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Zero-divisor Graphs of Ore Extensions
Over Reversible Rings

E. Hashemi and R. Amirjan

Abstract. Let R be an associative ring with identity. First we prove some results about zero-divisor
graphs of reversible rings. Then we study the zero-divisors of the skew power series ring R[[x; a]],
whenever R is reversible and a-compatible. Moreover, we compare the diameter and girth of the
zero-divisor graphs of I'(R), T(R[x; «, 8]), and T (R[[x; «]]), when R is reversible and («, §)-com-
patible.

1 Introduction

The zero-divisor graph of a commutative ring R with identity, denoted by I'(R), is the
graph associated with R such that its vertex set consists of all its non-zero zero-divisors
and that two distinct vertices are joined by an edge if and only if the product of these
two vertices is zero. This concept of zero-divisor graphs was initiated by Beck [9] when
he studied the coloring problem of a commutative ring. Later, Anderson and Liv-
ingston [4] introduced and studied the zero-divisor graph whose vertices are the non-
zero zero-divisors of a ring. Redmond [26] studied the zero-divisor graph of a non-
commutative ring. Several papers are devoted to studying the relationship between
the zero-divisor graph and algebraic properties of rings; see [1,2,4-6,9,23,26,28].

Let R be an arbitrary associative ring with identity. The zero-divisors of R, denoted
by Z(R), is the set of elements a € R such that there exists a non-zero element b € R
with ab = 0 or ba = 0. The zero-divisor graph of R, denoted by I'(R), is the graph
with vertices Z*(R) = Z(R) — {0}, and for distinct x, y € Z*(R), the vertices x and
y are adjacent if and only if xy = 0 or yx = 0.

Axtell, Coykendall, and Stickles [8] examined the preservation of diameter and
girth of zero-divisor graphs of commutative rings under extensions to polynomial and
power series rings. Lucase [23] continued the study of the diameter of zero-divisor
graphs of polynomial and power series rings over commutative rings. Moreover, An-
derson and Mulay [5] studied the girth and diameter of commutative rings and inves-
tigated the girth and diameter of zero-divisor graphs of polynomial and power series
rings over commutative rings. Afkhami, Khashayarmanesh, and Khorsandi [1] com-
pared the girth and diameter of zero-divisor graphs of R[x; «, 8] and R, when Ris a
commutative (e, §)-compatible ring and R[x; &, 8] is a reversible ring.
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According to Cohn [11] a ring R is called reversible if ab = 0 implies that ba = 0 for
a,b € R. Anderson and Camillo [3], observing the rings whose zero products com-
mute, used the term ZC, for what is called reversible, while Krempa and Niewiecz-
erzal [20] took the term C, for it. Clearly, reduced rings (i.e., rings with no non-zero
nilpotent elements) and commutative rings are reversible. Kim and Lee [18] studied
extensions of reversible rings and showed that polynomial rings over reversible rings
need not be reversible. In view of [26, Theorem 2.3] over a reversible ring R, the graph
['(R) is connected with diam(T'(R)) < 3, where diam(T(R)) is the diameter of T'(R).

Another extension of a ring R is the Ore extension. Assume that a: R — Risaring
endomorphism and §:R — R is an a-derivation of R, that is, § is an additive map
such that §(ab) = 8(a)b + a(a)d(b), for all a,b € R. The Ore extension R[x; «, 8]
of R is the ring obtained by giving the polynomial ring (with indeterminate x) over
R with the multiplication xa := a(a)x + 8(a) for all a € R. In the special case where
a = Ig or § = 0, we denote R[x; a, 8] by R[x; 8] and R[x; a], respectively. Also we
denote the skew power series ring by R[[x; «]], where a: R — R is an endomorphism.
The skew power series ring R[[x; a]] is the ring consisting of all power series of the
form .72, a;x’ (a; € R), which are multiplied using the distributive law and the Ore
commutation rule xa = «(a)x, for all a € R.

For two distinct vertices a and b in the graph T, the distance between a and b,
denoted by d(a, b), is the length of shortest path connecting a and b if such a path
exists; otherwise, we put d(a, b) := co. Recall that the diameter of a graph I is defined
as follows:

diam(T) := sup{ d(a,b) | a and b are distinct vertices of F} .

The girth of a graph T, denoted by g(T'), is the length of the shortest cycle in T,
provided T contains a cycle; otherwise, g(I') = co. We will use the notation g(T(R))
to denote the girth of the graph of Z* (R). A graph is said to be connected if there exists
a path between any two distinct vertices, and a graph is complete if it is connected with
diameter one.

For an element a € R, let £x(a) = {b € R|ba = 0} and rg(a) = {b € R|ab = 0}.
Note that if R isareversibleringand a € R, then €g(a) = rg(a) isan ideal of R, and we
denote it by ann(a). We write Z¢(R) and Z, (R) for the set of all left zero-divisors of R
and the set of all right zero-divisors of R, respectively. Clearly, Z(R) = Z,(R)uZ,(R).

2 Properties of T'(R)

A ring R is called abelian if each idempotent element of R is central. Clearly, com-
mutative rings and reduced rings are reversible. Also, reversible rings are abelian by
[22, Proposition 1.3] and [27, Lemma 2.7]. But these implications are irreversible as
follows: (i) There is a non-commutative non-reduced reversible ring by [3, Exam-
ple IL.5]. (ii) There is a non-reversible abelian ring by [18, Examples 1.5 and 1.10(3)].

Since reversible rings are abelian, one can prove the following result using a method
similar to that used in the proof [4, Theorem 2.5].
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Remark 2.1 Let R be a reversible ring. Then there is a vertex of I'(R) which is
adjacent to every other vertex if and only if either R = Z, x D where D is a domain or
Z(R) is an annihilator ideal.

By using Remark 2.1 and a method similar to that used in the proof of [4, Theorem
2.8], one can prove the following result.

Remark 2.2 Let R be a reversible ring. Then I'(R) is complete if and only if either
R=7Z,x7Zyorxy=0forall x,yeZ(R).

Recall that an ideal (P of R is completely prime if ab € P implies a € P or b € P for
a,beR.

Proposition 2.3  Let R be a reversible ring and A = {ann(a)|0 # a € R}. If Pisa
maximal element of A, then P is a completely prime ideal of R.

Proof Letxye P =ann(a)and x ¢ P. Then xa # 0 and hence ann(ax) € 2. Since
P ¢ ann(xa) and P is a maximal element of 2, so ann(a) = P = ann(ax). Since
axy = 0, we have ay = 0, which implies that y € P. Therefore, P is a completely prime
ideal of R. [ |

Proposition 2.4 Let R be a reversible ring. Then T'(R) is connected and we have
diam(T(R)) < 3. Moreover, if [(R) contains a cycle, then g(T'(R)) < 4.

Proof Usinga similar method as in the proof of [4, Theorem 2.3], one can show that
diam(T'(R)) < 3. [ |

Using a similar method as in the proof of [4, Theorem 2.2] one can prove the fol-
lowing theorem.

Theorem 2.5 Let R be a reversible ring. Then T'(R) is finite if and only if either R is
finite or a domain.

3 Some Properties of Zero-divisors of a Reversible Ring

Lemma 3.1 Let R be a reversible ring. Then Z(R) is a union of prime ideals.

Proof LetS = R - Z(R). Then S is an m-system. Let 0 # a € Z(R). Then ab = 0
for some 0 # b € Z(R). Let I = ann(b). Then a € I and I is an ideal of R, since R
is reversible. Let 2 = {J S R|[I € ], JnS = ¢}. By Zorn’s lemma, 2 has a maximal
element, say P. Then P is a prime ideal of R by [21, Proposition 10.4]. Hence, Z(R) is
a union of prime ideals. ]

Hence, the collection of zero-divisors of a reversible ring R is the set-theoretic
union of prime ideals. We write Z(R) = U;cp P; with each P; prime. We will also
assume that these primes are maximal with respect to being contained in Z(R).
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For a reversible ring R, rg(a) is an ideal of R for each a € R. Hence, by a similar
method to the one used in the proof of [17, Theorem 8], one can prove the following
result.

Remark 3.2 Let R be a reversible and right or left Noetherian ring. Then Z(R) =
Ujea Pi, where A is a finite set and each P; is the annihilator of a non-zero element
of Z(R).

Kaplansky [17, Theorem 81] proved that if R is a commutative ring and Jy,...,J, a
finite number of ideals in R and S a subring of R that is contained in the set-theoretic
union J; U--- U J, and at least n — 2 of the J’s are prime, then S is contained in some
J«. Here we have the following theorem.

Theorem 3.3  Let R be a reversible ring and Z(R) = Ujca Pi. If A is a finite set and
I an ideal of R that is contained in Z(R), then I € Py, for some k.

Proof Suppose that Z(R) = P;uU---U P, and I is an ideal of R contained in Z(R).
We use induction on # to show that I ¢ P;, for some 1< i < n. If n = 2, then clearly
IcPorlc P, Letn > 3and for every k, I ¢ Py. Since Py is a maximal prime
ideal contained in Z(R), hence Py + I contains a regular element s for all k. Thus,
Sk = X + ay for some xj € Py and ay € I. Then

sissosp=(x1+a))(xa+ay) - (xp+a,) =x1x2 x5 + @,

for some « € I. Since I € Z(R) = U}, P;, there exists 1 < j < n such that & € P;. But
since x1x, -+ X, € N2, Py, this means that 515, ---s, = X125 -+~ x,, + &« € Pj, which is a
contradiction. Therefore, I € Py, for somel < k < n. |

Note that Remark 3.2 shows that any left or right Noetherian ring satisfies the hy-
pothesis of Theorem 3.3.

Corollary 3.4 Let R be a reversible and left or right Noetherian ring. Let P be a prime
ideal of R maximal with respect to being contained in Z(R). Then P is completely prime
and P = ann(a), for some a € R.

Proof This follows from Remark 3.2 and Theorem 3.3. [ |

By a slight modification of the proof of [8, Corollary 3.5], in conjunction with The-
orem 3.3, we have the following result.

Corollary 3.5 Let R be a reversible ring with diam(T'(R)) < 2 and Z(R) = Ujca Pi.
If A is a finite set, then |A| < 2.

Proposition 3.6  Let R be a reversible ring with diam(T'(R)) = 2. Let Z(R) = P,uP,
such that Py and P, are distinct maximal primes in Z(R). Then

(i)  P1nP,={0} (in particular, for all x € Py and y € Py, xy = 0);
(ii) Py and P, are completely prime ideals of R.
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Proof (i) This can be proved using a method similar to that used to prove [8, Propo-
sition 3.6].

(i) Since P; N P, = 0, hence P; = ann(x) and P, = ann(y), for each 0 # x € P,
and 0 # y € Py. Letab € Py and a ¢ P;. Then xa # 0 for some 0 # x € P,. Hence
b eann(xa) = ann(x) = P;. [ |

4 Diameter and Girth of I'(R), ['(R[[x; «]]) and T'(R[x; «, §])

According to Krempa [19], an endomorphism « of a ring R is said to be rigid if
aa(a) = 0 implies a = 0 for a € R. A ring R is said to be a-rigid if there exists a rigid
endomorphism « of R. Note that any rigid endomorphism of a ring is a monomor-
phism and «-rigid rings are reduced by Hong, Kim and Kwak [16]. Properties of
a-rigid rings have been studied in Krempa [19], Hirano [15], and Hong, Kim, and
Kwak [16].

Assume that a: R — R is a ring endomorphism and §: R — R is an a-derivation
of R. Following [14], we say that R is a-compatible if for each a,b € R, ab = 0 <
aa(b) = 0. Moreover, R is said to be §-compatible if for each a,b € R, ab = 0 im-
plies that ad(b) = 0. If R is both a-compatible and §-compatible, we say that R
is (@, §)-compatible. In this case, clearly the endomorphism « is injective. In [14,
Lemma 2.2], the authors proved that R is a-rigid if and only if R is a-compatible and
reduced.

Lemma 4.1 ([14, Lemmas 2.1 and 2.3]) Let R be an («, §)-compatible ring. Then we

have the following:

(i) Ifab=0, then aa”(b) = a”(a)b = 0 for any positive integer n.

(ii) Ifak(a)b = 0 for some positive integer k, then ab = 0.

(iii) Ifab =0, then a”(a)d™(b) = 0= 38" (a)a"(b) for any positive integers m, n.

(iv) Iff(x)=ag+ax+---+a,x" € R[x;a,0] and r € R, then f(x)r = 0 if and only
ifa;r = 0 for each i.

Let R be an a-compatible ring and f(x) = Y5c) aix’ € R[[x;«a]] and r € R. Then
by using Lemma 4.1 one can show that f(x)r = 0 if and only if a;r = 0 for each i.

Note that polynomial rings over reversible rings need not be reversible in general
by [18, Example 2.1]. Hence, power series rings over reversible rings need not be re-
versible in general.

Proposition 4.2  Let R be a reversible and a-compatible ring. If R is Noetherian with
diam(T(R)) = 2 and « is surjective, then diam(T(R[[x; «]])) = 2.

Proof By Corollary 3.5, either Z(R) = P, UP; is the union of precisely two maximal
prime ideals of Z(R), or Z(R) = P is a prime ideal.

Assume that Z(R) = P is a prime ideal. Since R is reversible and right Noetherian,
P = ann(a) for some a € R, by Corollary 3.4. By Lemma 4.1, «(P) ¢ P, which
implies that P[[x; a]] is an ideal of R[[x; a]]. We show that Z(R[[x;a]]) = P[[x; «]].

https://doi.org/10.4153/CMB-2016-039-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-039-2

Zero-divisor Graphs of Ore Extensions Over Reversible Rings 799

Since R[[x; a]] is a Noetherian ring,
Z(R[[x:a]]) = [AE-IJ\ rrxa] (fi(x))] U [Ag\ Crlap (82 (x))]

where for each A € Ay, rpyap(fi(x)) is a maximal right ideal contained in
Z,(R[[x; «]]) and for each A € A, €x[x;a7(g2(x)) is a maximal left ideal contained
in Z,(R[[x;a]]). Let fy(x) = 52 a;x’ and g(x) = Z;ZO bjxj € rr[x;a (f2(x)) such
that by # 0. Then

(41) aobo =0,
(42) ﬂobl + aloc(bo) =0,

(4.3) aoby + aja(by) + ara?(by) =0,

Multiplying equation (4.2) by by on the left-hand side and using Lemma 4.1 and the
reversibility of R, we have a,b% = 0 = b%a;. Multiplying equation (4.3) by b2 on the
left-hand side and using Lemma 4.1 and the reversibility of R, we have a,b3 = 0 =
bgaz. By a similar argument one can show that bja,_; = 0 = a,_1bg, for each n > 2.
Since ann(bg) € ann(b3) € ann(by) € ann(bg) < ---and R is right Noetherian, there
exists k > 0 such that ann(b) = ann(b!), for each t > k. Hence, b¥a; = 0 = a; bk, for
each i, which implies that b ) (x) = 0. We can assume that k is the smallest positive
integer such that bf fy(x) = 0. If k > 1, then b§ ™ fy (x) # 0. Since rr[ay(f2(x)) <

TR[[x;a]] (bg_lfl (x)), we have

rrxg (Fu(%)) = Resag (b8 F1(5)),

since 7r[[x;a] (f1(X)) is @ maximal right ideal contained in Z,(R[[x;«]]). Since R
is reversible and a-compatible and b% fy (x) = 0, we have b5~ fy(x)bo = 0, and so
f1(x)bo = 0, which is a contradiction. Therefore, k = 1and so f; (x)bg = 0 = bo fy (x).
By a similar argument one can show that fy(x)b; = 0 for each j > 0. Hence,
all coefficients of g(x) and f)(x) are zero-divisors, and so f)(x), g(x) € P[[x;a]],
which implies that Z,(R[[x;«]]) € P[[x;«]]. By a similar argument one can show
that Z,(R[[x;a]]) € P[[x;«]], which implies that Z(R[[x;a]]) € P[[x;a]]. Since
P = ann(a), we have P[[x;a]] € Z(R[[x;a]]), which implies that Z(R[[x; «]]) =
Pllx; «]] = rr[x;a7 (@). Therefore, diam(T(R[[x; a]])) = 2.

Now assume that Z(R) = P; U P, is the union of precisely two maximal primes
in Z(R). Since by Proposition 3.6, P; and P, are completely prime and P; n P, = 0,
R is reduced. Thus, R is a-rigid, by [14, Lemma 2.2]. Therefore R[[x; «]] is a reduced
ring by [16, Proposition 17]. Now by using [16, Proposition 17] one can show that
Z(R[[x; a]]) = P1[[x; a]] U P, [[x; «]], which implies that diam(T (R[[x; «]])) =2. W

Corollary 4.3  Let R be a reversible and Noetherian ring. If diam(T(R)) = 2, then
diam(T(R[[x]])) = 2.

Lemma 4.4 Let R be a reversible and a-compatible ring and let f = Y72, a;x’ €

R[[x;«]]. If for some natural number k, ay is regular in R while a; is nilpotent for
0<i<k-1, then f is regular in R[[x; a]].
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Proof Assume that fg = 0 for some non-zero g € R[[x;«]]. We can assume that
g=X7bjx) and a;g # 0, for each 0 < i < k — 1. Since ao is nilpotent and aog # 0,
there exists to > 1such that al’ g # 0 and a[**'g = 0. Hence, ga{® # 0 and gal**™' = 0,

since R is reversible and a-compatible. Let fo = Yio;a;x' and go = gay’. Since

gal*™ = 0 and R is reversible and a-compatible, we have f;go = 0. By continuing this
process we can find non-negative integers , ..., t,_; such that gag’a;’ -~-a£k:{ £0

to 1y — ) = to b tk1 ;
and a;(gaga;'---a;*}) = 0=(gaya;'---a;"|)a;, foreach 0 < i < k — 1. Hence,
(o]
— to te—1 _ i to 1 tr_1
0=fgaga —-al| = (Zaix )(gao a'---al)).
i=k
tr— . . .
fogta =0, which is a contradic-

Since ay is a regular element of R, we have ga’a;' --- a,~
tion. Therefore, f is regular in R[[x; «]]. [ |

Theorem 4.5 Let R be a reversible and a-compatible ring in which each zero-divisor
is nilpotent and let f(x) = Y70y a;x’ € R[[x; a]]. If some a; is regular in R, then f(x)
is regular in R[[x; a]].

Proof This follows from Lemma 4.4. ]

The following corollary is a generalization of [12, Theorem 3], when R is a reversible
ring.

Corollary 4.6  Let R be a reversible ring in which each zero-divisor is nilpotent and
let f(x) = X7y aix’ € R[[x]]. If some a; is regular in R, then f(x) is regular in R[[x]].

According to [10], a ring R is called semi-commutative if ab = 0 implies aRb = 0
for a,b € R. Clearly, reversible rings are semi-commutative, but this implication is
irreversible by [18, Examples 1.5 and 1.10(3)]. If R is a semi-commutative ring, then by
[13, Lemma 2.5] the set of all nilpotent elements of R is an ideal.

Corollary 4.7  Let R be a reversible and a-compatible ring in which each zero-divisor
is nilpotent. If the set of nilpotent elements of R is nilpotent, then in R[[x; a]] each zero-
divisor is nilpotent.

Proof Let N be the set of nilpotent elements of R. Since N is nilpotent, N* = 0 for
some k > 2. Let f(x) = Y52, a;x’ € R[[x;a]] be a zero-divisor. By Theorem 4.5,
a; € N for each i > 0. Clearly, for each n > 0, the coefficient of x™ in (f(x))* is a sum
of such elements a; a"(a;,) - a™* 2" *i1(qa; ), where iy + -+ + iy = n. Hence, by
Lemma 4.1, (f(x))* = 0. [ |

Proposition 4.8 Let R be a reversible and (a,8)-compatible ring for which
diam(T'(R)) =2. If Z(R) = Py U P, is the union of precisely two maximal primes
in Z(R), then Z(R[x; a, 8]) = P1[x5a, 8] U P2 x; &, 8] and diam (T (R[x; a, 8])) = 2.

Proof Since by Proposition 3.6, P; and P, are completely prime and P; n P, =0, R

is reduced. Thus, R is a-rigid, by [14, Lemma 2.2]. Therefore, R[x; «, 8] is a reduced
ring by [16, Proposition 6]. Let 0 # b € Py and 0 # a € P,. Then ann(a) = P,
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and ann(b) = P, by Proposition 3.6. By Lemma 4.1, «(P;) € P; and §(P;) ¢ P;, for
i =1,2. Thus, P;[x; a, 0] isanideal of R[x; a, 8], for i =1, 2. Let f(x) € Z(R[x; &, §]).
Then f(x)g(x) =0, for some 0 # g(x) € R[x; a, §]. Hence, f(x)c = 0, where c is the
leading coefficient of g(x) by [16, Proposition 6]. Then f(x) € P;[x;a, 8] or f(x) €
Pa[x; &, 8], which implies that Z(R[x; «, §]) € P1[x; ar, §]uP,[ x5, §]. Since PP, =
0 = P, Py, we have Py[x; o, 6 ]uP,[ x5, 8] € Z(R[x; &, 6]), by Lemma 4.1. Therefore,
Z(R[x; &, 8]) = P1[x; &, ]UP,[x; &, 8], which implies that diam (T (R[x; &, §])) = 2.

|

Itis often taught in an elementary algebra course that if R is a commutative ring and
f(x) is a zero-divisor in R[x], then there is a non-zero element r € R with f(x)r = 0.
This was first proved by McCoy [24, Theorem 2]. Based on this result, Nielsen [25]
called a ring R right McCoy when the equation f(x)g(x) = 0 implies f(x)c = 0
for some non-zero ¢ € R, where f(x), g(x) are non-zero polynomials in R[x]. Left
McCoy rings are defined similarly. If a ring is both left and right McCoy, then it is
called a McCoy ring. Afkhami et al. [1, Theorem 2.4] proved that if R is a reversible
and (a, §)-compatible ring and f(x)g(x) = 0 for some f(x), g(x) € R[x; &, §], then
there exist non-zero a, b € R such that f(x)a = 0 = bg(x).

Proposition 4.9  Let R be a reversible and (a, §)-compatible ring. If Z(R) = P
is a prime ideal and R is a right or left Noetherian ring with diam(T(R)) = 2, then
Z(R[x;a,8]) = P[x; a, 8] and diam(T (R[x; a, §])) = 2.

Proof Since R is right Noetherian and Z(R) = P, P = ann(a) for some a € R by
Corollary 3.4. By Lemma 4.1, «(P) ¢ P and §(P) ¢ P, implying that P[x; &, 8] is
an ideal of R[x;«, 8] and P[x;a,9] € Z(R[x;a,8]). Let f(x) be a zero-divisor of
R[x;a, 8]. Since R is reversible and («, §)-compatible, there exists 0 # b € R such
that f(x)b = 0 = bf(x), implying that f(x) € P[x; «, 8]. Therefore, Z(R[x; &, 8]) =
Plx; a, 8]

Now, let f(x), g(x) be zero-divisors of R[x; &, 8]. If f(x)g(x) =0or g(x)f(x) =
0, we are done. If f(x)g(x) # 0 # g(x) f(x), then neither f(x) nor g(x) is a, and so
a is a mutual annihilator of f(x) and g(x). Therefore, diam(T'(R[x;«,5])) =2. W

Corollary 4.10  Let R be a reversible and («, §)-compatible ring. If R is a right or left
Noetherian ring with diam(T(R)) = 2, then diam(T(R[x; «, 8])) = 2.

Proof This follows from Corollary 3.5 and Propositions 4.8 and 4.9. ]

The following example shows that there is a commutative («, §)-compatible ring
R such that R[x; a, 8] is not reversible. Hence, Corollary 4.10 does not follow from
[1, Theorems 3.2 and 3.4].

Example 4.11 ([7, Example 11]) Let R = Z,[t]/(¢*) with the derivation & such
8(t) = 1, where t = t + (¢*) in R and Z,[¢] is the polynomial ring over the field Z,
of two elements. Let o = Ig. Clearly, R is a commutative («, §)-compatible ring.
Armendariz et al. [7] showed that R[x; 8] = M,(Z,)[y], where M,(Z,)[y] is the
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polynomial ring over 2 x 2 matrix ring over Z,. Since M, (Z, ) is not reversible, neither
is R[x; 8].

Now, by using Lemma 4.4 and Remark 2.2 and a method similar to that used in
the proof of [8, Proposition 3.12], one can prove the following proposition.

Proposition 4.12  Let R be a reversible and (a, §)-compatible ring. If T(R) is not
complete and (Z(R))" = 0, for some integer n > 2, then

diam(T(R[[x; «]])) = diam(T(R[x; a, 8])) = diam(T(R)) = 2.

Theorem 4.13  Let R be a reversible and (a, 8)-compatible ring that is not isomorphic
to Zy x L. Then the following are equivalent:

(i) T(R[[x;a]]) is complete;

(i) T(R[x;a,8]) is complete;

(iii) T(R) is complete.

Proof Clearly, (i) = (iii) and (ii) = (iii). For (iii) = (i), since R # Z, x Z,, we
have xy = 0 for each x, y € Z*(R), by Remark 2.2. Therefore, T (R) complete implies
(Z(R))* = 0. Let f, g € Z*(R[[x; «]]). By Lemma 4.4, all coefficients of f and g are
zero-divisors in R. Since I'(R) is complete and R is a-compatible, we have fg = 0,
and hence ['(R[[x; «]]) is complete.

(iii) = (ii). Since R ¢ Z, xZ,, we have ab = 0 for each a, b € Z*(R) by Remark 2.2.
Therefore, ['(R) complete implies (Z(R))* = 0. Let f,g € Z*(R[x; a, §]). Since R
is reversible and («, §)-compatible, there exist 0 # a, b € R such that f(x)b = 0 and
g(x)a = 0, implying that all coefficients of f and g are zero-divisors in R. Since I'(R)
is complete and R is (&, §)-compatible, we have fg = 0, and hence T(R[x; a, 8]) is
complete. ]

Theorem 4.14 Let R ¢ 7, x 7, be a reversible and («, §)-compatible ring. If a is

surjective and R is a Noetherian ring with non-trivial zero-divisors, then the following

are equivalent:

(i) diam(T(R)) =2;

(i) diam(T(R[x;a,8])) =2;

(iii) diam(T(R[[x;a]])) =2;

(iv) Z(R) is either the union of two primes with intersection {0}, or Z(R) is prime
and (Z(R))? #0.

Proof (i)=(ii) was proved in Corollary 4.10.

(i)=(iii) was proved in Proposition 4.2.

(i)=(iv) follows from Corollaries 3.4 and 3.5 and Proposition 3.6.

We will show that (ii)=(i), (iii)=(i), and (iv)=-(i). For (ii)=-(i) and (iii)=-(i),
assume that diam(I'(R)) # 2. By Theorem 4.3, if diam(I'(R)) = 1, then
diam(T(R[x; a, 8])) =1, since R ¢ Z, x Z,.

(iv)=(i). One can prove this using Proposition 3.6 and a method similar to that
used in the proof of [8, Theorem 3.1 ((5)— (1))]. [ |
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Lemma 4.15 Let R be a reversible ring and n > 0. If f, g are non-zero elements of
R[x1,++,x,] and fg = 0, then there exist non-zero a, b € R such that fa =0 = bg.

Proof That n = 1 follows from [25, Theorem 2]. It is enough we prove it for n = 2.
Suppose that n = 2and f(x;), g(x2) € Z(R[x1][x2]) such that f(x2)g(x2) = 0. Write
f(x2) = fo+ fixa + -+ fux', g(x2) = go + @1x2 + -+ + guxy, where f;, gj € R[x1]
for each i, j. Let k = deg(fo) + -+ + deg(fin) + deg(go) + -+ + deg(g,), where the
degree is as polynomials in x; and the degree of the zero polynomial is taken to be
0. Then f(xf) = fo + fixk + -+ fruxf™ g(xF) = go + gxF + - + gux"* € R[x1],
and the set of coefficients of the f;s (resp., g;’s) equals the set of coefficients of f(x})
(resp., g(xF)). Since f(x;)g(x2) = 0 and x; commutes with elements of R, we have
f(xF)g(xF) = 0. Hence, there exist non-zero elements a, b € R such that f(xF)a =
0 = bg(xF), implying that f(x,)a = 0 = bg(x,). [ |

Note that since polynomial rings over reversible rings need not be reversible in
general by [18, Example 2.1], Lemma 4.15 does not follow from [25, Theorem 2] for
n>2.

Corollary 4.16  Let R # Z, x Z, be a reversible and Noetherian ring with non-trivial

zero-divisors. The following conditions are equivalent:

(i) diam(T(R)) =2;

(ii) diam(T(R[x])) =2

(iii)) diam(T(R[x,...,x,])) =2foralln > 0;

(iv) diam(T(R[[x]])) =2

(v)  Z(R) is either the union of two primes with intersection {0}, or Z(R) is prime
and (Z(R))?* #0.

Proof By Theorem 4.14, (i), (ii), (iv), and (v) are equivalent.

(iii)=(ii) is trivial.

(ii)=>(iii). It is enough we prove for n = 2. Suppose that n = 2 and f(x2), g(x,) €
Z(R[x1][x2]). If f(x2)g(x2) = 0 or g(x2)f(x2) =0, then d(f,g) = 1. So suppose
that f(x2)g(x2) # 0 # g(x2) f(x2). Write f(x2) = fo + fixa + - + fux)', g(x2) =
Qo + §1X2 + -+ + guxy, where f;,g; € R[x;] for each i, j. Let k = deg(fy) +--- +
deg(fm) +deg(go) +---+deg(g,). Then by the proof of Lemma 4.15, f(xF), g(xF) €
Z(R[x1]) and f(xF)g(xF) # 0 # g(xF)f(xF). Since diam(T(R[x;])) = 2, there
exists i € R[x,], which annihilates f(x¥) and g(xF). Hence, h annihilates f(x,) and
g(x2), implying that d(f, g) = 2. [ |

Proposition 4.17  Let R be a reversible and (a, §)-compatible ring. If f,g ¢
Z*(R[x;a,8]) are distinct non-constant polynomials with fg = 0, then there exist
a,beZ*(R)suchthata—- f-g-b-aisacycdeinT(R[x;a,8]),orb— f—g—-bis
acycein T(R[x;a,8]).

Proof If f,g € Z*(R[x;a, 8]), then there exist a,b € Z*(R) such that af = fa =

0 = bg = gb. Now, using a method similar to that used in the proof of [8, Proposition
4.1] completes the proof. ]
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Corollary 4.18 Let R be a reversible and (a, 8)-compatible ring and let f €
Z*(R[x;a,8]) a non-constant polynomial. Then there exists a cycle of length 3 or 4
in T(R[x; a, 8]) with f as one vertex and some a € Z*(R) as another.

The following theorem is a generalization of [8, Theorem 4.3], when R is a re-
versible ring.

Theorem 4.19  Let R be a reversible and a-compatible ring. Then

g(T(R)) > g(T(R[x;a])) > g(T(R[[x;a]])).

In addition, if R is a reduced ring and T (R) contains a cycle, then
g(T(R)) = g(T(R[x;a])) = g(F(R[[x; a]})).-

Proof Using Corollary 4.18 and a method similar to that used in the proof of [8,
Theorem 4.3] completes the proof. ]

Corollary 4.20 Let R be an a-rigid ring and let g(T(R[x;a,68])) =3. Then
g(T(R)) = 3.
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