as follows. In Section 2, after introducing some prelim-
inaries, we present the four main results on the uniform asymptotics for the tail probability of
discounted aggregate claims and ruin probabilities. In Sections 3 and 4 we prove these results
after preparing a series of lemmas.

2. Preliminaries and main results

Hereafter, all limit relationships hold for x tending to ∞, unless stated otherwise. For two
positive functions a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1; a(x) � b(x) or
b(x) � a(x) if lim sup a(x)/b(x) ≤ 1; a(x) = o(b(x)) if lim a(x)/b(x) = 0; a(x) = O(b(x))

if lim sup a(x)/b(x) < ∞; and a(x) 	 b(x) if a(x) = O(b(x)) and b(x) = O(a(x)). Further-
more, for two positive bivariate functions a(x, t) and b(x, t), we write a(x, t) ∼ b(x, t)

uniformly for all t in a nonempty set A if

lim
x→∞ sup

t∈A

∣∣∣∣a(x, t)b(x, t)
− 1

∣∣∣∣ = 0,

and a(x, t) � b(x, t) or b(x, t) � a(x, t) uniformly for all t ∈ A if

lim sup
x→∞

sup
t∈A

a(x, t)

b(x, t)
≤ 1.

2.1. Dependence structures

Since we are interested in actual dependent risk models, we start by introducing some
dependence structures. A sequence of RVs {ξn, n ≥ 1} is said to be pairwise negatively quadrant
dependent (NQD) if, for any i 
= j ≥ 1 and real x, y,

P(ξi > x, ξj > y) ≤ P(ξi > x)P(ξj > y).

The pairwise NQD structure was introduced by Lehmann [14], and is weaker and more verifiable
than the commonly used notions of the upper/lower negative dependence (see [3]), and the
negative association (see [9]). A more general dependence structure, namely the upper tail
asymptotic independence structure, was proposed by Maulik and Resnick [16]. A sequence of
RVs {ξn, n ≥ 1} is said to be upper tail asymptotic independent (UTAI) if P(ξn > x) > 0 for
all x ∈ R and n ≥ 1, and

lim
min{x,y}→∞ P(ξi > x | ξj > y) = 0 for any i 
= j ≥ 1.

Clearly, if a sequence of RVs is pairwise NQD then it is also UTAI.
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2.2. Some classes of heavy-tailed distributions

We shall restrict the claim size distribution F to some class of heavy-tailed distributions,
whose moment generating functions do not exist. An important class of heavy-tailed
distributions is D , which consists of all distributions F = 1 − F̄ with dominated variation.
A distribution F on R belongs to the class D if lim sup F̄ (xy)/F̄ (x) < ∞ for any 0 <

y < 1. A slightly smaller class is C of consistently varying distributions. A distribution
F on R belongs to the class C if limy↑1 lim supx→∞ F̄ (xy)/F̄ (x) = 1. Closely related is
a wider class L of long-tailed distributions. A distribution F on R belongs to the class L if
lim F̄ (x + y)/F̄ (x) = 1 for any y ∈ R. There are some other heavy-tailed subclasses, the class
ERV(−α,−β) of distributions with extended regularly varying tails, and the class R−α of dis-
tributions with regularly varying tails. A distributionF on R belongs to the class ERV(−α,−β)
if there exist some constants 0 < α ≤ β < ∞ such that y−β ≤ lim inf F̄ (xy)/F̄ (x) ≤
lim sup F̄ (xy)/F̄ (x) ≤ y−α for any y ≥ 1. If α = β, F belongs to the class R−α .

For a distribution F on [0,∞), denote its upper Matuszewska index by

J+
F = − lim

y→∞
log F̄∗(y)

log y
with F̄∗(y) := lim inf

x→∞
F̄ (xy)

F̄ (x)
for y > 1.

It follows from the presented definitions that the assertions

F ∈ D, F̄∗(y) > 0 for some y > 1, J+
F < ∞

are equivalent (for details, see [2]).

Lemma 2.1. ([2, Proposition 2.2.1].) For a distribution F ∈ D on [0,∞) and any p > J+
F ,

there exist positive constants C1 and D1 such that the inequality

F̄ (y)

F̄ (x)
≤ C1

(
y

x

)−p

holds for all x ≥ y ≥ D1.

The next lemma follows immediately from Lemma 2.1 (see Lemma 3.5 of [23]).

Lemma 2.2. For a distribution F ∈ D on [0,∞) and any p > J+
F , the asymptotics x−p =

o(F̄ (x)) hold.

2.3. Main results

Suppose that the Lévy process {Rt , t ≥ 0} in (1.1) is right continuous with left limits. Let
E[R1] > 0, so that Rt drifts to ∞ almost surely as t → ∞. The Laplace exponent for the Lévy
process {Rt , t ≥ 0} is defined as

φ(z) = log E[e−zR1 ], z ∈ R.

If φ(z) is finite then it holds for any t ≥ 0 that

E[e−zRt ] = etφ(z) < ∞
(see, e.g. [7, Proposition 3.14]).

To simplify the discussion, we assume throughout the paper that t = 0. For any T ∈ � and
ε ∈ �, set�T = [0, T ] and�ε = [ε,∞]. Note that ε can be chosen to be 0 if P(θ1 = 0) > 0.
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We are now ready to state the main results of this paper. The first two results below assume
UTAI claim sizes, requiring that the Lévy process {Rt , t ≥ 0} is almost surely nonnegative,
which means that the insurer invests her/his wealth only in a risk-free market. We obtain two
uniform asymptotic formulae for the tail probability of discounted aggregate claims and ruin
probabilities, corresponding to when the claim sizes have either long and dominatedly varying
tails or consistently varying tails.

Theorem 2.1. In the nonstandard renewal risk model described in Section 1, assume that the
claim sizes {Xn, n ≥ 1} are UTAI nonnegative RVs with common distribution F ∈ L ∩ D . If
Rt ≥ 0 almost surely for any t ≥ 0 then, for any fixed T > 0,

P(D(t) > x) ∼
∫ t

0−
P(X1e−Rs > x)λ(ds) (2.1)

holds uniformly for all t ∈ �T .

Corollary 2.1. Under the conditions of Theorem 2.1, if F ∈ C then, for any fixed T > 0,

ψ(x, t) ∼
∫ t

0−
P(X1e−Rs > x)λ(ds) (2.2)

holds uniformly for all t ∈ �T .

Our next two results restrict the claim sizes to be pairwise NQD RVs with extended regularly
varying tails, but allow the insurer to make risk-free and risky investments. This means that the
Lévy process {Rt , t ≥ 0} can be real valued.

Theorem 2.2. In the nonstandard renewal risk model described in Section 1, assume that
the claim sizes {Xn, n ≥ 1} are pairwise NQD nonnegative RVs with common distribution
F ∈ ERV(−α,−β), 0 < α ≤ β < ∞. If φ(r) < 0 for some r > β then (2.1) holds uniformly
for all t ∈ �ε .
Corollary 2.2. Under the conditions of Theorem 2.2, (2.2) holds uniformly for all t ∈ �ε .

3. Proof of Theorem 2.1

Before proving our first two results, we cite two lemmas. The following lemma is due to
Tang [22].

Lemma 3.1. For the renewal counting process {N(t), t ≥ 0} described in Section 1, any
v > 0, and any fixed T > 0, it holds that

lim
x→∞ sup

t∈�T
λ−1(t)E[Nv(t)1{N(t)>x}] = 0.

The second lemma was proved in [16].

Lemma 3.2. Consider the exponential functional of the Lévy process {Rt , t ≥ 0} defined as
Z = ∫ ∞

0 e−Rs ds. For every v > 0 satisfying φ(v) < 0, it holds that E[Zv] < ∞.

Proof of Theorem 2.1. Since the positive Lévy process (i.e. a subordinator) {Rt , t ≥ 0} has
nondecreasing paths, it holds uniformly for all t ∈ �T that∫ t

0−
P(X1e−Rs > x)λ(ds) ≥ P(X1e−RT > x)λ(t) 	 F̄ (x)λ(t),
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where the second step follows from Theorem 3.3(iv) of [6] and F ∈ D . Hence, there exists
some positive constant C2, such that, for sufficiently large x and all t ∈ �T ,

∫ t

0−
P(X1e−Rs > x)λ(ds) ≥ C2F̄ (x)λ(t). (3.1)

For any integer m ≥ 1, t ∈ �T , and x > 0,

P(D(t) > x) =
( m∑
n=1

+
∞∑

n=m+1

)
P

( n∑
k=1

Xke
−Rτk > x, N(t) = n

)
=: I1 + I2

For I2, as Rs ≥ 0 almost surely for all s ≥ 0, and by Lemma 2.1, Markov’s inequality, and
Lemma 2.2, it holds uniformly for all t ∈ �T that

I2 ≤
( ∑
m<n≤x/D1

+
∑

n>x/D1

)
P

( n∑
k=1

Xk > x

)
P(N(t) = n)

≤
∑

m<n≤x/D1

nF̄

(
x

n

)
P(N(t) = n)+ P

(
N(t) >

x

D1

)

≤ C1F̄ (x)
∑

m<n≤x/D1

np+1
P(N(t) = n)+

(
x

D1

)−(p+1)

E[Np+1(t)1{N(t)>x/D1}]

� C1F̄ (x)E[Np+1(t)1{N(t)>m}] (3.2)

for some p > J+
F . Hence, from (3.1), (3.2), and Lemma 3.1, we obtain

lim
m→∞ lim sup

x→∞
sup
t∈�T

I2∫ t
0− P(X1e−Rs > x)λ(ds)

≤ C1

C2
lim
m→∞ sup

t∈�T
λ−1(t)E[Np+1(t)1{N(t)>m}]

= 0. (3.3)

We mainly deal with I1. Let H(y1, . . . , yn+1) be the joint distribution of the random vector
(τ1, . . . , τn+1), n ≥ 1. Clearly, for 1 ≤ n ≤ m, t ∈ �T , and x > 0,

P

( n∑
k=1

Xke
−Rτk > x,N(t) = n

)

=
∫

{0≤s1≤···≤sn≤t, sn+1>t}
P

( n∑
k=1

Xke
−Rsk > x

)
H(ds1, . . . , dsn+1). (3.4)

Similarly to (3.1), there exist some 0 < C3 < 1 and large x1 > 0, both depending only on F ,
such that, for all 1 ≤ k ≤ n and 0 ≤ sk ≤ t ≤ T , when x ≥ x1, it holds that

P(Xke
−Rsk > x) ≥ C3F̄ (x). (3.5)

Next, we aim to show that, for some 
 > 0, which can be arbitrarily small, there exists some
x̃, depending only on F , 
, and n, such that, for all x ≥ x̃ and 0 ≤ s1 ≤ · · · ≤ sn ≤ t ≤ T ,
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1 ≤ n ≤ m,

(1 −
)

n∑
k=1

P(Xke
−Rsk > x) ≤ P

( n∑
k=1

Xke
−Rsk > x

)

≤ (1 +
)

n∑
k=1

P(Xke
−Rsk > x). (3.6)

For any ε ∈ (0, 1
2 ), as P(sups∈[0,T ] Rs = ∞) = 0, there exists a δ = δ(ε) ∈ (0, 1) such that

P

(
sup

s∈[0,T ]
Rs < − log δ

)
≥ 1 − ε, (3.7)

which implies that, for all 1 ≤ k ≤ n, 0 ≤ sk ≤ t ≤ T , and x > 0,

P(Xke
−Rsk > x) ≥

∫ 1

δ

F̄

(
x

u

)
P(e−Rsk ∈ du)

≥ F̄

(
x

δ

)
P

(
sup

s∈[0,T ]
Rs < − log δ

)

≥ (1 − ε)F̄

(
x

δ

)
. (3.8)

As F ∈ L, there exists some positive, increasing, and slowly varying function l(x) ↑ ∞ such
that l(x)/x → 0 and, for any fixed constant K ,

F̄ (x −Kl(x)) ∼ F̄ (x), (3.9)

which implies that, for the above ε > 0, there exists some x2 ≥ x1, depending only on F and
ε, such that, for all x ≥ x2,

F̄ (x − l(x)) ≤ F̄

(
x − l(x)

δ

)
≤ (1 + ε)F̄ (x). (3.10)

Since X1, . . . , Xn are UTAI and by F ∈ D , there exists some x3 ≥ x2, depending only on F ,
ε, and n, such that, for all x ≥ x3 and all 1 ≤ i 
= j ≤ n (1 ≤ n ≤ m),

P(Xi > x,Xj > x) ≤ P

(
Xi >

l(x)

n− 1
, Xj >

x

n

)
≤ ε

n
C3F̄ (x). (3.11)

Let x̃ = max{x3,D1/(1 − δ)}, which also depends only on F , ε, and n. Then, for x ≥ x̃, it
holds that x − l(x) ≥ (1 − δ)x and, for some p > J+

F ,

F̄ ((1 − δ)x)

F̄ (x)
≤ C1(1 − δ)−p, (3.12)

together with (3.10) and (3.11). For the lower bound of (3.6), by the Bonferroni inequality,
(3.11), and (3.5) we have, for all x ≥ x̃ and 0 ≤ sk ≤ t ≤ T , 1 ≤ k ≤ n,

P

( n∑
k=1

Xke
−Rsk > x

)
≥

n∑
k=1

P(Xke
−Rsk > x)−

∑
1≤i<j≤n

P(Xi > x,Xj > x)

≥ (1 − ε)

n∑
k=1

P(Xke
−Rsk > x). (3.13)
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For the upper bound of (3.6),

P

( n∑
k=1

Xke
−Rsk > x

)
≤

n∑
k=1

P(Xke
−Rsk > x − l(x))

+
∑

1≤i 
=j≤n
P

(
Xi >

l(x)

n− 1
, Xj >

x

n

)
, (3.14)

where l(x) is defined in (3.9). Since l(x) is infinitely increasing, then, by (3.10), (3.12), (3.7),
and (3.8), we have, for all x ≥ x̃, 0 ≤ sk ≤ t ≤ T , and 1 ≤ k ≤ n,

P(Xke
−Rsk > x − l(x))

=
(∫ 1

δ

+
∫ δ

0

)
F̄

(
x − l(x)

u

)
P(e−Rsk ∈ du)

≤
∫ 1

δ

F̄

(
x

u
− l(x/u)

δ

)
P(e−Rsk ∈ du)+

∫ δ

0
F̄

(
(1 − δ)x

u

)
P(e−Rsk ∈ du)

≤ (1 + ε)

∫ 1

δ

F̄

(
x

u

)
P(e−Rsk ∈ du)+ C1(1 − δ)−p

∫ δ

0
F̄

(
x

u

)
P(e−Rsk ∈ du)

≤ (1 + ε)P(Xke
−Rsk > x)+ C1(1 − δ)−pF̄

(
x

δ

)
P

(
sup

s∈[0,T ]
Rs > − log δ

)

≤
(

1 + ε + εC1(1 − δ)−p

1 − ε

)
P(Xke

−Rsk > x). (3.15)

By (3.11) and (3.5), the second sum on the right-hand side of (3.14) can be bounded from above
by

ε

n∑
k=1

P(Xke
−Rsk > x). (3.16)

Combining (3.14)–(3.16), we obtain, for all x ≥ x̃ and 0 ≤ sk ≤ t ≤ T , 1 ≤ k ≤ n,

P

( n∑
k=1

Xke
−Rsk > x

)
≤

(
1 + ε

(
2 + C1(1 − δ)−p

1 − ε

)) n∑
k=1

P(Xke
−Rsk > x). (3.17)

Let 
 = ε(2 + C1(1 − δ)−p(1 − ε)−1) > 0, which can be arbitrarily small because of the
arbitrariness of ε. Therefore, (3.6) follows from (3.13) and (3.17).

By (3.4) and (3.6), we have, for all x ≥ x̃ (depending only on F , 
, and n), 1 ≤ n ≤ m,
and t ∈ �T ,

(1 −
)

n∑
k=1

P(Xke
−Rτk > x, N(t) = n) ≤ P

( n∑
k=1

Xke
−Rτk > x, N(t) = n

)

≤ (1 +
)

n∑
k=1

P(Xke
−Rτk > x, N(t) = n).

This means that it holds uniformly for all t ∈ �T and 1 ≤ n ≤ m that

P

( n∑
k=1

Xke
−Rτk > x,N(t) = n

)
∼

n∑
k=1

P(Xke
−Rτk > x, N(t) = n).
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Thus, it holds uniformly for all t ∈ �T that

I1 ∼
m∑
n=1

n∑
k=1

P(Xke
−Rτk > x, N(t) = n)

=
( ∞∑
n=1

−
∞∑

n=m+1

) n∑
k=1

P(Xke
−Rτk > x,N(t) = n) =: I3 − I4, (3.18)

where

I3 =
∞∑
k=1

P(Xke
−Rτk > x, N(t) ≥ k) =

∫ t

0−
P(X1e−Rs > x)λ(ds). (3.19)

Since

I4 ≤ F̄ (x)

∞∑
n=m+1

nP(N(t) = n) = F̄ (x)E[N(t)1{N(t)>m}],

similarly to the proof of (3.3), and by (3.1) and Lemma 3.1, we obtain

lim
m→∞ lim sup

x→∞
sup
t∈�T

I4∫ t
0− P(X1e−Rs > x)λ(ds)

≤ 1

C2
lim
m→∞ sup

t∈�T
λ−1(t)E[N(t)1{N(t)>m}]

= 0. (3.20)

Therefore, by (3.3) and (3.18)–(3.20), (2.1) holds uniformly for all t ∈ �T , completing the
proof.

Proof of Corollary 2.1. The upper bound of ψ(x, t) is trivial. Indeed, by Theorem 2.1, it
holds uniformly for all t ∈ �T that

ψ(x, t) ≤ P(D(t) > x) ∼
∫ t

0−
P(X1e−Rs > x)λ(ds). (3.21)

We now turn to the asymptotic lower bound ofψ(x, t). For any 0 < ε < 1, since the positive
Lévy process {Rt , t ≥ 0} has nondecreasing paths, and using the fact that 0 ≤ c(u) ≤ M and
(2.1), we have, for all t ∈ �T and sufficiently large x,

ψ(x, t) ≥ P(D(t) > x +MT )

≥ P(D(t) > (1 + ε)x)

∼
∫ t

0−

∫ 1

0
F̄

(
(1 + ε)x

u

)
P(e−Rs ∈ du)λ(ds)

≥ inf
u∈(0,1]

F̄ ((1 + ε)x/u)

F̄ (x/u)

∫ t

0−

∫ 1

0
F̄

(
x

u

)
P(e−Rs ∈ du)λ(ds)

� F̄∗(1 + ε)

∫ t

0−
P(X1e−Rs > x)λ(ds). (3.22)

Noting that F̄∗(1 + ε) → 1 as ε ↓ 0 because F ∈ C, the desired lower bound follows
from (3.22). This completes the proof.
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4. Proof of Theorem 2.2

We start this section with a series of lemmas. The first two lemmas are special cases
of Lemmas 3.2 and 3.3 of [15] under the independence structure between {Xn, n ≥ 1} and
{θn, n ≥ 1}.
Lemma 4.1. Under the conditions of Theorem 2.2, for each k ≥ 1, it holds uniformly for all
t ∈ � that

F̄ (x)P(τk ≤ t) = O(1)P(Xke
−Rτk 1{τk≤t} > x).

Lemma 4.2. Under the conditions of Theorem 2.2, for any positive function a(x) = x/l(x) →
∞, with the slowly varying function l(x) → ∞, and each k ≥ 1, it holds uniformly for all
t ∈ � that

P(e−Rτk 1{τk≤t} > a(x)) = o(1)P(Xke
−Rτk 1{τk≤t} > x).

The next lemma plays an important role in the proof of Theorem 2.2.

Lemma 4.3. Under the conditions of Theorem 2.2, for any fixed 0 < y < 1 and each k ≥ 1, it
holds uniformly for all t ∈ �ε that

P(Xke
−Rτk 1{τk≤t} > xy) � y−β

P(Xke
−Rτk 1{τk≤t} > x).

Proof. We first show that there exists some 
 > 0, not depending on t , such that

P(e−Rτk 1{τk≤t} > 
) > 0 (4.1)

holds for all t ∈ �ε . Indeed, if P(θ1 = 0) > 0 then, for any 
 ∈ (0, 1) and all t ∈ �,

P(e−Rτk 1{τk≤t} > 
) ≥ P(e−Rτk 1{τk=0} > 
) = (P(θ1 = 0))k > 0.

If P(θ1 = 0) = 0 then ε/k ∈ �. Hence,

P(τk ≤ ε) ≥
(

P

(
θ1 ≤ ε

k

))k
> 0. (4.2)

For all t ∈ �ε and x ≥ 0,

P(e−Rτk 1{τk≤t} > x) ≥
∫ ε

0−
P(e−Rs > x)P(τk ∈ ds)

≥
∫ ε

0−
P

(
sup
s∈[0,ε]

Rs < − log x
)
P(τk ∈ ds). (4.3)

Noting that P(sup[0,ε] Rs = ∞) = 0, there exists some 
 > 0, not depending on t , such that

C4 := P

(
sup
s∈[0,ε]

Rs < − log

)
> 0.

Substituting this into (4.3), and by (4.2), we have, for all t ∈ �ε ,

P(e−Rτk 1{τk≤t} > 
) ≥ C4P(τk ≤ ε) ≥ C4

(
P

(
θ1 ≤ ε

k

))k
> 0.
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We now prove that

P(e−Rτk 1{τk≤t} > x) = o(F̄ (x)) (4.4)

holds uniformly for all t ∈ �. Indeed, for all t ∈ �, by Markov’s inequality, φ(r) < 0, and
Lemma 2.2, we have

P(e−Rτk 1{τk≤t} > x) ≤
∫ ∞

0−
P(e−Rs > x)P(τk ∈ ds)

≤ x−r
∫ ∞

0−
esφ(r)P(τk ∈ ds)

= o(F̄ (x)).

Claim (4.4) implies that there exists some increasing function l(x) ↑ ∞, not depending on t ,
such that x/l(x) → ∞ and

P

(
e−Rτk 1{τk≤t} >

x

l(x)

)
= o(F̄ (x)) (4.5)

holds uniformly for all t ∈ �. Then, for all x > 
, any fixed y ∈ (0, 1), and all t ∈ �ε ,

P(Xke
−Rτk 1{τk≤t} > xy)

P(Xke
−Rτk 1{τk≤t} > x)

≤
∫ x/l(x)

0− F̄ (xy/u)P(e−Rτk 1{τk≤t} ∈ du)∫ x/l(x)
0− F̄ (x/u)P(e−Rτk 1{τk≤t} ∈ du)

+
∫ ∞
x/l(x)

F̄ (xy/u)P(e−Rτk 1{τk≤t} ∈ du)∫ ∞


F̄ (x/u)P(e−Rτk 1{τk≤t} ∈ du)

≤ sup
z≥l(x)

F̄ (yz)

F̄ (z)
+ P(e−Rτk 1{τk≤t} > x/l(x))

F̄ (x/
)P(e−Rτk 1{τk≤t} > 
)
,

which, combined with (4.1) and (4.5), leads to the desired result.

Lemma 4.4. Under the conditions of Theorem 2.2, for each j > i ≥ 1, it holds uniformly for
all t ∈ � that

P(Xie
−Rτi 1{τi≤t} > x, Xj e−Rτj 1{τj≤t} > x) = o(1)

∑
k=i,j

P(Xke
−Rτk 1{τk≤t} > x).

Proof. By Lemma 4.2, uniformly for all t ∈ �,

P(Xie
−Rτi 1{τi≤t} > x, Xj e−Rτj 1{τj≤t} > x)

≤ P(Xie
−Rτi > x, Xj e−Rτj > x, τi ≤ t, e−Rτj ≤ a(x))+ P(e−Rτj 1{τj≤t} > a(x))

=: J1 + o(1)P(Xj e−Rτj 1{τj≤t} > x), (4.6)

where a(x) is the function defined in Lemma 4.2. For J1, since {Xn, n ≥ 1} are pairwise NQD,

https://doi.org/10.1239/jap/1409932666 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932666


680 Y. YANG ET AL.

it holds uniformly for all t ∈ � that

J1 ≤ P

(
Xie

−Rτi > x, τi ≤ t, Xj >
x

a(x)

)

=
∫ t

0−

∫ ∞

0
P

(
Xi >

x

u
, Xj >

x

a(x)

)
P(e−Rs ∈ du)P(τi ∈ ds)

≤
∫ t

0−

∫ ∞

0
F̄

(
x

u

)
F̄

(
x

a(x)

)
P(e−Rs ∈ du)P(τi ∈ ds)

= F̄

(
x

a(x)

)
P(Xie

−Rτi 1{τi≤t} > x)

= o(1)P(Xie
−Rτi 1{τi≤t} > x).

Substituting this estimate into (4.6) completes the proof.

Lemma 4.5. Under the conditions of Theorem 2.2, for each n ≥ 1, it holds uniformly for all
t ∈ �ε that

P

( n∑
k=1

Xke
−Rτk 1{τk≤t} > x

)
∼

n∑
k=1

P(Xke
−Rτk 1{τk≤t} > x).

Proof. For any 0 < ε < 1, we have

P

( n∑
k=1

Xke
−Rτk 1{τk≤t} > x

)

≤
n∑
k=1

P(Xke
−Rτk 1{τk≤t} > (1 − ε)x)

+ P

( n∑
k=1

Xke
−Rτk 1{τk≤t} > x, max

1≤k≤nXke
−Rτk 1{τk≤t} ≤ (1 − ε)x

)

=: J2 + J3. (4.7)

We first consider J2. By Lemma 4.3,

J2 � (1 − ε)−β
n∑
k=1

P(Xke
−Rτk 1{τk≤t} > x) (4.8)

holds uniformly for all t ∈ �ε . For J3, by Lemmas 4.4 and 4.3,

J3 ≤ P

( n⋃
i=1

{
Xie

−Rτi 1{τi≤t} >
x

n
,

∑
1≤j≤n, j 
=i

Xj e−Rτj 1{τj≤t} > εx

})

≤
n∑
i=1

∑
1≤j≤n, j 
=i

P

(
Xie

−Rτi 1{τi≤t} >
εx

n
, Xj e−Rτj 1{τj≤t} >

εx

n

)

= o(1)
n∑
i=1

P(Xie
−Rτi 1{τi≤t} > x) (4.9)
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holds uniformly for all t ∈ �ε . From (4.7)–(4.9), it holds uniformly for all t ∈ �ε that

P

( n∑
k=1

Xke
−Rτk 1{τk≤t} > x

)
� (1 − ε)−β

n∑
k=1

P(Xke
−Rτk 1{τk≤t} > x). (4.10)

Then the upper bound follows from (4.10) and the arbitrariness of ε.
For the lower bound, according to the Bonferroni inequality,

P

( n∑
k=1

Xke
−Rτk 1{τk≤t} > x

)
≥ P

( n⋃
k=1

{Xke−Rτk 1{τk≤t} > x}
)

≥
n∑
k=1

P(Xke
−Rτk 1{τk≤t} > x)

−
∑

1≤i<j≤n
P(Xie

−Rτi 1{τi≤t} > x, Xj e−Rτj 1{τj≤t} > x)

∼
n∑
k=1

P(Xke
−Rτk 1{τk≤t} > x)

holds uniformly for all t ∈ �, where we used Lemma 4.4 in the last step.

Lemma 4.6. ([15].) Under the conditions of Theorem 2.2, it holds that

lim
n→∞ lim sup

x→∞
sup
t∈�

P
(∑∞

k=n+1Xke
−Rτk 1{τk≤t} > x

)
P(X1e−Rτ1 1{τ1≤t} > x)

= lim
n→∞ lim sup

x→∞
sup
t∈�

∑∞
k=n+1 P(Xke

−Rτk 1{τk≤t} > x)

P(X1e−Rτ1 1{τ1≤t} > x)

= 0.

Proof of Theorem 2.2. For any ε > 0, according to Lemma 4.6, there exists some sufficiently
large integer n0 such that, uniformly for all t ∈ �,

max

{
P

( ∞∑
k=n0+1

Xke
−Rτk 1{τk≤t} > x

)
,

∞∑
k=n0+1

P(Xke
−Rτk 1{τk≤t} > x)

}

� εP(X1e−Rτ1 1{τ1≤t} > x). (4.11)

For the upper bound, by Lemma 4.5, (4.11), and Lemma 4.3, for any 0 < δ < 1,

P(D(t) > x) ≤ P

( n0∑
k=1

Xke
−Rτk 1{τk≤t} > (1 − δ)x

)
+ P

( ∞∑
k=n0+1

Xke
−Rτk 1{τk≤t} > δx

)

�
n0∑
k=1

P(Xke
−Rτk 1{τk≤t} > (1 − δ)x)+ εP(X1e−Rτ1 1{τ1≤t} > δx)

� (1 − δ)−β
n0∑
k=1

P(Xke
−Rτk 1{τk≤t} > x)+ εδ−βP(X1e−Rτ1 1{τ1≤t} > x)

≤ ((1 − δ)−β + εδ−β)
∫ t

0−
P(X1e−Rs > x)λ(ds) (4.12)

https://doi.org/10.1239/jap/1409932666 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932666


682 Y. YANG ET AL.

holds uniformly for all t ∈ �ε . Thus, the upper bound of (2.1) follows from (4.12) by first
letting ε ↓ 0 and then δ ↓ 0.

For the lower bound, from Lemma 4.5 and (4.11),

P(D(t) > x) ≥ P

( n0∑
k=1

Xke
−Rτk 1{τk≤t} > x

)

∼
( ∞∑
k=1

−
∞∑

k=n0+1

)
P(Xke

−Rτk 1{τk≤t} > x)

≥ (1 − ε)

∫ t

0−
P(X1e−Rs > x)λ(ds) (4.13)

holds uniformly for all t ∈ �ε . This completes the proof.

Proof of Corollary 2.2. Clearly, Theorem 2.2 implies that the upper bound (3.21) holds
uniformly for all t ∈ �ε .

We estimate the lower bound for the ruin probability. For any ε > 0 and the integer n0
defined in the proof of Theorem 2.2, we have

ψ(x, t) ≥ P(D(t)−MZ > x)

≥ P

( n0∑
k=1

Xke
−Rτk 1{τk≤t} > (1 + ε)x

)
− P

(
Z >

εx

M

)

=: J4 − J5, (4.14)

where Z = ∫ ∞
0− e−Rs ds and M > 0 is the upper bound of the intensity of premium payments.

As in (4.13), by Lemmas 4.5 and 4.3 and (4.11), it follows that

J4 �
n0∑
k=1

P(Xke
−Rτk 1{τk≤t} > (1 + ε)x)

� (1 + ε)−β
n0∑
k=1

P(Xke
−Rτk 1{τk≤t} > x)

≥ (1 + ε)−β(1 − ε)

∫ t

0−
P(X1e−Rs > x)λ(ds) (4.15)

holds uniformly for all t ∈ �ε . For J5, by Markov’s inequality and Lemmas 3.2 and 2.2, we
have

J5 ≤
(
M

ε

)r
E[Zr ]x−r = o(F̄ (x)). (4.16)

If P(θ1 = 0) > 0 then, by Lemma 4.1, it holds that, uniformly for all t ∈ �,

F̄ (x) ≤ (P(θ1 = 0))−1F̄ (x)P(θ1 ≤ t) = O(1)P(X1e−Rτ1 1{τ1≤t} > x),

which, together with (4.16), yields

J5 = o(1)P(X1e−Rτ1 1{τ1≤t} > x) = o(1)
∫ t

0−
P(X1e−Rs > x)λ(ds) (4.17)
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uniformly for all t ∈ �. Similarly, if P(θ1 = 0) = 0, also by Lemma 4.1, it holds uniformly
for all t ∈ �ε that

F̄ (x) ≤ (P(θ1 ≤ ε))−1F̄ (x)P(θ1 ≤ t) = O(1)P(X1e−Rτ1 1{τ1≤t} > x),

which implies that (4.17) holds uniformly for all t ∈ �ε . Combining (4.14)–(4.17) and noting
the arbitrariness of ε, we derive the lower bound.
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