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Abstract

We gather evidence on a new local-global conjecture of Moreté and Rizo on values of irreducible characters of
finite groups. For this we study subnormalisers and picky elements in finite groups of Lie type and determine them
in many cases, for unipotent elements as well as for semisimple elements of prime power order. We also discuss
subnormalisers of unipotent and semisimple elements in connected as well as in disconnected reductive linear
algebraic groups.

1. Introduction

In this paper we gather evidence for a new far-reaching conjecture of Alex Moreté and Noelia Rizo on
character values of finite groups. Let G be a finite group. For an element x € G let Irr* (G) denote the set
of irreducible complex characters of G that do not vanish at x. Define the subnormaliser of a subgroup
H of G to be

Sg(H) :={g € G| H<(g,H)}
and for x € G let

Subg (x) := (SG(<x>)>.
The following conjecture was put forward by Moreté and Rizo [30]:

Conjecture 1 (Moret6—Rizo). Let G be a finite group and p a prime. Then for any p-element x € G
there exists a bijection fy : Irt* (G) — Irr* (Subg (x)) such that

(D X(l)p = fx(/\/)(l)p, and
(2) Qx (%) = Q(fx (x)(x)).

Let us comment. (A much more thorough discussion of the conjecture and various extensions of
it is given in [30]). First, observe that Subg (x) contains the normaliser of any Sylow p-subgroup P
of G containing x. In fact, as we show, it is generated by these. Thus, by the now proven McKay
conjecture there exist bijections between Irr, (NG (P)) and both Irr,»(G) and Irr,/ (Subg(x)), hence
also between the latter two. Since p’-degree characters do not vanish on any p-element, this would form
part of the required bijection f,. Now, in addition, Conjecture | predicts a bijection on characters in
Irr* (G) \ It (G).
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By Navarro’s extension of the McKay conjecture, there should even exist a Gal(@p /Qp)-equivariant
bijection Irr,/ (G) — Irrp (Subg (x)), where Q,, denotes the field of p-adic numbers. Thus, and in view
of the examples we discuss in this paper, we are led to ask whether in the setting of Conjecture | there
exists a bijection f, such that moreover for any y € Irr*(G) we have

Here for an algebraic number @ € Q we write @) := [Ng(a)/q(@)|,"1%*@) € Ry for its p-adic
valuation.

Of course the conjecture is only meaningful when Subg (x) < G. An interesting special case is as
follows: A p-element x € G is called picky if it belongs to a unique Sylow p-subgroup of G. Note that
G has a picky p-element if and only if it does not have a redundant Sylow p-subgroup in the sense
of [28]. As an example, assume G has trivial intersection (TI) Sylow p-subgroups. Then by definition
any nonidentity p-element lies in a unique Sylow p-subgroup of G and thus is picky. This is the case, in
particular, when G has cyclic Sylow p-subgroups of order p. Now note that x is picky in G if and only
if Subg (x) = NG (P), for P < G a Sylow p-subgroup of G containing x (see Corollary 2.7).

In this paper we undertake to test Conjecture | and Properties (3) and (4) above in simple groups.
The paper is organised as follows. In Section 2 we collect some basic results on picky elements and
subnormalisers. In Section 3 we classify the picky unipotent elements in groups of Lie type and
determine the subnormalisers of unipotent elements in most types. Based on this we prove in Section 4
the validity of Conjecture 1 for unipotent elements of various families of groups of Lie type. In Section 5
we classify picky semisimple p-elements in groups of simply connected Lie type for all p # 2. In the
final Section 6 we discuss subnormalisers of unipotent and semisimple elements in connected and
disconnected reductive algebraic groups.

2. Basic observations

Let’s make some easy observations about picky p-elements. Throughout G is a finite group and p is a
prime number.

Lemma 2.1. Let P < G be a Sylow p-subgroup and x € P picky in G. Then Ng ({x)) < Ng(P).

Proof. Let g € Ng({x)). Then (x) < P8, so x lies in the Sylow p-subgroups P and P%. As x is picky
in G, we must have g € NG (P). O

Lemma 2.2. Let P < G be a Sylow p-subgroup and x € P. If both P and Cg(x) are abelian then x is

picky.
Proof. If x € P, P8 for some g € G then P, P8 < Cg(x), which has a unique Sylow p-subgroup, being
abelian, so P = PS. O

Lemma 2.3. Let H < G with [G : H] prime to p and x € H a p-element.

1. If x is picky in G then x is picky in H.
2. If H 2 G then x is picky in G if and only if it is picky in H.

Proof. Part (a) follows as any Sylow p-subgroup of H is one of G, while in (b), any p-element and any
Sylow p-subgroup of G is contained in H. O

Lemma 2.4. Let N < G where N is either a p-group or central. Then a p-element x € G is picky if and
only if xN is picky in G/N.

Proof. If N is a p-group, the Sylow p-subgroups of G /N are of the form P/N for P a Sylow p-subgroup
of G, from which the assertion follows. If N is central, then by the previous part we may assume it is a
p’-group. Letx € P; for P; € Syl ,(G) with Py # P;. As P; is the unique Sylow p-subgroup of P;N we
also have P|N # P,N and so xN lies in two distinct Sylow p-subgroups of G/N. The reverse direction
is clear. O
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Thus to study picky elements of a simple group S we can instead consider a covering group of S, or
an extension of S by a group of p’-automorphisms.
Next, we collect some elementary properties of subnormalisers.

Lemma 2.5. Let H < G and x € G a p-element with (x) <<H. Then x € O, (H).

Proof. Let (x) < N; &--- 4N, = H be a subnormal series. Clearly x € O, (N), and since O, (;) is
characteristic in N; we have O, (N;) < Op,(N,41) for all i, whence the claim. m]

The following characterisation turns out to be very useful and could also be taken as definition of
subnormaliser for p-elements. It shows that the subnormaliser of a p-element x is very closely related to
the p-local structure “around x”’:

Proposition 2.6. Let x € G be a p-element. Then Subg (x) is generated by the normalisers of those
Sylow p-subgroups of G that contain x.

Proof. Clearly (x) is subnormal in the normaliser of any Sylow p-subgroup containing x, and hence
Subg (x) contains all of these normalisers. For the converse, first assume that (x) << H for some subgroup
H < G.Then x € O,(H) by Lemma 2.5, so x is contained in all Sylow p-subgroups of H. Let P be a
Sylow p-subgroup of H. By the Frattini argument, we have H = O”' (H)Np (P), hence H is generated
by the normalisers in H of its Sylow p-subgroups, each of which contains x.

Now let N < G be any subgroup with a normal Sylow p-subgroup Q containing x. In particular, x is
subnormal in V. Let (x) < Q| <... < Q < N be a subnormal series in N. If Q is not a Sylow p-subgroup
of G there is a p-subgroup P < G withQ S Pand P > Q. Since Q < Pthen (x) <Q; <...4Q<H
is a subnormal series in H := (N, P). That is, any N as above is contained in a subgroup with a larger
Sylow p-subgroup in which (x) is still subnormal. Hence, combining with the previous paragraph, any
subgroup of G in which x is subnormal is contained in a subgroup generated by (subgroups of) Sylow
p-normalisers of G that contain x. Our claim follows. O

See also Proposition 6.4 for an analogue for algebraic groups. This shows (see also [30, Thm 2.9]):

Corollary 2.7. A p-element x € G is picky if and only if Subg (x) = Ng(P) for a Sylow p-subgroup P
of G containing x.

Recall that a p-subgroup Q < G is radical if Q = O, (Ng(Q)). Since Sylow p-subgroups are clearly
radical, we also obtain (see [5, Prop. 2.1(a)]):

Corollary 2.8. Let x € G be a p-element. Then Subg (x) is generated by the normalisers of the radical
p-subgroups of G that contain x.

The subnormaliser of a p-element controls its fusion in a Sylow subgroup; Moreté and Rizo had
obtained a different proof of this fact based upon [5, Prop. 2.1].

Lemma 2.9. Let P be a Sylow p-subgroup of G and x € P. Then Subg (x) is generated by the elements
g € G withx8 € P.

Proof. Let x8 € P. Then x € 8P whence 8P < Subg (x). Since all Sylow p-subgroups of Subg (x) are
conjugate, there is i € Subg (x) with P = P" and so hg € NG (P) < Subg (x), giving g € Subg (x).
Conversely, let R := (g € G | x8 € P). Clearly, Ng(P) < R. Assume x € "P for some /h € G. Then
x,x" € P and thus & € R. Thus, R contains the normalisers of all Sylow p-subgroups of G containing x
and hence Subg (x) by Proposition 2.6. O

Corollary 2.10. Let x € G be a p-element. Then x is G-conjugate to y € Subg (x) if and only if x, y are
already Subg (x)-conjugate. In fact, Subg (x) is the smallest subgroup of G containing both Cg(x) and
a Sylow p-subgroup of G with this property.

Proof. If x,y € Subg (x) are G-conjugate, then up to conjugation in Subg (x) we may assume they lie
in a common Sylow p-subgroup P (of Subg (x)). Then the first claim follows by Lemma 2.9. For the
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second, let R < G be a subgroup containing Cg (x) and a Sylow p-subgroup P of G (which we may
assume contains x) with the stated property. Let g € G with x® € P and thus x, x& are R-conjugate by
assumption. That is, there exists r € R with x = x8", whence gr € Cg(x) < Randso g € R. Lemma 2.9
then shows Subg (x) < R. m|

Remark 2.11. It is tempting to ask whether the p-fusion system of the subnormaliser of a p-element
of G is determined by the p-fusion system of G. But this is not the case. I'm indebted to Martin van
Beek for the following counterexample: the 3-fusion categories of M, and PSL3(3) are known to
be isomorphic. Yet, as we will show, PSL3(3) has a (regular unipotent) picky 3-element, while the
corresponding 3-elements in M1, have centraliser isomorphic to 3 X W4 and subnormaliser M,.

Proposition 2.12. Let P < G be a Sylow p-subgroup and x € P. If P is abelian then Subg(x) =
(Cg(x),NG(P)).

Proof. By Burnside’s theorem, in this case N (P) controls fusion of elements in P, so the claim follows
from Corollary 2.10.

Alternatively, let H := (Cg(x),Ng(P)). Since x is subnormal in both Cg(x) and N (P) we have
H < Subg (x). On the other hand, as P is abelian, C¢ (x), and hence H, contains all Sylow p-subgroups of
G containing x. As H contains Ng (P), and all Sylow p-subgroups of H are H-conjugate, it even contains
the normalisers of all Sylow p-subgroups of G containing x. Hence Sub, (G) < H by Proposition 2.6,
and we are done. O

Observe that Proposition 2.6, Lemma 2.9, Corollary 2.10 and Proposition 2.12 hold more generally
with x replaced by any p-subgroup H of G and Cg (x) by Ng (H), with identical proofs.

Lemma 2.13. Let G = H; X -+ X H, and x = (x1,...,x,) € G. Then Subg (x) = Subg, (x1) X -+ X
Subg, (x,). In particular, x is picky in G if and only if the projection of x into each component H; is.

Proof. Clearly, g = (g1,...,8r) € Sg(x) if and only if g; € Sy, (x;) for all i, showing the first claim.
Since the Sylow p-subgroups of G are of the form [];_, P;, with Sylow p-subgroups P; < H;, the second
assertion follows from the first using Corollary 2.7. O

The next observation allows one to bound subnormalisers from above:

Lemma 2.14. Let x € G be a p-element withx € P € Syl ,(G). If H < G contains NG (P), and x € H®
for g € G implies HS = H, then Subg (x) < H. If moreover (x) << H, then Subg (x) = H.

Proof. Let g € G be such that x € P¢. Then x € P¥ < H%, so H® = H by assumption, and moreover
Ng(P8) =Ng(P)8 < H8 = H. Thus, H contains the normalisers of all Sylow p-subgroups containing
x, whence the claim by Proposition 2.6. O

The following result extends Lemma 2.4:

Lemma 2.15. Let N < G, where N is either a p-subgroup or central, and x € G a p-element. Then
N < Subg (x) and Subg,n (xN) = Subg (x)/N.

Proof. If N is central the claim is obvious. Assume N is a p-group. Since (x, N) is a p-group by assump-
tion, we have (x) <<(x, N) and so N < Subg (x). Suppose gN € Sg/n (xN), hence (xN) <<(gN,xN).
Then (x, N) <<(g,x, N) and so (x) << (g, x, N), yielding g € S (x). The reverse inclusion is analogous.
See also [5, Lemma 2.3]. O

It is tempting to define G has almost normal Sylow p-subgroups if Subg (x) = G for all p-elements
x € G.Thisisin some sense at the opposite extreme from TI-Sylow p-subgroups, for which any p-element
x # 1 lies in exactly one Sylow p-subgroup, but the two notions coincide when the Sylow p-subgroup is
normal. An example with non-normal Sylow p-subgroup for p = 2 is the group SmallGroup(324,37),
of the form 33.90,. In fact, similar examples exist for all primes p. Nonsolvable examples of almost
normal Sylow p-subgroups are given by the simple groups PSL3(7), PSL3(13), PSU3(5) and PSU3(11)
at p = 3.
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3. Unipotent elements in groups of Lie type

Here we investigate picky elements and subnormalisers for unipotent elements of finite groups of Lie
type. More precisely, we assume G is a connected reductive linear algebraic group over an algebraically
closed field of characteristic p and F : G — G is a Steinberg map with (finite) group of fixed points
G = GF (see, e.g., [27]). Observe that unipotent elements of G are exactly the p-elements of G. The
case of p’-elements will be discussed in Section 5.

3.1. Unipotent picky elements

Let T < B be a maximal torus contained in a Borel subgroup of G. Thus B is the group of F-fixed
points of an F-stable Borel subgroup B < G with F-stable maximal torus T where T = TF. Then
B, N := Ng(T) form a split BN-pair in G with Weyl group W := N/T. Let ® be the root system of this
BN-pair, and ®*, A C ® be the positive respectively simple roots determined by B. Now U := O,,(B) is
a Sylow p-subgroup of G and B is its normaliser. Any element in U can be written uniquely as a product
of root elements from the root subgroups U, for @ € ®*, contained in U (see [27, §23]).

Proposition 3.1. Let G be connected reductive with Steinberg map F. Then a unipotent element
x € G =GF s picky if and only if. up to conjugation, x is a product of root elements of G in B in
which all simple roots do appear.

Proof. Assume x € U = O, (B) can be written as a product of root elements not involving elements
from U, where @ € A. Let s € W be the corresponding simple reflection and s € NG (T) a preimage.
Then x* € B, that is, x lies in the Borel subgroups B and B$ which are distinct, as B® does not contain
root elements for the root @. Hence x lies in two different Sylow p-subgroups of G and thus is not picky.

For the converse, assume x lies in two Sylow p-subgroups, so (up to conjugation) x € B and x € BS
for some g € G. Writing g in the Bruhat decomposition g = ujtwu, withu; e U,t € T and w € W we
find x € (BN B")"2, so up to conjugation x € BN BY for some 1 # w € W. Now by [4, Prop. 2.5.9]
then x € Uy, wWith wo € W the longest element, and U, is the product of the root subgroups U,
for @ € ®* N w(P*) by [4, Prop. 2.5.16]. Since w # 1 there is some simple root @ € A made negative
by w and so the corresponding root element cannot occur in the unique expression of x as a product of
root elements. O

We can now classify picky unipotent elements. Note that by Lemmas 2.3 and 2.4 the precise isogeny
type of our connected reductive group G does not matter since [G : [G, G]] and |Z(G)| are both prime
to p. Thus, by virtue of Lemma 2.13 we are reduced to the case when G is simple, which we now assume.

Theorem 3.2. Let G be simple simply connected with Steinberg map F : G — G. A unipotent element
x € G\ {1} is picky if and only if one of the following holds:

(1) x is regular unipotent;

(2) G =SUy41(q) withn > 1 and x has Jordan block sizes (2n, 1);

(3) G =2By(2* Yy with f > 0 is a Suzuki group;

4) G =2G,(3*/*") with f > 0 is a Ree group; or

(5) G =2F4(2%/*Y) with f > 0 is a Ree group and |Cg (x)| = 245, for ¢* = 22/ +1.

Proof. By [4, Prop. 5.1.3], a unipotent element x € G is regular if and only if it lies in a unique Borel
subgroup of G. Assume x € G lies in two distinct Sylow p-subgroups, so in two Borel subgroups
By # B of G, say B; = Bf for F-stable Borel subgroups B; of G, i = 1,2. Then x lies in B; # B, and
hence is not regular unipotent. So regular unipotent elements are picky.

For the converse, first assume G is untwisted, so F acts trivially on the Weyl group of G and hence all
root subgroups of G in B are F-stable. Let x € U be not regular unipotent. Then, again by [4, Prop. 5.1.3],
it can be written as a product of root elements in which at least one simple root @ does not occur, so it
cannot be picky by Proposition 3.1.
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Now assume F acts nontrivially on W and hence on A. Let x € U be picky. Then by Proposition 3.1
it is a product involving root elements from all root subgroups for simple roots @ € A. Now by
[27, Ex. 23.10], for example, the root subgroup U, consists of elements which are products of root
elements of G lying in an F-orbit of simple roots of G, unless « is the image under the orbit map of a
pair of roots of G forming a diagram of type A,, B, or G,. Thus, if we are not in one of the latter cases,
x is a product of root elements of G involving all simple roots and hence is regular.

It remains to discuss the cases for which the Dynkin diagram has a subgraph of type A,, B, or G2
with nontrivial F-action. Thus G is one of SU2,41(q), 2B2(¢?), 2G2(g?) or 2F4(g?). The rank 1 groups
SUs(q), ?B2(g%) and 2G»(g?) have TI Sylow p-subgroups [I, Prop. 2.3], so any of their nontrivial
p-elements is picky. For G = 2F4(g?) the list of unipotent class representatives in [33] reveals that in
addition to the regular classes, there are two further cases, 13, 414, involving root elements for both
types of simple roots, with centraliser as given in the statement, while all other elements cannot be
picky, by Proposition 3.1. (Note that here the elements from the two simple root subgroups are denoted
a1 (t)as(t2) and a3(t) respectively.) Finally, for G = SUy,41(g) it remains to identify picky elements
x that involve elements from all simple root subgroups of G, but not from all simple root subgroups
of G. Thus, expressed as a product of root elements for G, x involves root elements from U, for all
a€{al,...,x-1,U, + Unsl, A2, - - ., @2y }, if the simple roots ay, . . . , @z, of G are numbered along
the Dynkin diagram of G, and hence has Jordan block sizes (2n, 1) in the natural representation. O

Note that the elements occurring in (2) and (5) above are subregular, that is, their centraliser
dimension in G is only 2 larger than that of regular elements

3.2. Subnormalisers of unipotent elements

We keep the setting at the beginning of this section, so G = Gf" with G connected reductive and F a
Steinberg map.

Recall that the standard parabolic subgroups of G are exactly the overgroups of the Borel subgroup B,
and are in natural bijection with the subsets I" of A [27, Prop. 12.2]; we write Pr for the corresponding
parabolic subgroup. Let x € U be unipotent. Then the lattice of standard parabolic subgroups P of
G such that x € O,(P) has a unique maximal element with respect to inclusion, which we denote
P(x). Indeed, writing x as a product of root elements u, € U,, with @ € ®*, we have P(x) = Pr for
I' := {@ € A | uy = 1}. The Chevalley commutator formula then shows that P(x) = P(x*) forallu € U.

The following is a generalisation of the argument used to prove Proposition 3.1:

Lemma 3.3. Let x € U and C = x% the conjugacy class of x in G. Assume that P(x) > P(y) for all
y € CNU. Then P = Subg (x).

Proof. Since x is subnormal in P(x) by definition, it suffices to see that any H < G such that (x) << H
lies in P(x). Let H be such a subgroup. In particular x € O, (H) by Lemma 2.5. By the Borel-Tits
theorem [27, Thm 26.5] there is a parabolic subgroup H’ > H such that x € O, (H’), so we may assume
H is parabolic. Furthermore, we may replace H by any overgroup H’ with x € O, (H’). As any such
overgroup is again parabolic, we may assume H is parabolic and maximal with respect to x € O, (H).
Let g € G such that H® is a standard parabolic subgroup, say H8 = Pr for I' € A. Then x8 €
CNO,(Pr) € CNU and hence Pr < P(x) by assumption. In fact, by our choice of H we have
Pr = P(x8). Using the Bruhat decomposition we can write g = uwb withu e U,b € B < Pr,w € W,
so H*Y = Prandx*" € O, (Pr). Sincealsoy :=x" € O,(Pr) wehave y,y" € O,(Pr).Let Wpr < W
denote the Weyl group of the standard Levi subgroup of Pr. Any w ¢ Wr sends at least one simple root
in A \ T into a negative root. On the other hand, since Pr = P(x8) all simple roots from A \ I" occur
in y, whence we can’t have "y € Pr. Thus, w € Wr, giving g € Pr and so H = 8Pp = Pr < P(x). This
proves our claim. O

Proposition 3.4. Let G be connected reductive with Steinberg map F. Let x € G = GF be unipotent.
Then Subg (x) is a parabolic subgroup of G.
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Proof. By Proposition 2.6, Subg (x) contains a Sylow p-normaliser of G, hence a Borel subgroup. Since
all overgroups of B are parabolic subgroups, so is Subg (x). O

Proposition 3.5. Let x € B be unipotent. Suppose that x can be written as a product of root elements
in which no simple root in Ay C A occurs. Then Pp, < Subg(x). In particular, if Ay = A then
Subg (x) = G.

Proof. Let a € A be a simple root and P, := P(,) the corresponding standard parabolic subgroup of
G. By assumption x lies in the unipotent radical of P, so (x) is subnormal in P,. The claim follows
since (Py | @ € A1) = Py, (see [27, Prop. 12.2]). The final assertion is now obvious. ]

Subnormalisers in the simply laced, untwisted case are the easiest to determine:

Proposition 3.6. Let G be one of SL,,(q) (n > 2), SO, (q) (n > 4), Es(q), E7(q) or Eg(q) and x € G
be unipotent. Then Subg (x) = G if and only if x is not regular.

Proof. Forregular elements this is Theorem 3.2. For nonregular elements, we first consider G = SL,,(g).
For n = 2 the only nonregular unipotent element is the identity, for n = 3 the nontrivial nonregular
unipotent elements have Jordan type (2, 1) and thus are conjugate to a root element for the nonsimple
positive root, so Subg(x) = G by Proposition 3.5. Now assume n > 4. Let x € G be a nonregular
unipotent element. Then x has at least two Jordan blocks, so up to conjugation, x can be written as a
product of simple root elements in which at least one simple root « is missing. If this « lies at an end
of the Dynkin diagram, then x®* is a conjugate in B in which the simple root next to the end node is
missing. So we may assume a # ai,a,—1. Let Py, P> be the end-node standard parabolic subgroups
of G, corresponding to A \ {a1}, A \ {@,—1} respectively. Let L; be the corresponding standard Levi
subgroups, so L; = P;/U;, with U; = O, (P;) the unipotent radical of P;. Then for i € {1, 2}, the image
X of x in L; is a product of root elements not involving the simple root « of L;, hence not regular, so
by induction Suby, (¥) = L,;. (Note that L; = GL,_;(g), containing SL,,_;(g) as a normal subgroup
of p’-index.) As U; is a p-group, Subp, (x) = P; fori = 1,2 by Lemma 2.15. Since (P;, P;) = G by
[27, Prop. 12.2] this achieves the proof.

Now assume G is of one of the other listed types. Let x € G be nonregular unipotent. By
[4, Prop. 5.1.3], up to conjugation, x can be written as a product of root elements in which at least
one simple root « is missing. Since the Dynkin diagram of G has three end nodes, there are at least
two end node simple roots a1, @y € A such that @ € A \ {a;}, i € {1,2}. Let P; be the corresponding
standard parabolic subgroups of G. Since their Levi subgroups are of type D,,_;, E,_; or A3, for which
we know the result by induction, respectively by the first part, we can argue exactly as before to see that
Subp, (x) = P; for i = 1,2 and then Subg (x) > (P1, P2) = G. O

3.3. Nonsimply laced and twisted types

In order to determine subnormalisers of unipotent elements in nonsimply laced-type groups we first
need to deal with the groups of rank 2. Note that for the rank 1 groups SU3(q), *B2(g?) and 2G»(q?)
the subnormalisers of all nontrivial unipotent elements are Borel subgroups by Theorem 3.2.

From now on, we number the simple roots in A, for G a simple group, as in [27, Tab. 9.1, Tab. 23.2],
and we write P; := Py, 1= P(q,) for a; € A.

Proposition 3.7. Let G be one of By(q), G2(q) or *D4(q) with g = p7, or 2F4(q*) with ¢* = 22/ 1,
and x € G unipotent. Then Subg (x) = G unless one of

(1) x is picky, where Subg (x) ~g B;

(2) G = By(q) with p # 2 and |Cg (x)| = 2¢° (g + 1), where Subg (x) ~G Pa;

(3) G = G,(q) with p # 3 and |Cg (x)| = 3¢*, where Subg (x) ~g Pi;

(4) G =3D4(q) and x is in class D4(ay) with |Cg (x)| = ¢°, where Subg (x) ~G Pa; or
(5) G =?F4(qg*) and |Cg (x)| € {3¢'%, 248,448}, where Subg (x) ~G Pi.
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Proof. For all of these groups we know parametrisations of unipotent classes in parabolic subgroups and
expressions for class representatives in terms of root elements. The picky elements have subnormaliser
conjugate to N (U) = B, by Corollary 2.7. We consider the remaining classes.

Let us start with G = B;(g). Here representatives for the unipotent conjugacy classes are given in
[9, 34]. With the criterion in Proposition 3.5 we see that for p = 2 there cannot be a class (apart from
the regular ones) with Subg (x) < G, and for p > 2 only the class with representative denoted Ay, in
[34] could possibly have that property. Representatives for the unipotent conjugacy classes of G2(q)
are given in [6, 10, 11], and again by Proposition 3.5 it follows that only the class of G,(2/) denoted
A4 in [11] and the class of Ga2(p/), p > 5, with representative u4 in [6] could have Subg(x) < G.
For G = 3D4(q), consulting the tables of class representatives in [12, 16], we see that we only need to
consider the classes with representatives ug(1)uzq+5(a) and u o (1)u415(1). Now note that conjugating
ug(1)uzq+p(a) with the simple reflection s, gives an element not involving any simple root element.
So we are left with the class D4(a;) with representative u,(1)u4g(1). Finally, for G = %F4(q%) by
[33, Tab. II] apart from the picky cases identified in Theorem 3.2 only the representatives ug, u19, i1, 112
involve one of the simple root elements.

It remains to determine the subnormaliser for the elements in (2)—(5). By the tables in the cited
literature, respectively in [ 15, 16] for 3Dy (q) and [18] for g, (qz), in all four groups we have the following
situation: exactly one of the unipotent radicals of the two maximal standard parabolic subgroups contains
an element x as considered. Moreover, the centraliser of x in that parabolic subgroup is the same as in
G. By counting, in fact each such x lies inside exactly one such maximal parabolic subgroup, say P.
Since any parabolic subgroup contains a Borel subgroup, hence a Sylow normaliser, we conclude by
Lemma 2.14 that Subg (x) = P. O

Observe that the unipotent elements in (2)—(4) above are again subregular.

Lemma 3.8. Let G = SOy,,11(q) (n > 3) with q odd and x € G be unipotent. Then Subg (x) # G if and
only if either x is regular, or if x has Jordan form (2n — 1,12) and |Cg (x)| = 2¢""*' (g + 1), in which
case Subg (x) = P,,.

Proof. Let P be the standard maximal parabolic subgroup of G of type A,_i, that is, the stabiliser
of a maximal isotropic subspace in the natural representation, and Q the standard maximal parabolic
subgroup of type B,,_;. We claim that if (up to conjugation) Subp(x) = P then Subg (x) = G. Indeed,
assume Subp(x) = P and let X be the image of x in the standard Levi subgroup L = GL,(q) of P.
By Proposition 3.6, i is not regular, so (up to conjugation) its image y in the Levi factor of a standard
parabolic subgroup L; of L of type GL,,—1 (g) is not regular either. Now, L, is a standard Levi subgroup
of the standard Levi subgroup M of Q of type SO,,,—1 (¢), and hence by induction Suby,; (y) = M. (The
induction base is given by the case 2n — 1 = 5 from Proposition 3.7.) But then Subg (x) = Q, and since
P is maximal in G and Q is distinct from P, we have Subg (x) = G.

Now from the explicit class representatives given in [7, §4.1.2] it can be checked that unless x is
regular or has type Vg(2n — 1) ® Vg(1) @ V(1) (in the notation of loc. cit.), there is a conjugate y € P
of x whose image in L is not regular, so has Subp(y) = P and then Subg(y) = G by the first part.
Finally assume x has type Vg(2n—1) ® Vg(1) @ V(1). Then x has Jordan type (2n—1, 12). In particular,
writing x € U as a product of root elements, all u,, @ € A \ {@,}, must be nonzero. But then the only
standard parabolic subgroups of G that contain x in their radical are B and P,, (of type B;). The claim
now follows with Lemma 2.14. O

Lemma 3.9. Let G = F4(q) and x € G be unipotent. Then Subg (x) = G unless x is regular, or q is
odd and x is in class F4(ay), with |Cg(x)| = 2¢°® and representative x4 in [35, Tab. 5 resp. 6], where
Subg (x24) = P (3,4

Proof. Representatives for the unipotent conjugacy classes of G as well as for a Levi subgroup L of G
of type B3 were determined in [32, 35]. First assume p = 2. We claim that only the regular unipotent
elements in L have subnormaliser strictly smaller than L. Indeed, seven of the class representatives given
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in [32, Prop. 2.1] do not involve any simple root element, and the other three nonregular ones can be
conjugated by a simple reflection to elements x which only involve the 3rd simple root of L. Then x has
trivial image in the standard Levi subgroup of L of type B,, and image involving just one simple root in
the standard Levi subgroup of type A,, so Suby (x) = L by Proposition 3.5.

Now we discuss the unipotent class representatives of G from [32, Thm 2.1]. The ones labelled
xo through x19 do not involve any simple root element, and similarly for x;7,x,g. For elements
x € {x22,...,X2} only one of the short simple roots occurs, so the images of x in standard Levi sub-
groups of type A, and B3 are nonregular and we conclude by Proposition 3.5 and the previous paragraph.
Similarly for x = x50, x2; the image in a Levi of type Cj is trivial, and in a Levi of type B3 is nonregular.
By Lemma 3.8 this leaves us with the elements xy9 and x39, of type F4(a;). The given representatives
show that these elements are regular in the subsystem subgroup of type B4. Conjugating x = xp9 or x39
with the simple reflection not belonging to the B3-subsystem, we obtain an element which only involves
simple root elements for the 2nd and 3rd simple root. By the first paragraph, the subnormaliser of that
element contains the standard parabolic subgroup of type B3, but by Proposition 3.6 also the one of
type Az, hence it is all of G.

If p is odd, Proposition 3.7 shows that apart from the regular classes, only the unipotent class of L
with representative zg (in the notation of [35, Tab. 3]) has proper subnormaliser. From [35, Tab. 5 and 6]
we conclude that again at most the classes of G of type F4(a;) with representatives x;3, x4 might have
a proper subnormaliser. Conjugating x = x3,x24 by the simple reflection not in the B3-subsystem we
obtain elements whose image in L equals z7, zg respectively. As observed above, Sub; (z7) = L and so
Subg (x23) = G by the usual argument. On the other hand, we have Suby (zg) is the standard parabolic
subgroup corresponding to the 3rd node of the diagram of B3, which is also the 3rd node of the diagram
of F4. Thus the set of standard parabolic subgroups of G containing x»4 in their radical has the unique
maximal element P34}, and so Subg (x24) = P(3 4y by Lemma 2.14. o

Lemma 3.10. Let G = SUy,,,(q) and x € G be unipotent. Then Subg (x) = G unless x is regular, or x
has Jordan type (2m — 1, 1), when Subg (x) ~G P

Proof. There is nothing to show for m = 1, so assume m > 2. Let x € G be unipotent and denote by
A1 = Ay > - - - the lengths of its Jordan blocks. According to the normal forms given in [7, 4.1.3], x has
a conjugate in B in which the entry at position (i, + 1) is zero for at least 2m — A indices 1 < i < m.
Assume 2m — A; > 1. Then the image of x in the standard Levi subgroup GL,,(g?) is not regular and
thus Subg (x) contains the corresponding maximal parabolic subgroup by Propositions 3.5 and 3.6.
Furthermore, the image of x in the standard Levi subgroup GU,,,—»(g) also has at least two zero entries
directly above the main diagonal, unless 4; = A,. In the latter case we must have 2m = 4, and then the
image of x in GUy,,,—2(g) = GUy(q) is trivial. So in either case, by induction Subg (x) also contains
this end node parabolic subgroup and thus equals G.

This only leaves the cases when 2m — A < 1, that is, x has Jordan type (2m) or (2m — 1, 1). The first
of these is the class of regular unipotent elements. If x € U has a Jordan block of length 2m — 1, then it
must involve elements from all simple root subgroups except possibly for the ‘middle’ one. In particular,
the only standard parabolic subgroups whose unipotent radical could contain x are B and P,,. It is easy
to see that O, (P,,) contains elements with a Jordan block of length 2m — 1; then Lemma 2.14 shows
Subg (x) = Py,. O

The subnormalisers of unipotent elements in Sp,,, (¢) (n = 3), SUz41(q) (m = 3), SO, (q) (n > 4)
and %E¢(g) seem more involved and we will not discuss them here. For example, in Sp,,, (¢) the number
of unipotent classes with proper subnormaliser seems to increase with the rank n.

4. On Conjecture 1 for the defining prime

We now use our results on subnormalisers to verify Conjecture | for unipotent elements of groups of Lie
type of rank at most 2. We keep the notation and setting from the beginning of Section 3. Of course only
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Table 1. Character values for G, (27) .. ..

01, 0] 6, 6; 63 01, 09(x1) b5 x2(k)  xj(k)
# 2 2 1 3 1 Y(g3-e€) L(gte)
A4|éq(eq—1) —3qleq-1) 1q(eq-1) 1q(eq+2) q q -q

Table 2. ... and for Py.

0 (1) 6,(x1) 6, 05, 0s(x1) x3(k)
# 2 2 1 3 |

As|éq(€q—1) -lqleq-1) 1q(eq-1) tq(eq+2) ¢

the elements x € G with Subg (x) < G are of interest. We write Conjecture I* to include Properties (3)
and (4) from the introduction. Our first result is for groups of arbitrary rank.

Proposition 4.1. Assume that p is a good prime for G and Z(G) is connected. Then Conjecture I+ holds
for regular unipotent elements of G.

Proof. Let x € B < G be regular unipotent. Under our assumptions on G and p, by the theorem of
Green—Lehrer—Lusztig [4, Cor. 8.3.6] the irreducible characters of G that do not vanish on x are exactly
those of degree prime to p, there are |Z(G)|q' of these, where  denotes the semisimple rank of G, and
they all take value +1 on x. This implies also that x must be rational. Now Subg (x) = B as x is picky by
Theorem 3.2. By the proven McKay conjecture for groups of Lie type in defining characteristic [29] there
is the same number of irreducible characters of B of p’-degree. Moreover, as x is picky, by Lemma 2.1 it
must also be rational in B and |Cg(x)| = |Cg (x)|. This implies that the |Z(G)|q' irreducible characters
of B not vanishing on x must also take values +1. O

This of course leaves open the case of nonconnected centre, as well as that of bad primes; we’ll
discuss a few examples for the latter in which complete character tables are known.

Proposition 4.2. Conjecture I* holds for G2(q), q = p’, at the prime p.

Proof. Let x € G = G,(q) be a p-element, hence unipotent. There is nothing to prove when
Subg (x) = G, so we are in one of the cases of Proposition 3.7. If x is regular and p is good for G the
claim follows by Proposition 4.1. So we need to consider regular elements for the bad primes p = 2,3,
and the subregular unipotent class for any p # 3.

The character tables for G = G,(2/) and a Borel subgroup B of G were determined by Enomoto—
Yamada [11]. First let x € B be regular (there are two such classes) so Subg(x) = B. According to
Tables I and IV of that paper both Irr*(G) and Irr* (B) consist of g> characters of p’-degree and four
characters with p-part of the degree equal to ¢ /2. The values of the former on x are +1, and +¢/2 for the
latter in both groups, and their rationality properties agree (for the p’-characters this follows by [31]),
so Conjecture 1* holds for x.

The character table of G = G2(3f ) and of its Borel subgroup can be found in [10, Tab. I and VII].
The group G contains three classes of regular unipotent elements x, where again Subg (x) ~5 B. Here,
both Irr* (G) and Irr*(B) consist of ¢ characters of p’-degree and six characters with p-part of the
degree equal to ¢/3. The values of the p’-characters on x are all +1. The other characters take values
+24/3 (four times) and +¢/3 (twice) on one of the classes, on the other two the values are +¢/3 (four
times) and ¢ /3 + £ éq fori = 1,2, where £ is a primitive third root of unity, both for G and for B. Again,
Conjecture 17 is seen to hold.

Now let x € G = G,(2/) be in the subregular unipotent class from Proposition 3.7(3) where
Subg (x) ~p, Py, the first maximal standard parabolic subgroup. In Tables 1 and 2 we have extracted
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Table 3. Some character values for >*G,(q*) and for B on unipotent classes.

2G(gY)] 1 X T yri|| Bl 1 X T YT
&.& |30 ~3(¢°+q) qb G&f |[vs.¥s|3GP1 391 Gb G
G & | 3qP10 (a7 =) Gb G4 ||va.ve|3d®1 5GP Gb G4
&. &0 |a(q* =1 =G 2qb -4& || ¥n| 41 GP1 24b —G¢]
&4 q*Ps q° . v | -¢* . .

from [11] the values of all irreducible characters of G and P; (denoted P, in [11]) of even degree that
do not vanish on x. (The class representative is denoted A4 in G and As in Py in [11].) Here € € {1}
is such that ¢ = € (mod 3). Visibly, there is a map as required in Conjecture 1 which even preserves
values up to sign. For the characters of odd degree, such a map additionally preserving character fields
over Q,, exists by [31], so it satisfies Conjecture 1*. For p > 5 the character table of G ( p/) was found
by Chang and Ree [6], the one for P, by Yamada [40], and the same sets of values arise. ]

Proposition 4.3. Conjecture I* holds for *D4(q), q = p’, at the prime p.

Proof. Let x € G := 3D4(q) be unipotent. By Proposition 3.7 we know Subg(x) = G unless x is
regular or subregular. For regular elements the claim follows by Proposition 4.1 for odd g as G can be
constructed as the F-fixed points of a simple group G of adjoint type D4 whose only bad prime is p = 2.

For p = 2, the character table of G was computed in [8] and the one of a Borel subgroup in
[16, Tab. A.6]. For both groups there are ¢g* characters of odd degree, all taking value +1 on regular
unipotent elements, and four characters of degree divisible by ¢, taking values +¢%/2.

Now we consider the elements x in the subregular unipotent class D4(a) of G with Subg (x) = P»,
the second maximal standard parabolic subgroup. Here, by the tables in [8, 15, 16] both G and P,
possess ¢ irreducible characters of degree divisible by p (in fact, precisely by g) not vanishing on x,
and all of them take value +¢q on x. Conjecture 17 now follows, using [31] for the character fields of
p’-characters. O

The Suzuki groups 2B, (2%/*!) possess TI Sylow 2-subgroups. Moreté and Rizo checked their
conjectures for the 2-elements of this group [30]. A further interesting case is given by the Ree groups
2G,(3%**1) whose Sylow 3-subgroups are also TI, so all nonidentity 3-elements are picky.

Proposition 4.4. Conjecture I* holds for >G,(q?), ¢*> = 3*/*!, at p = 3.

Proof. The character table of G := 2G,(g?) was found by Ward [39] while that of a Sylow 3-normaliser
was computed by van der Waall [38, p. 173]. In Table 3 we reproduce the values of those characters in
Irr(G) respectively Irr(B) of degree divisible by p not vanishing on some nontrivial unipotent element.
Here § := q/V3, @1 = q> = 1, @} := q> = 3G + 1, ®) 1= g* +3G + 1, ® := DO = ¢* — ¢* + 1,
b= (-1+V=39)/2, & = (-1 +V=3)/2 and i € {1,2}.
A quick check shows that Conjecture | holds for all (picky) classes, and furthermore a bijection
preserving character fields over Q,, exists using [20]. m

The next example is quite interesting as there exists an element x with Subg (x) < G for which Irr* (G)
contains characters of six different heights and yet all p-parts are preserved under a suitable bijection.

Proposition 4.5. Conjecture I* holds for F4(q>), ¢*> = 2>+ at p = 2.

Proof. We need to consider the regular classes, the picky subregular classes from Theorem 3.2(5) as
well as the classes with proper subnormaliser in Proposition 3.7(5). The values of unipotent characters
of G are given in [22], the values of all other characters at least on unipotent elements can be found
in [13]. The character table of a Borel subgroup of G was computed in [17]. For x in one of the four
regular unipotent classes or the two subregular picky classes, Irr* (G) and Irr* (B) both consists of g*
characters of odd degree, 2¢2 characters whose degree has 2-part V2¢/2, and eight characters whose

https://doi.org/10.1017/fms.2025.10117 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10117

12 G. Malle

Table 4. 2-Parts of character values for ’F4(g?) . . ..

| # | 1w wo  win=up uios wisoig
x23m24 |27 4 G g q q q
x50 | a* | a° a* q° q* . .
xses0 | 4| 4" ¢ ¢ q* ¢ q
X1i-14 g q ¢ (" =+2¢)n ¢ §

Q)

4
X7.10 2 2g* 2¢* 2¢* 244
X15-17 3| q* 2¢* . .

i

Table 5. ... and for Py.

ol
| # | 1 ¢33 Ci3a €135 =C) 36 C1,37-38 C1,39-42

xis(k), xo-0|2¢*| ¢ @ g q q d
v | ¢ |d* @ 4° q* . .
X21-24 4 1g¢* ¢ ¢ g* g 7
X14-17 4 g ¢ q (*=+25)n 4§ 7’
X13,25 2 |2g¢* 2¢* 24* 2g* . -
X18-20 3 | q* 2¢* . .

degree has 2-part ¢*/4. These take values +1, gV-2/2, and +¢2/2, +V—1¢2/2 on regular elements,
and values +1, gV2/2 respectively +V2¢4> /4 on the subregular elements, both for G and B. A bijection
preserving character fields over Q,, was given in [20].

The parabolic subgroup P; also possesses g* characters of odd degree by [18]. For elements x which
are either picky or lie in the classes in Proposition 3.7(5), the p-parts of the values of characters in
Irr* (G) and Irr* (P;) of even degree are given in Tables 4 and 5, ordered by increasing p-part. Here, we
have set § := g/ V2 and i := V-1. The 2-part of ¢* + 2i¢> occurring in either table is actually 24> for
g # 8 and 2V24° for ¢* = 8.

The tables show that there is a bijection as in Conjecture 1, and it can be checked it moreover
preserves character fields over Q,,. o

Proposition 4.6. Conjecture I* holds for Sp,(q), q = p’, at the prime p.

Proof. Here, Proposition 4.1 does not apply as for odd p the centre of the algebraic group G = Sp,
is disconnected, and the prime p = 2 is bad for G. For p = 2 the character tables of G and B were
calculated by Enomoto [9, Tab. I and IV]. There are q2 irreducible characters of odd degree, taking
value +1 on a regular unipotent element x, and four characters of degree divisible by ¢/2 taking values
+g/2, both for G and for B.

The character table of G = Sp,(g) for odd ¢ was determined by Srinivasan [37] and for B by Yamada
[40, Tab. I-2]. The characters not vanishing on a regular unipotent element x € G for both G and B are
all of p’-degree, and ¢(q — 1) of them take values =1 on x, the other 4¢ take values +(1 + /g%)/2,
where ¢* := (=1)@D/24,

Finally, for p odd and x the subregular element as in Proposition 3.7(2) we have Subg (x) = P;. The
character table of P; can be found in [40, II-2], where the corresponding class is denoted A3(1). The
characters of degree divisible by p take values +¢ (¢ + 3 times) and +2g ((¢ — 1) /2 times) on x, for both
G and P;. O

5. Picky semisimple elements in groups of Lie type

We now turn to the investigation of semisimple elements of groups of Lie type, that is to say, elements of
(prime power) order different from the defining characteristic. We stay in the setting from the beginning
of Section 3, with G connected reductive and G = G* a finite groups of Lie type, and let £ # p be
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a prime. To investigate the existence of picky ¢-elements in simple groups S, by Lemma 2.4, we may
consider G of simply connected type such that G/Z(G) = S.

5.1. The case of abelian Sylow (-subgroups

We first assume that F’ is a Frobenius map with respect to an IF-structure, so G is not a Suzuki or Ree
group. Recall then (see, e.g., [14, §3.5]) that for any integer d > 1, (G, F) has Sylow d-tori, that is,
F-stable tori S of G whose order polynomial is the maximal ®-power dividing the order polynomial
of (G, F). Then W; := Ng(S)/Cg(8S) is the relative Weyl group of the Sylow d-torus. We write ez (q)
for the order of ¢ modulo ¢, respectively modulo 4 if £ = 2.

Lemma 5.1. In the above setting, if € divides ®4(q) for a unique cyclotomic factor ® 4 occurring in the
order polynomial of (G, F), then Sylow €-subgroups of G are abelian. If G is simple, the converse holds.

This is shown in [26, Prop. 2.2]. Note that we do not claim that the simple groups S = G/Z(G)
satisfy this dichotomy; counterexamples occur for SL;(g) at £ = 2 and SL3(+q) at £ = 3. The following
is an analogue of Proposition 2.6:

Proposition 5.2. In the above setting, assume that € divides a unique cyclotomic factor ®4(q) in the
order polynomial of (G, F). Let x € G be an €-element. Then Subg (x) is generated by the F-fixed points
of the normalisers of the Sylow d-tori of G containing x.

Proof. Letx € G be an {-element, and P a Sylow ¢-subgroup of G containing x. Then P is abelian by
Lemma 5.1 and lies in a Sylow d-torus S of G. Conversely, if S is a Sylow d-torus containing P, then
S < Cg(P), hence even S < H := C{,(P). By inspection of the order formulae [27, Tab. 24.1] our
condition on ¢ implies that £ does not divide |W|. Thus, ¢ is not a torsion prime for G and then neither
for H, so P < Z°(H) =: S’, a torus. Since ¢ divides a unique ®4(g) this implies that S < S’, that is, S
is the Sylow d-torus of Z°(C{,(P)) and thus uniquely determined by P. Since P is characteristic in SF
we have NG (P) = Ng(SF), and our claim follows by Proposition 2.6. O

Theorem 5.3. In the above setting, assume that £ divides a unique cyclotomic factor ®4(q) in the order
polynomial of (G, F). Then an {-element x € G is picky if and only if Cg(x) = C5(S) where S < G is
a Sylow d-torus with x € SF .

Proof. By Lemma 5.1 we are in the situation of Proposition 5.2. Hence x € G lies in a unique Sylow
¢-subgroup of G if and only if it lies in a unique Sylow d-torus S of G, if and only if S is the unique
Sylow d-torus of Cg(x), if and only if S < Z(Cg(x)), if and only if Cg(x) < Cg(S). Asx € S we
also have Cg(S) < Cg(x), so Cg(S) = Cg(x). This implies of course Cs(S) = Cg(x). Conversely,
assume Cg(S) = Cg (x) but Cg(S) < Cg(x). Since Cg(S) is a Levi subgroup, hence connected, this
means that either Cg(x) is disconnected, or of strictly larger dimension than Cg(S). The first is not
possible as ¢ is not a torsion prime. In the second case, as Cg(S) contains a maximal torus of G, the
maximal unipotent subgroups of Cg(x) must have larger dimension than those of Cg(S). But then
|C(x)|p > ICc(S)|p, a contradiction. In conclusion, x € G is picky if and only if C5(S) = Cg(x),
for S the (unique) Sylow d-torus containing x. )

Example 5.4. In the setting of Theorem 5.3, assume d = 1. Then x € G is picky if and only if x is regular.
Indeed, in this case the centraliser of a Sylow 1-torus is a maximal torus (namely, a maximally split
torus) of G, so the condition becomes: Cg (x) is a torus, which means x is regular. More generally this
characterisation continues to hold whenever d is a regular number for (W, F) (in the sense of Springer).

The precise determination of subnormalisers in the abelian Sylow case seems to require a classifi-
cation of the overgroups of normalisers of Sylow d-tori for simple algebraic groups, a nontrivial and
interesting problem, as the following example shows (see also Corollary 6.9 in the algebraic group case):

Example 5.5. Let G be of type F4 and £ > 3 dividing ®3(g). Let x € G = G be an (-element
with centraliser A;(q).®3. There is a subgroup *D4(g).3 of G containing the normalisers of all Sylow
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d-tori of Cg (x), and hence also Subg (x) by Proposition 5.2. But it is not immediately obvious that the
subnormaliser could not be smaller.

5.2. Picky elements in the nonabelian case

Proposition 5.6. Let S < G be a Sylow e-torus of (G, F) for some e > 1. Then the order polynomial of
Cq(S) is not divisible by cyclotomic polynomials ® i withi > 1 and 2 < €, except when GF =3Dy(q),
e<2and( =3.

Proof. The centraliser C := Cg(S) is an F-stable Levi subgroup of G. Its structure is described in
[14, Exmp. 3.5.14 and 3.5.15] for G of classical type. Note that since S is a Sylow e-torus, it has
the form TH with T a torus whose order polynomial only involves factors ®; with d < 2e, and H
a semisimple group of rank less than e. The claim can easily be checked by inspection of the order
formulas (e.g., in [27, Tab. 24.1]). For groups of exceptional type, Table 3.3 in [14] shows that C is
itself a torus, with the required property, unless either e = 4 and G has type E7, but the claim still holds
in that case, or GF = 3D4(¢) and ¢ = 3 (where the claim fails). o

Proposition 5.7. Assume G is simple. Let e = e¢(q) and assume that € divides |W,|. If W, has a normal
Sylow €-subgroup then e € {1,2}, and either € =2 and W, = S, or W(B3), or { =3 and W = S5 or
W(G2).

Proof. The relative Weyl groups are described in [14, Exmp. 3.5.29] for G of classical type. Namely,
they are either symmetric groups &,;, in which case e € {1, 2}, wreath products C;:S,, with d € {e, 2e},
or certain subgroups of index 2 in the latter. Note that £ > ¢ = e¢(g) if £ # 2. The claim follows in this
case from the known normal structure of &,,. For G of exceptional type, the occurring relative Weyl
groups are given in [3, Tab. 3]. No further examples occur. O

Lemma 5.8. Assume G is simple and ®, divides the order polynomial of (G, F). Assume the order of
the relative Weyl group W, of a Sylow e-torus of G is divisible by €, where £ > 2. Then the normaliser
of a Sylow C-subgroup of W, contains no elements of order r for primes r = 1 (mod ¢).

Proof. 1If G is of classical type, then W, /O, (W,) is a symmetric group S, (see [14, 3.5.29]), and in
S,, the Sylow {-normalisers are easily seen not to contain elements of prime order r > {. For G of
exceptional type, it suffices to consider W(Eg) since all relative Weyl groups are subquotients of this.
Now the only element order £r for primes 2 < £ < r occurring in W(Eg) is 15, buthere r#1 (mod £). O

Theorem 5.9. In the above setting assume that € > 3 and that Sylow (-subgroups of G are nonabelian.
Then G possesses no picky €-elements.

Proof. Let P < G be a Sylow £-subgroup of G and set e = e;(g). By [25, Thm 5.16] there is a Sylow e-
torus S of (G, F) such that the normaliser N (S) contains the normaliser Ng (P) of P. Now L := C(S)
is an F-stable Levi subgroup of G. An application of [25, Prop. 5.3] to [L, L] shows that [L, L]¥ is an
¢’-group. Now L/[L, L] is a torus, hence abelian, so as P is nonabelian by assumption, £ must divide
the order of the relative Weyl group W, = N (S)/Cs (S).

Let x € G be an (-element. First assume x € Sf . By Proposition 5.7, since £ > 5, W, has more than
one Sylow ¢-subgroup, so x lies in two different Sylow £-subgroups of N (S) and hence of G. Now
assume x does not lie in any Sylow e-torus, and let T be an F-stable torus of G containing x. Then the
order polynomial of T must be divisible by a cyclotomic polynomial ®,,; for some i > 1 and hence
|Cg(x)] is divisible by @i (¢). Let r be a Zsigmondy primitive prime divisor of @i (g), which exists
as el' is divisible by a prime at least 5. On the other hand, by Proposition 5.6, the order polynomial of
Cg(S) is not divisible by @i, so |Cs(S)]| is prime to r. Thus W, must contain an element of order £r.
Now note that r = 1 (mod ¢). Thus Lemma 5.8 together with Lemma 2.1 show that x cannot be picky
in NG (S) and so neither in G. O
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Theorem 5.10. In the above setting assume that Sylow 3-subgroups of G are nonabelian. Then G
possesses a picky 3-element x if and only if one of:

G = SL3(4), SU3(8) or G2(8),’

G =SU,(2) with4 <n < 8;

G =Sp,,(2) with3 < n < 5;

G =S80}, (2) with4 < n <5;

G =805, (2) with4 < n < 6; or

G = G(2) = SU3(3).2, 3D4(2), or F4(2).

AR e

Proof. The proof of Theorem 5.9 goes through for the prime ¢ = 3 unless either we are in one of the
exceptions of [25, Thm 5.16], in an exception of Proposition 5.7, or if ®,3i(g) has no primitive prime
divisor for some i > 1, where again e = e3(q). We discuss these in turn. The exceptions from [25,
Thm 5.16] are G = SL3(eq) with eg = 4,7 (mod 9) and G = G,(gq) with ¢ = 2,4,5,7 (mod 9).
For G = SL3(eq), by Lemma 2.4 we may consider S = PSL3(eq) instead. The Sylow 3-subgroups
of § are elementary abelian of order 9, and the centraliser of an element of order 3 has structure
((g = €) x (g — €)/3).3. Since the Sylow 3-normalisers have the form 3'*?.Qg for the appropriate
congruences, there cannot exist any picky 3-elements for g > 4 by Lemma 2.1.

Now let G = G, (gq) withg = 2,4,5,7 (mod 9) and let € € {+1} with ¢ = € (mod 3). The centraliser
C := Cg (1) = SL3(eq) of a 3-central element ¢ € G contains a Sylow 3-subgroup of G. Thus ¢ lies in
several Sylow 3-subgroups of C (and thus of G) unless g = 2, hence cannot be picky. There is one further
class of nontrivial 3-elements of G, centralised by an A;-subgroup (see [0, 11]), but the normaliser in G
of a Sylow 3-subgroup (of order 27) does not contain such a subgroup unless again g = 2. In the latter
case, G’ = SU3(3) for which all nontrivial 3-elements are picky by Theorem 3.2, yielding conclusion (3).

Next, the exceptions of Proposition 5.7 occur precisely for the groups SL3(eq), G2(g) and *D4(q),
since these are the only groups with a relative Weyl group of a Sylow e-torus isomorphic to S3 or W(G»).
If G = SL3(eq) we have 3|(g — €) since we assume Sylow 3-subgroups of G are nonabelian, and even
9|(g — €) by the previous paragraph. Then, by [25, Thm 5.16] the normaliser of a Sylow 3-subgroup P
of G lies inside the normaliser N (S) of a Sylow e-torus S. If x is a 3-element not lying in a conjugate
of Sg , then we may conclude as in the proof of Theorem 5.9 that x is not picky. If x € S3F is not regular,
its centraliser involves an A-type group, hence is not contained in N (S) = S¥'.&; and again x is not
picky by Lemma 2.1. Now assume x € S{ is regular. If N (S) has more than one Sylow 3-subgroup,
again x is not picky. If N (S) has a unique Sylow 3-subgroup, that is, the Sylow 3-subgroup is normal,
then the elements of order three in W, need to centralise the 3’-part of S which by inspection forces
S* to be a 3-group. Thus ¢ — € is a power of 3 which together with ¢ = € (mod 9) forces g = 8, € = —1.
In the latter case, all regular x € S? are picky by direct computation, as claimed in (1).

Next, we consider G = G,(g) with ¢ = £1 (mod 9) (the other congruences were already discussed
above). The argument is now entirely analogous to the one given for SL3(eq), and only G,(8) gives
rise to picky elements, listed in (1).

Next, if G = °D4(gq) with ¢ = € (mod 3), € € {+1}, then the normaliser of a Sylow 3-subgroup is
contained in a torus normaliser of the form N = (¢> —€)(g—€).W(G>) (see the discussion in the proof of
[25, Thm 5.14]). Now elements of order 3 in W(G,) act like a field automorphism on the torus of order
g> — €. In particular, as soon as g> + eq + 1 has a primitive prime divisor (necessarily distinct from 3), a
Sylow 3-subgroup is not normal in N and we may conclude as before. This leaves g = 2,50 G = *D4(2).
Here, by explicit computation, the elements of order 9 with centraliser A;(g).(¢g> + 1) are picky.

Finally, if there exists no primitive prime divisor for ®,5i(g) withi > 1, theni =1, e = g = 2.
If x € G is a picky 3-element, then it has order at most 9, as elements of order 27 have centraliser
order divisible by ®15(2) = 3?19 in contradiction to Lemma 5.8. We now discuss the various types.
For G of classical type, all elements of order 3 lie in a Sylow 2-torus of G and thus in at least two
Sylow 3-subgroups, arguing as in the proof of Theorem 5.9. So in particular, Cg(x) must contain a
torus of rational type ®g. In SL,(¢) any centraliser order divisible by ¢> + 1 is in fact divisible by
(¢°=1)/(g—1), hence by 7 when ¢ = 2, contradicting Lemma 5.8. In the remaining groups of classical

https://doi.org/10.1017/fms.2025.10117 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10117

16 G. Malle

type, the primitive 9th roots of unity can occur at most once as an eigenvalue of x, as otherwise the
centraliser contains a subgroup SU;(8) and hence elements of order 7. Let V be the submodule of
the natural G-module spanned by the eigenspaces for the eigenvalues of x of order at most 3 and H the
induced classical group on V. Then H has the same type as G, respectively type SO™€ if G has type SO
(since in that case by what we showed x has exactly all six primitive 9th roots of unity as eigenvalues and
the induced orthogonal group on the corresponding 6-dimensional sum of eigenspaces is of minus type).
Then Subg (x) will contain the subnormaliser of x|y (of order 3), and by direct computation the latter
is all of H if H = SU3(2), Sps(2), SO (2) or SO, (2). As all of these have order divisible by a prime
larger than 3, we see that x cannot be picky in SU,(2), Sp,, (2), SO;n(Z), SO;, (2) whenn > 9,6,6,7
respectively. By direct computation, there do exist picky elements of order 9 in all remaining cases.
Similarly, the claim for G»(2),3D4(2), F4(2) and E4(2) follows by explicit computation in GAP. The
maximal subgroup H = Fis; of S = 2E¢(2) contains a Sylow 3-subgroup of S. By direct computation, H
possesses one class of picky 3-elements, but this is fused in S with one of the nonpicky classes of H, so
S has no picky 3-element. The group G = E7(2) has six classes of elements of order 9, with centralisers

D3D6.7A2(2)A1(2), D2.7A42(8), @2 @6.°A3(2)A1(2),
Dy D6.%A4(2), D2D6.°D4(2), ©2P6.A;(8)A1(2)

(private communication of Frank Liibeck), while all elements of order 3 lie in a Sylow 2-torus by [21].
Now the normaliser of a Sylow 3-subgroup of G is contained in the normaliser of a Sylow 2-torus and
thus has the form 37.N where N is the normaliser of a Sylow 3-subgroup of the Weyl group W(E-),
whose 2-part is 2. Since all of the above centralisers have order divisible by at least 2%, G cannot
have picky 3-elements by Lemma 2.1. Finally, G = E5(2) has four classes of elements of order 9, with
centralisers

D5.%45(8)A1(2), DD %A4(2)A1(2), D21D6.°D5(2), ©rP6.°Da(2)A1(2)

(again computed by Frank Liibeck), and all elements of order 3 have centralisers of semisimple rank at
least 7 by [21]. Since the 2-part of the normaliser of a Sylow 3-subgroup of G is just 24, we may argue
as before to see that G has no picky 3-elements. O

The case £ = 2 is considerably more tricky. It will by all appearance be even messier than for £ = 3,
involving Fermat and Mersenne primes, for example. We will consider it in forthcoming work with M.
Schaeffer Fry.

5.3. Subnormalisers in Suzuki and Ree groups

We now assume that G is of type By, G, or Fy in characteristic p = 2, 3, or 2, respectively, and F is a
Steinberg endomorphism of G such that G = G*" is a Suzuki or Ree group. As before, £ denotes a prime
distinct from the defining characteristic p of G. We obtain the analogue of Theorems 5.3 and 5.9:

Theorem 5.11. In the above setting, let x € G be an {-element. Then x is picky if and only if € > 3 and
x is regular, while Subg (x) = G otherwise.

Proof. First assume that £ > 3 and x is regular. Then ¢ does not divide the order of the Weyl group of G
and hence the Sylow ¢-subgroups of G are abelian (see [2, Cor. 3.13, p. 259]). We may now proceed as in
the proof of Theorem 5.3, replacing cyclotomic polynomials over Q by suitable cyclotomic polynomials
over Q(+4/p), with corresponding Sylow tori, for which the Sylow theorems continue to hold, see
[14,3.5.3, 3.5.4], to conclude that x is picky.

We now discuss the remaining cases. All semisimple elements x # 1 of 2B, (g?) are regular and have
order prime to 6, so there is nothing to prove in this case. In G = 2G,(¢?) the only {-elements x # 1
that are either nonregular or have £ < 3 are the involutions, with Cg (x) = (x) x PSL,(¢?). Such x are
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also contained in a Sylow 2-normaliser, of structure 23.7.3, not lying in the maximal subgroup Cg (x).
Thus Subg (x) = G as claimed.

Let G = %F4(g%). The conjugacy classes of semisimple elements are given in [33, Tab. IV]. First
assume ¢ > 3. The nonregular representatives x # 1 are t; withi € {1,2,4,5,7, 8}, where t1, t5, t5 and g
only occur if g> > 8. The noncyclic Sylow ®-tori are T'(j) for j € {1,6,7,8} in [33, (3.1)], with relative
Weyl groups of order 16, 96, 96, 48 respectively. Comparison with the list of maximal subgroups of G
in [23, Main Thm] shows that none of them can contain both C (x) and Ng (T) for T a Sylow ®-torus
of G containing x.

So finally assume £ = 3. Any 3-element x € G is contained in a Sylow ®4-torus T of G, where
Ng(T) = (¢* + 1)%2.G 1, with the primitive complex reflection group G, of order 48. As NG (T) is a
maximal subgroup of G by [23, Main Thm], either Subg (x) = NG (T) or Subg (x) = G. The structure
of a Sylow 3-normaliser N is discussed in [25, Thm 8.4]. If g> = 8 (mod 9) then N is contained in the
torus normaliser (¢ + 1)2.G12. Now G, has non-normal Sylow 3-subgroups and hence arguing as in
the proof of Theorem 5.9 there cannot exist picky 3-elements, whence Subg (x) = G by what we said
above. On the other hand, if ¢> = 2,5 (mod 9) a Sylow 3-normaliser is isomorphic to SU3(2).2, not
contained in any conjugate of NG (T) by [25, Thm 8.4(b)], so again we have Subg (x) = G. ]

By explicit computation, the subnormaliser of an element of order 3 in the Tits group 2F4(2)" is a
maximal subgroup PSL3(3).2 (not invariant under the outer automorphism of order 2).

6. Subnormalisers in algebraic groups

The concept of subnormaliser of course also makes sense in the algebraic group setting. All algebraic
groups considered are over an algebraically closed field of characteristic p > 0. If G is connected
reductive, T denotes a maximal torus, @ the root system, U, for @ € ® the root subgroups of G with
respect to T, and B > T a Borel subgroup of G. Not so surprisingly the situation turns out to be much
simpler than for the finite reductive groups.

6.1. Subnormalisers of unipotent elements

We first determine subnormalisers for unipotent elements.
Lemma 6.1. Let U be a unipotent algebraic group and x € U. Then {(x) <<U.

Proof. By [27, Prop. 2.9] we may embed U into the (unipotent) group of upper uni-triangular matrices
of GL,, for a suitable n, so without loss we may assume U is connected. By [27, Cor. 2.10] the
unipotent group U is nilpotent, so by [19, Prop. 17.4], for any proper closed subgroup H < U we have
dim H < dim Ny (H). Thus by induction on the dimension, any closed subgroup is subnormal in U. As
(x) is normal in its abelian (see [19, Lemma 15.1.C]) closure @ this achieves the proof. O

For H a subgroup of a linear algebraic group we let }’?:(H) denote the largest normal unipotent
subgroup of H, a characteristic subgroup.

Lemma 6.2. Let G be a linear algebraic group, H < G and x € G unipotent. If (x) <<H thenx € R. (H).
In particular, if H is maximal (with respect to inclusion) with {x) << H then H = Ng (R, (H)).

Proof. Let (x) < Hy <---< H, = H be a subnormal series. Set U := I/QZ(H) and H; := H;U. Since
x normalises U, the group {x, U) is unipotent. Then {x, U) < H; implies (x,U) < R.(H)) =: Uj. As
H, < H, we now have U; < A, and thus U; < R, (H,) =: U. By induction this yields (x, U) < U, <
.- < U, = R, (H,), whence x € R, (H).

Now the Zariski closure I?; (H) is unipotent [27, Prop. 2.9], giving (x) << I/QZ(H ) by Lemma 6.1 and
then of course (x) << R, (H). Hence, (x) <<«Ng(R,(H)) > H and the last assertion follows. O
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Lemma 6.3. Let G be connected reductive. Then the closed unipotent subgroups U of G with
U = R, (Ng(U)) are exactly the unipotent radicals of the parabolic subgroups of G.

Proof. Let U < G be a closed unipotent subgroup with U = R;(N(;(U)). By [27, Cor. 17.15], U lies
in some Borel subgroup of G and then by [27, Thm 17.10] there is a parabolic subgroup P < G with
U < R, (P)andNg (U) < P.In particular, Ng (U) normalises R, (P). Thus, V := Ng, (p) (U) is contained
in and normalised by Ng (U), so contained in E(NG (U)) = U, whence V = U. By [19, Prop. 17.4] this
forces U = R, (P).

Conversely, if P < G is parabolic, hence connected, then P/R,, (P) is connected reductive, and so
has no nontrivial normal unipotent subgroups (since any such would have to be finite, hence central, but
all central elements of connected reductive groups are semisimple, for example, by [27, Cor. 8.13(b)]),
whence R, (P) = R, (P). O

We obtain the algebraic group analogue of Proposition 2.6:

Proposition 6.4. Let G be connected and x € G unipotent. Then Subg (x) is generated by the Borel
subgroups of G containing x.

Proof. By Lemma 6.1, Subg(x) contains all Borel subgroups of G containing x. For the converse,
assume (x)<<H for some subgroup H < G, where without loss of generality H is maximal with
respect to inclusion. By Lemma 6.2 then H = N(}(k\u(H)) andx € Q := I’?;(H). Now Q lies in the
unipotent radical U of some Borel subgroup of G ([27, Cor. 17.15]). If 0 < U then Q; := Ny(Q) > O,
and (x) «<(H, Q1) > H, a contradiction, so in fact Q = U and H = Ng(Q) = N (U) is closed (see
[27, Ex. 10.18]). Then N (U)° is a Borel subgroup of H, and thus H® is generated by the H-conjugates
of Ny (U)° (see [27, Thm 6.10]), all of which contain Q and hence x. Thus, H is generated by the
normalisers (in H) of the maximal unipotent subgroups (of H and hence of G) it contains. The claim
follows. O

Theorem 6.5. Let G be a simple algebraic group in characteristic p > 0 and x € G be unipotent. Then
Subg (x) = G if and only if x is not regular.

Proof. Any regular x is picky by [4, Prop. 5.1.3]. Now let x € G be nonregular unipotent. There is
nothing to prove if G is of type A;. If G is of rank 2, the class representatives for the corresponding
finite groups given in [37, 9, 6, 10, 11] show that any nonregular unipotent element has a G-conjugate
in B not involving any simple root element, and thus Subg (x) = G by the analogue of Proposition 3.5.
Now assume G has rank at least 3. Then a suitable conjugate of x in B can be written as a product of
root elements in which at least one simple root @ of G does not occur. If @ is an end node, then the
observation for rank 2 shows that x is conjugate to an element in which neither @ nor the simple root
connected to it occurs. Thus, we may assume « is not an end node. We can now complete the proof as
in Proposition 3.6 using Proposition 6.4. o

6.2. An extension to disconnected groups

In this subsection we consider a slightly different situation. Let now G be the extension of a connected
reductive algebraic group G° in characteristic p by a graph automorphism o of order p. We are interested
in unipotent elements in nontrivial cosets of G° in G. Every coset of G° in G contains a unique class
of regular unipotent elements satisfying analogous properties to the case of connected groups (see
[36, Prop. 11.10.2]).

Let B < G be the normaliser in G of a o-stable Borel subgroup B° of G°, with o-stable maximal
torus T° and unipotent radical U = U°. Let W = N (T°)/T° be the Weyl group of G°; it is normalised
by o, and o acts on its set of roots @ with respect to T°, permuting its set A of simple roots. We let A
denote the set of o--orbits in A, and we write S for the set of simple reflections of W constructed as in
[27, Lemma 23.3].
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Proposition 6.6. Let G° be of type A, Az or A4 in characteristic 2 and G the extension with the
nontrivial graph automorphism o of order 2. Let x € G°0o be unipotent. Then Subg (x) = G unless x is
regular, when Subg (x) = Cg(0).

Proof. Since U is a maximal unipotent subgroup in G° and normalised by o we may assume x € Uo.
So x = xoo where xq is a product of root elements for G°. If root elements for representatives from all
o-orbits of simple roots occur in xg, then x is regular and hence contained in a unique Borel subgroup
of G by [36, Prop. I1.10.2], so Subg(x) = Cg(0). Representatives for the nonregular outer unipotent
classes in types A, A3 and A4 are given in [24, Tab. 4]. It transpires that in each case at least one of
the given representatives in the finite group for a class in the algebraic group has the property that its
image under any reflection in § is still in Uc, and thus x lies in a unipotent normal subgroup of any P,
where P runs over the normalisers in G of the minimal o -stable standard parabolic subgroups of G°.
Since these generate G, we have Subg(x) = G. )

Theorem 6.7. Let G be such that G° is simple and of index p in G, and x € G°o unipotent. Then
Subg (x) = G unless x is regular, when Subg (x) = Cg(0).

Proof. First, by [36, Prop. 11.10.2] the regular unipotent elements in G°o are picky, arguing as in the
proof of Proposition 3.1. Now assume x € G°0 is unipotent nonregular. Again we may assume x € Uo.
If Cg- (o) has rank 1 or 2, we are done by Proposition 6.6, or G° is of type D4, p = 3 and o induces
triality. In the latter case, inspection of the representatives given in [24, Tab. 8] shows that x can be
chosen to lie in the maximal normal unipotent subgroups of Cp(o-), where P runs over the normalisers
in G of the minimal o-stable standard parabolic subgroups of G° and thus Subg (x) = G.

So we may now assume that p = 2, CE(O') has rank at least 3, and that the claim has been shown for
all groups of smaller rank. As x is not regular, by [36, Prop. I1.10.2] it is a product of root elements not
involving representatives from at least one orbit of simple roots & € A. Consider the Dynkin diagram
of CE(O’), with nodes labelled by A. If « is not an end node, then we can conclude verbatim by the
arguments in the proof of Proposition 3.6. If @ is an end node, then the image of x in the standard
Levi subgroup corresponding to « and the adjacent node 8 € A is nonregular, so has a conjugate not
involving a root element for 8 (by [24, Tab. 4]) and hence we are reduced to the previous case since
C¢ (o) has rank at least 3. Note that this also holds trivially if this Levi is of type A%. O

6.3. Subnormalisers of semisimple elements

We return to the setting of connected reductive groups G in arbitrary characteristic and now consider
semisimple elements.

What do subnormalisers of semisimple elements look like in connected reductive groups? They are
related to the p-closed subsystems of ® (see [27, Def. 13.2]); as before it is easy and convenient to
reduce to the case of simple groups.

Theorem 6.8. Let G be a simple algebraic group and s € G semisimple. Then there exists a p-closed
subsystem ¥ C @ such that Subg(s) = Ng(G(Y)), the normaliser of the subsystem subgroup G(¥)
corresponding to ¥, where ¥ = 0, ¥ = ®, or ¥ consists of all roots of a fixed length.

Proof. Let s € G be semisimple and T a maximal torus of G containing s (which exists by
[27, Cor. 6.11]). Then Ng(T) is contained in Subg(s), so T normalises Subg(s). Let ¥ = {a €
® | U, < Subg(s)}. Then, ¥ is a p-closed subsystem of ®, by definition. Since Subg(s) contains
N¢ (T) and hence representatives for all Weyl group elements, ¥ consists of full W-orbits of roots, that
is, of all short, all long, or all roots, or ¥ = 0 (see [27, Cor. A.18]). Now Subg(s)° is a subsystem
subgroup since it is normalised by the maximal torus T. According to [27, Cor. 13.7] this shows that
Sub(;(s) = N(;(G("P)) ]
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Corollary 6.9. In the situation of Theorem 6.8, either Subg (s) = G, or one of the following holds:

s is regular and Subg (s) = Ng(T),

G = By, and Subg(s) = Dy, or Subg(s) = A} when p = 2;
G =C, withn,p > 2 and Subg(s) = Al;

G = G, and Subg(s) = Ay, or

G = F4 and Subg(s) = Dy.

Nk e =

Conversely, the cases (1)—(5) can only occur when Cg (s) lies in a subsystem subgroup of the given type.

Proof. By Theorem 6.8 we have Subg (s) = Ng(G(¥)) for some p-closed subsystem ¥ of ® consisting
of full orbits of roots under the Weyl group. If ¥ = 0 then G(¥) = T and thus Subg(s) = Ng(T).
For the rest of the proof assume W # (. We need to understand the possible ¥, where, of course,
we may assume @ has two root lengths. The structure of such subsystems is given in [27, Tab. B.2].
By [27, Thm 13.14 and Prop. 13.15] these are p-closed precisely under the conditions listed in the
statement. Note that all of these subgroups do indeed contain the full normaliser of a maximal torus
of G.

Since Subg () contains Cg(s) the additional claim follows. O

Example 6.10. We have not been able to find sufficient conditions for the occurrence of cases (1)—(5)
in Corollary 6.9. Let G = GL,, and s € G a diagonal element with eigenvalues all the nth roots of unity,
where we assume the characteristic of G does not divide n. Thus s is regular semisimple and Cg(s) = T,
the diagonal maximal torus. But a conjugate of s lies in the group of permutation matrices, the Weyl
group of G. Hence N (T) contains two elements from the G-class of s not conjugate in Ng(T) and
thus Subg (s) = G by Theorem 6.8, even though s is regular.
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