
Can. J. Math. Vol. 48 (5), 1996 pp. 1064^1078. 

THE MODULAR GROUP ALGEBRA PROBLEM 
FOR SMALL ̂ -GROUPS OF MAXIMAL CLASS 

MOHAMED A. M. SALIM AND ROBERT SANDLING 

ABSTRACT. We show that /?-groups of maximal class and order p5 are determined 
by their group algebras over the field ofp elements. The most important information 
requisite for the proof is obtained from a detailed study of the unit group of a quotient 
algebra of the group algebra, larger than the small group algebra. 

Introduction. Among the /?-groups for which the isomorphism problem for modular 
group algebras has received a positive answer, groups of maximal class have often set the 
greatest challenge. It is a long standing result that such groups for/? = 2 are characterised 
by their group algebras over any field of characteristic 2. For/? = 3, work done principally 
by Coleman and Wursthorn has settled the cases of orders 35 and 36; this involved the 
use of computers, the software packages Cay ley [4] and Sisyphos [16] and algorithms of 
Roggenkamp and Scott and of Wursthorn [10, 16]. For odd/?, Bagihski and Caranti [1] 
produced a positive answer for groups of order < pP+x which have an abelian maximal 
subgroup. Here we remove this last restriction but only for groups of order/?5. 

THEOREM. A p-group of maximal class and of order p5 is determined by its modular 
group algebra over the field ofp elements. 

We note that, as reported in [ 13], uncirculated work of L. G. Kovacs and M. F. Newman 
also covers this case; their methods are different, however. In the main our approach 
mimics that of [ 1 ] but in a more complicated setting. One can chart a progression in recent 
papers on the modular isomorphism problem. Each sets out to deduce as much as possible 
from a quotient algebra of FG. The ideals which are divided out have become smaller and 
smaller, resulting in larger and larger sections of FG susceptible to purposeful analysis. 
At each stage a more complicated group basis becomes embeddable in the quotient 
algebra and thence its structure made accessible. In [13] I(G)I(G2)+ I(G2)I{G) was used, 
and I(G)I(G2) to a lesser extent; the latter, whose quotient algebra is termed the small 
group algebra, is the main ideal used in [11]. In [1] it is the quotient by FGI(G2)2 which 
is pursued. Here we introduce and exploit I(G)I(G2)

2 + /(Gf+11(G2) + I(G)2p+l. 
Our paper has two sections, the latter mainly taken up with the resolution of the 

isomorphism problem for/?-groups of maximal class,/? odd, which are of order/?5 and 
which have no abelian maximal subgroup. The former is preparatory. It can be read as 
a pilot study of unit groups of quotient algebras of FG. Its main objective, however, 
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is the determination of the nilpotency class of the unit group in the particular quotient 
introduced here. This is accomplished by analysing a chain of ideals of FG, analogous 
to the ideals Jn of [1], which gives rise to a descending central series of the unit group 
in question. While this is adequate for/? > 7, an approximation to an ascending central 
series had to be invented for the case/? = 5; even then, the deduction of the main theorem 
in this case presented many obstacles. The difficulty in the/? = 5 case was foreseen by 
the authors of [9] who commented: "New problems appear to arise for groups of order 55 

over GF(5)." The/? = 3 case is also given here but is attacked in a completely different 
and ad hoc manner. 

Throughout, /? will denote a fixed prime and F the field of/? elements. G will be a 
finite/?-group with FG its modular group algebra. The augmentation ideal of FG will be 
denoted as I{FG\ 1(G) or /. As I(FG) is nilpotent, the subset V = V(FG) = 1 + I(FG) is 
a group, the group of normalised units of the unit group U(FG). 

The terms of the lower central series of a group X will be denoted by Xn or ln(X) for 
n > 2 although its commutator subgroup will be denoted by Xf as well. Its nilpotency 
class will be denoted by c£(X). The subgroupsXf) (l +/(X)W)> the dimension subgroups 

of Xover F, will be denotedDn = Dn(X); recall that Dn = Y[ipj>nX^. The abbreviation 
/„ for the subring I(Gn), n > 1, of FG will be convenient (G\ is defined below). Recall 
that /„ C F. It will also be convenient to have a convention for nonpositive powers of 
/ = I(X): f=FX;F=0ifn< 0. 

1. A quotient of the modular group algebra. Throughout this section, p will be 
an odd prime and G a finite /?-group of nilpotency class c := cl(G). 

The subgroup CG(G2/G^) plays an important role in the study of groups of maximal 
class. For such groups, it can also be expressed as CG(G2D^/DA), a form more suitable 
for the slightly more general context addressed in this section; here we will denote 
this subgroup by G\, an unconventional usage. Our results require certain assumptions 
concerning the subgroups Gn, n > 1; they are set out in Hypothesis 1.1 which will be 
assumed in this section. All hold in a group of maximal class of order/?5. 

HYPOTHESIS 1.1. G2 and Gj G2 are elementary abelian; 
3 <c£(G)<2p+\; 
G\ < CG(Gn/Gn+2)forn > 1. 

The setting for our results is the quotient algebra of FG obtained by factoring out the 
ideal Q := I(G)I(G2)

2 + I(GTXI(G2) + /(G)2^1. Since the ideal FGI(G2) is canonical, 
i.e., an invariant of FG itself and so independent of normalised group basis, Q and the 
quotient algebra FG/Q. are also canonical. We will use the bar convention to denote 
the images of subsets of FG in this quotient algebra or in its normalised unit group 
V = V(FG)/(\ +_Q). As G embeds in the latter, its elements and subsets will not be 
subject to the convention. The embedding is justified by the following lemma because, 
under Hypothesis 1.1, G2 - ®(G) and is abelian so that each of the constituent ideals of 
Q satisfies its hypothesis. We omit the proof of the lemma as being straightforward and, 
as with many arguments involving Jennings' basis, notationally unpleasant. 
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LEMMA 1.2. Suppose that a sequence X of elements of G give rise to a Jennings' 
basis for FG and that J is an ideal ofFG spanned by those elements of this Jennings' 
basis which it contains. Then G n ( l + J ) = ( x G l : x - l E J). Consequently, ifJiy 

1 < i < n, are such ideals, then G D (1 + £«//) is the product of the normal subgroups 
G 0(1+7/) . 

Define the subgroup Tof Vas G\ ( l+/(G) 2 ) . Since 1 +12 > V, T is normal in V. As 
the dimension subgroup D2 coincides with Gi and so is contained in G\, TH G = G\. 
Other expressions for T include 1 +1\ +P- and G\ + P. 

Our first objective is the calculation of a useful upper bound on the nilpotency class 
of the group T. For this we need to gain control over the n-th term Tn of the lower central 
series of T. 

While the calculation of commutators in the group V is formidable, the calculation of 
Lie commutators of ideals of FG is manageable. In some circumstances, the latter can 
serve for the former. For example, if 7, K and L are ideals of 'FG, then [ 1 +J, 1 + K] < 1+L 
if and only if (J, K) CL. 

Direct calculation of the lower central series of V or T in terms of ideals, particularly 
those related to subgroups of G, seems impossible (V — 1, for example, seems to have 
no interpretation in ideals; conversely, a subgroup like 1 + FGI(Gi) coming from an 
important ideal seems to have no special role in V in general). We seek to approximate 
the lower central series of T by a descending central series of subgroups which do 
come from ideals and so are relatively easy to manipulate. These will be the images 
of subgroups 1 + An of V, where A„ is an ideal of FG and T„ < 1 + A„, n > 2. This 
will allow us to substitute Lie commutator calculations for the more intractable group 
commutator ones. From the expression of T as 1 +1\ + T2, we take the first of our ideals: 
Ai = I\ +I2 = FGI\ +11 . The remaining ideals are defined by setting, for n > 2, 

A„ = £ / 7 , + ; > > / w + Q , 

where the first sum is over all ij satisfying / > 0,y > 2, / +j = In — 1, and the second 
is over all £, m with l,m > 2, £ + m = 2n — 2 (note that, as G2 is abelian, I^Im = Imli). 
It is straightforward to show that l\ + Q is an ideal; the same considerations prove that 
the An are ideals. We wish to show that [1 + Aw, 1 + Aj] < 1 + A„+i. For this, it suffices 
to show that (A„, I\) and (A„, I1) are contained in A„+i. 

Our proof that the series of subgroups {1 + An} is a central series, requires a good 
deal of routine manipulation with ideals, most of it suppressed here in the interests of 
brevity. It is helpful to have to hand a number of general formulae. They may be proved 
by the use of standard identities and by induction. The main principle applied in taking 
Lie brackets of ideals or subspaces of FG is the following. 

LEMMA 1.3. For any subspaces A, B and C of FG, (AB,Q CA(B,Q + (A,C)B. 

The other formulae show how products and Lie products of powers of 1(G) and the 
augmentation ideals of normal subgroups of G are interrelated. 
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LEMMA 1.4. For normal subgroups M and N of G, (l{M),I(NJ) C F(MN)I([M,N]). 

The next item transfers a result from [11] to this setting. 

LEMMA 1.5. Fori J > 1, [1 + / , 1 + / ] < Gi+j(l +II2) and so (Fj) C II2+Ii+j. 

LEMMA 1.6. Fork > 1, IkI C IIk + /*+,. For£>\ andj > 0, / , / ' C Y,k>i It+j~k h-

COROLLARY 1.7. For £ > \ and r > 0, E , ^ 77f Z
7' Q £*>^+ r~*4. 

The last of our preparatory lemmas is that in which the assumptions concerning G\ 
in Hypothesis 1.1 are used. 

LEMMA 1.8. Fori J > 1, 
(i) (/,,/,) CFGIj+2; 

(n) ( / , / i ) C & > 2 / + 1 4 4 ; 
(Hi) (/7 ,/2)C//y+1+/y+2; 
f/v; ( / , / 2 )C / / 2 +/ / + 2 . 

We may now state the main result and give a sketch of its proof. 

PROPOSITION 1.9. Forn > 1, (Aw, Ai) C Aw+1. Consequently, Tn < 1 +A„. 

PROOF. It suffices to show that (An, 7i) and (A„, I2) are contained in A„+\. For « = 1, 
A! =/i+/2andA2 = / / 2 +/ 3 +n. By Lemma 1.8(i),(/i,/i) C FG/3 while (/,,/2) C//2+/3 

by Lemma 1.8(h); lastly, (72,/2) C II2 +/4 by Lemma 1.5. 
The general case is similar. Its proof may be effected by application of the following 

more specialised formulae which are deduced from the earlier ones: 

{hj, /,) c rij+2 + ii+lij + n i > oj > 2 

( / A , / i ) c v „ + 2 + W » + n £ ,w>2 

(//„/2) C /+1/y+1 + /7y+2 + //+2/y + Q i > 0, 7 > 2 

(V™,/2) C 7£/m+2 + W w + i + W « + n £,m > 2. 

If « is an integer for which A„ C f2, then the class of T is bounded by n — 1; this is 
the way in which the following theorem is approached. 

THEOREM 1.10. Let G be a finite p-group with c = c£(G). Then c£(T) <p+\ifc>p, 
andc£(T)< \(p + c+ \)ifc <p. 

PROOF. We seek a lower bound on n such that A „ C Q . The ideals A„ are combina­
tions of ideals of the forms Flj and^/w . We examine conditions on n which will ensure 
that flj and klm are contained in CI = ll\ + F+112 + I2p+l. 

As Flj C F+J9 Flj C Q if 2/i - 1 = / +y > 2p + 1. But the ideals /2w~3/2, 
I2n-Ah,... J2n-c~xIc are in Q if In - c - 1 > p + 1. Here then we want « > «, = 
l+min{/?,(p + c)/2}. 

As V m C 7£+m, V w C Q if 2n-2 = £+m> 2/7+1. Again the ideals I2n-4h, 
hn-sh, • • • Jin-c-ilc are in Q if In — c — 2 > p + 1. This time we want n > n2 = 
±min{2/? + 3,/? + c + 3}. 
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Since n2 > n\, we see that A„ C Q for n > p + 2 if c > p and for n > (p + c + 3)/2 if 
c <p. The desired conclusion follows. 

Various more specialised results will also be needed in our subsequent analysis of the 
group algebras of the groups of maximal class. We begin with one which shows that the 
commutator subgroup of T is elementary. 

LEMMA 1.11. The commutator subgroup of the group T is of exponent p. Conse­
quently, 72(1 + I2f < 1+Q. 

PROOF. Since (1 + A2f < 1 + Ap
v it suffices to show that Ap

2 C Q. But Ap
2 C I3P C Q. 

LEMMA 1.12. Let c = cl{G) and c' = c£(l+ f). Thenc' <\(p + c- I) if c> 5 and 
c' < ]

2(p + 3)ifc<4. 

PROOF. Write M for 1 +11 + Q. The commutator subgroup M2 is contained in the 
subgroup 1 +FGI(G2)P\I4. As each of these subspaces has as basis the subset of Jennings' 
basis elements which lie in them, their intersection has as basis those Jennings' basis 
elements which they have in common; it follows thatA/2 < 1 + I2I(D2) + //(D3) + I(D4). 
AsDn < GnGP for all n> 2,1(Dn)CIn+F. Hence, M2 < 1 + / 2 / 2 + / / 3 + / 4 + ^ + 0 . 

We show by induction on n that, for n > 2, M„ < 1 + J2k>212n~kh + JP+2(w-2) + Q. 
This assumed for n, we see that M„+1 < 1 + T.k>i{I2n~k h, I2)FG + (T^2^-2), f)FG + Q. 
Using formulae given earlier and the fact that 7, QP, we obtain 

M„+] < 1 + £*>2{/2"-*+14+l + I2n-kh+2 + hn-k+lh} + 7^2<"-2)+2 + Q 
< 1 + £*>2 i2(n+l)~kik + 7^+2^+1)-2) + Q . 

It follows that Mn < 1 + Q. if 2w - c > p + 1 and p + 2(/i - 2) > 2p + 1, i.e., if 
A > ^ max{p + c + 1,/? + 5}. The lemma follows. 

Next we investigate the upper central series of the group T. By Du's theorem [5], its 
terms can be described by the use of subgroups derived from Lie ideals; our techniques, 
however, call for associative ideals. Thus we seek to approximate the pre-image of each 
term (^(T) in G\(\ +/2) by a subgroup 1 +Y„ of V, where T„ is an ideal of FG satisfying 

T^T; < un 
In general we have been successful in achieving this in a form suitable for our 

applications only when 3 < c < p — 1 and only for 0 < n < c — 1. Define Yo = Q. For 
1 < n < c — 1, define 

T» = E ^ ' + E thh + E him + n, 

where i,j satisfy 0 < i < p, 2 < j < c and / +j = (p — n) + (c — n) + 1, where k, h 
satisfy 0 < k <p — 1, c — n+ I < h < c and k + h = 2(c — «), and where £, m satisfy 
2 < £, m < c and l + m = 2(c — n) + 1. It is again straightforward to see that the Y's are 
ideals and that they form an ascending sequence. The subgroups to which they give rise 
do have the desired property. 

PROPOSITION 1.13. Let G be a p-group ofnilpotency class c where 3 < c < p — 1. 
Then T+Tn < Cr(T)for 0<n<c-\. 
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As before the proof reduces to the display of a relationship between ideals of FG, in 
this case as set out in the following result. 

LEMMA 1.14. Let G be a p-group ofnilpotency class c where 3 < c < p — 1. For 
1 < n < c — 1, (Yw, Ai) C Yn-\ and, consequently, [1 + Yw, T] < 1 + Y„_i. 

PROOF. It suffices to show that both (Yw, I\) and (Y„, I2) are contained in Y„_i. The 
expressions being more complicated, this is more tedious than the last such exercise but 
is accomplished by the same use of the general principles of manipulation of ideals as 
given earlier based on the same formulae as before as well as on the following easily 
derived formulae: for k > 0, h > 2, 

( A 4 / i ) c / / i 4 + 2 + W + Q , 
(A//,,/2) c f^hh+x +//1A+2 +thim + w * + n. 

We mention a result in this context which concerns/7-th powers. It can be shown by 
using Corollary 1.7 to prove something stronger, namely, that a product of 2p elements 
of/ may be reordered at will modulo Q if G is ofnilpotency class strictly less than/?. 

LEMMA 1.15. Let G be a p-group with c£(G) < p. If a, (3 e I, (aftf = oPj¥ modulo 

a 
We conclude this section by indicating some contrasts between our work and that of 

Baginski and Caranti in [1]. Much of their paper is devoted to groups G of maximal 
class in which our G\ is abelian and coincides with CcipilG^ the conventional no­
tation. At one point they focus on another centraliser in the general case, the subgroup 
CG(G2 / 0 ( ( J 2 ) ) ; this is contained in G\ in a group G of maximal class of order pn, n > 5 
(recall that/? is odd throughout). Their Proposition 1.4 states that, if C G ^ / ^ C G ^ ) ) is 
maximal in G, then: 

(i) the canonical subring Ci(FGhjFGl\) = / (c G (G 2 /0(G 2 ) ) ) +FG/2; 

(ii) the algebra ( / ( C G ( G 2 / 0 ( G 2 ) ) ) +FG/2 J FGl\ is commutative if and only if 

the group CG(G2/0(G2))/0(G2) is abelian. 
These have analogues in our setting. We note first a special case of Proposition 3.4 of 

[11]. 

PROPOSITION 1.16. The centraliser in Vofthe quotient algebra (FGI(G2D4)+14)/I4 

isCG(G2D4/D4)(l+I2). 

This is now specialised further to exploit the conditions which obtain in/?-groups of 
order/?", n > 5, and of maximal class, and transformed to allow easier comparison with 
[1]. The hypothesis holds when G/G4 is elementary. 

COROLLARY 1.17. IfD4 = G4, then Ci{FGI2/{FGI2 H74)) = Aj 
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PROOF. CV((FGI2+I4)/I4) = Cv(FGI2/(FGI2ni4)) since the two quotient algebras 
are isomorphic as FK-modules (here Facts by conjugation). As in [11] we see that, for a 
quotient Q of ideals of FG, Cy(Q) = 1 +C/ (0 . As G2D4 = G2 in this case, the proposition 
shows that 1 + Q(FGl2/(FGll HI4)) = CG(G2/G4)(l +/2) = Gi(l +/2) = 1 +/i +/2 as 
required. 

For a group G of order/?", n > 5, which is of maximal class, G\ is maximal in G 
and D4 = G4. Here A\ is canonical and contains Ci{FGI2/FGl\). While Aj/74 is not 
commutative, the quotient algebra (I\ + FGI2 + I4)/I4 is commutative if and only if 
(7i ,^1) ^ ^4, which happens if and only if the group G\ / G4 is abelian. 

2. Groups of maximal class. In this section we give the proof of our main theorem. 
First of all note that the modular group algebra distinguishes groups of maximal class of 
order/?5 from other groups of this order. They are precisely those groups having centres 
of order p and commutator factor groups of order/?2. The fact that FG determines £(G) 
and G/Gf for a/?-group G is among Ward's original results on the modular group algebra 
problem [12]. Secondly, by [1,3.2], if G has maximal class, then FG determines whether 
or not G has an abelian maximal subgroup. 

It is convenient to dispatch the groups for /? = 2 and p = 3 separately. The groups 
themselves do not fit the general pattern; note in particular that, if G is of maximal class 
and of order 35, then G' & Cg x Cy, it is not elementary abelian as indicated in [8, Table 
4.1 ]. There are many ways to distinguish the 2-groups of maximal class (see [6, III. 11.9]) 
by their modular group algebras [12, 6.34]. Of those not reported there, one, initiated 
in [9] and used extensively in [15], is based on an invariant easy to calculate for these 
groups, the number of conjugacy classes of elementary abelian subgroups of rank 2 [12, 
6.28]; another is direct [2]. 

For p = 3 there are only 6 groups of order 35 which are of maximal class, 3 have 
an abelian maximal subgroup [8, Family O9, Table 4.5] and 3 do not [8, Family $io, 
Table 4.5] (see also [3]). They are the following groups given here in power-commutator 
presentations; each is generated by 5 elements s, s\, s2, £3, s4 subject to the relations 
s3 = s4, s] = sJls/49 s3

2 = S41 and [s\,s] = s2, [s2,s] = 53, [s3,s] = s4, [s2,s\] = sk
4 (by 

convention all other /?-th powers of generators are assumed to be equal to 1, as are all 
other commutators of generators aside from the inverses of those already specified); for 
the first three groups, k = 0 and the pair (ij) is (0,1), (0, —1) or (1,1); for the second 
three, j = 1, k = — 1 and / = 0,1 or —1. It is not hard to calculate one of Scott's 
invariants for these groups, the number of conjugacy classes of maximal elementary 
abelian subgroups of rank two [12]. For the first three, they are 4, 2 and 1 respectively; 
for the second, 2, 1 and 3 (these values were checked by use of the software package 
Cayley [4]). 

For the rest of this section we will assume that/? > 5. The pioneering work of 
Bagihski and Caranti showed that, if G has maximal class, order < pP+l and an abelian 
maximal subgroup, then FG determines G [1, 2.2]. This allows us to focus on the groups 
of maximal class which do not have an abelian maximal subgroup; note that this occurs 
if and only if G\ = CG(G2/ G4) is nonabelian (our definition of G\ and that conventional 
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in the study of groups of maximal class now coincide). These groups, given in [8, Family 
Oio, Table 4.5], admit the following power-commutator presentations given according 
to the convention used earlier; each such group G is generated by 5 elements s, s\, s2, 
S3, s4 subject to the relations sp = s[, s\ = s™ and [s\,s] = s2, [s2,s\ - S3, [si,s] = s4, 
[s2,s\] = s^1; here 0 < I = IQ, m - mc < p — 1. By [3, 3.2] we may assume that 
either I or m = 0. Since only one of these groups is of exponent p, namely, that with 
I = m = 0, and since the exponent of a /?-group is an invariant of its modular group 
algebra (see [14]), we may assume that either I f 0 or m f 0. It is helpful to keep in 
mind the relationship between the generators and the nontrivial characteristic subgroups 
ofG: 

G\ = CG(G2/G4) = (s\1s2,s3,s4) 

G2=®(G) = {s2,s3ls4) 

G3 = (S3,S4) 

G4=aG) = {s4). 

Our proof will be accomplished in three propositions, each established in a similar 
manner. The first shows that the modular group algebra determines whether or not, for a 
group G at issue, the exponent of G\ is p. The second shows that the groups for which 
the exponent is not/?, have distinct group algebras over F while the third does the same 
for the remaining groups. 

Much of the notation for the proofs of the three propositions can be given in common. 
Let G be presented as above. Suppose that H is another group basis of FG, H < V. By 
the earlier discussion we may assume that H is also presented as above but in generators 
t,tn,n= 1,2,3,4, and with values tu and m//. 

Each quotient (1 + 7")/(l + F+]), n > 1, is elementary abelian and admits a basis 
consisting of the images of units 1 + 7r, where n is a Jennings' basis element of weight n 
in FG in terms of the generators given for G (which are appropriate for the purpose). We 
will expand the generators of i /as products of these units; we need to do so only in the 
initial stages, that is, modulo 1 +T2 or 1 +T3. Recall that, as the embedding of G/Q?{G) 
in V(FG)I (1 + 7(G)2) is an isomorphism, the units for the first stage are just s and s\. 

At the first stage then, t = s1^ (1 + a) and t\ = 5^ (1 + oc\) where 0 < ij, h,k <p—\ 
and a, a\ El2. Since /, t\ generate V = V(FH) modulo \+P = \+I(H)2, sisl

l, s
hs\ generate 

Vmodulo 1 +12. It follows that these elements generate G and so that d := ik —jh ^ 0 
modulo p. 

We next introduce an intermediary set of generators of G, both notationally convenient 
for the three cases and useful for contrasting the presentations of G and H. Set x = sldx 

andxi = shs\,md define xn = [x„_i,x], n = 2,3,4. We will examine the salient relations 
for the x's. Having their origin in the generators for //, they will be influenced by the 
relations in H. On the other hand, the x's lie in G and are constrained by its relations. If 
G and //are not isomorphic, this tension results in a contradiction. 
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Much of the examination is carried out in the context of the unit group S of the small 
group algebra FG/II2. Properties established about S in [11] are crucial. Recall that, as 
G2 is elementary abelian, G is embedded in S and that S shares many of the features of 
G; in particular, S„ = Gn - Hn for n > 2. We will use the bar convention for equivalence 
classes modulo ll2\ as G and H are embedded in the small group algebra, we do not 
apply this convention to their elements. 

We first show that, for n = 2,3,4, t„ = xn modulo G„+\ (note that, G being of 
class 4, equivalence modulo G5 is equality in S). For n = 2, t2 - [*i(l + OL\\X(\ + a)] 
which is equivalent modulo G3 to x2[x\, 1 + a][\ + aj,jc][l + a j , 1 + a]. But, by [11, 
1.7], [S, 1 + T2] < G3 and so £2 = *2 modulo G3. The proofs of the other two cases are 
similar. Next we observe that [f2, 1̂] = [*2?*i][*271 + ari]. The proof of this assertion is 
much the same but also makes use of the fact that G\ = CG(GI/GS) = CG{GT>). 

Our next goal is to find expressions in the s's which are equivalent to these words 
in the f's. Before doing this, we pause to note that h = 0, that is, that x\ E G\, a fact 
which simplifies calculations considerably. By [ 11,3.1 ], CH(HI /H4)( 1 + T2) = CS(S2 /S4) 
= C G ( G 2 / G 4 ) ( 1 +T2), from which it follows that JCI E CG(G2/G4). From this we see 
that d = ik. 

We now substitute for the x's in our earlier expressions to obtain: in S, t2 = sl
2
k modulo 

G3, t3 = s^k modulo G4, U = s^k and [t2, h] = s^lk2+a where sa
A = [x2, 1 + ai] for some 

a, 0 < a <p — 1 [11, 1.7]. As [/2, *i] = ^4"[, it follows that a = ik(k — i2) modulo/?. 
The /?-th power relations in H and G are our last object of study. As H2 = G2 is 

elementary abelian, this amounts to an examination of xp and x^. By the Hall-Petrescu 
formula [6, III.9.4], f = xP(\TafJp • • - vp where, for 2 < n < p, vn E 7„((*, TTa) ) 
which is contained in Gw+i by [11, 1.7]. But v™ = 1 for 2 < n < p - 1 as G2 is 
elementary abelian. Also i;p E G +̂i = 1 as/? > 5. Lastly (1 + ay = 1 for, by [11, 
1.12], 1 +T2 has exponent/?. Thus f = xp. A analogous expansion of xp = ( s V ^ by the 
Hall-Petrescu formula yields xp = sip^ = sl^m. Comparing expressions, doing similar 
work with fx and x^ and appending an earlier conclusion, we are led to the following 
equations modulo p which interrelate our parameters: 

i3klH = UG +jmG 

i3mH = mG 

a = ik(k - i2). 

We are now ready for the statements and proofs of the three propositions. It follows 
from the Hall-Petrescu identity that G\ is of exponent/? if and only if m = 0. Our first 
result shows that this is a property which FG can detect. 

PROPOSITION 2.1. Let G be a p-group of maximal class of order p5 which has no 
abelian maximal subgroup. Whether or not G\ is of exponent p is determined by FG 
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PROOF. Let H be a group basis of FG; as noted, H is also of maximal class with no 
abelian maximal subgroup. Suppose that exp(Gj) ^p while exp(//i) = p. In the notation 
above, our assumptions are that EG ~ 0 and mG f 0 while tH ^ 0 and mH - 0. This 
contradicts the second equation. 

We next look at groups G in which exp(d) f p [8, Family Oi0(2111)6r, Table 4.5]. 
For such groups we may take t = 0 and m equal to one of at most three values depending 
on the congruence class of/? modulo 3; these values can be given by representatives for 
the cosets of F*3 in F*. 

PROPOSITION 2.2. A p-group G of maximal class which has order p5, which has no 
abelian maximal subgroup and in which G\ is not of exponent p, is determined by FG. 

PROOF. Let H be a group basis of FG and so of maximal class with no abelian 
maximal subgroup and with exp(//i) ^ p. Our second equation shows that mn = nig 
modulo F*3 whence H pa G by the classification of these groups. 

Lastly we look at groups G in which exp(Gi) = p [8, Family Oio(2111)tfr, Table 
4.5]. For such groups we may take m = 0 and £ equal to one of at most four nonzero 
values depending on the congruence class ofp modulo 4; these values can be given by 
representatives for the cosets of F*4 in F*. 

PROPOSITION 2.3. A p-group G of maximal class which has order p5, which has no 
abelian maximal subgroup and in which G\ is of exponent p, is determined by FG. 

PROOF. Let H be a group basis of FG and so of maximal class with no abelian 
maximal subgroup and with exp(7/i) = p. In the notation above, our assumptions are 
that mo = 0 = w//. Our equations tell us that i2k£n = £G a n d a = ik(k — i2) modulo/?. If 
a - 0, then £// = HQ modulo F*4 so that H & G and our proof is complete. The rest of 
our work is taken up with showing that a = 0. 

Recall that a was defined from the equation [jt2,1 + oc\ ] = sa
A and that a\ derived from 

the expression t\ = s*(l + a\). As 1 + P acts trivially on G2, we need only be concerned 
with 1 + a\ modulo 1 + P and so, in its expression as a product of units 1 + n where 
7r is a Jennings' basis element, with those units for which n is of weight 2. These are 
1 + (s - l)2,1 + (5 - l)0i - 1), 1 + 0i - l)2 and 52. By the facts that G2 is abelian and 
that G\ centralises G3 and by [11, 1.5], we see that, except for the first, all of these units 

commute with x2. Thus [*2,1 + <*i] = [jt2, (l + (s ~ I)2) ] = [x2iS,s]b = sf, where b is 
the exponent of 1 + (s — l)2 in the expansion o f l + a i , 0 < b < p — l .It follows that 
a- db\ our aim, then, is to show that b - 0. 

At this point we suspend the proof of our proposition. It is here that we must go into the 
group ring deeper than II2. Indeed, using Sisyphos [16], Wursthorn has shown that, for 
p = 5, the four groups of maximal class which are at issue have isomorphic small group 
algebras. We found it necessary to go down as far as our ideal Q = Il\ + F+ll2 + I2p+l, 
a canonical ideal. From here on, the bar convention is to be interpreted as indicating 
classes modulo Q or 1 + Q, depending on the context. Our earlier results concerning the 
group T = (s\, 1 +T2) are now brought to bear on the issue. Note that this group is also 
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canonical (we showed that t\ G T). To fix notation, write 1 + a\ = (l + (s - l)2) (1 + /3), 
where /? is in the ideal F(s - l)(s] - \) + F(s] - \)2+F(s2- 1)+/3 . 

LEMMA 2.4. In the quotient group T, (l + (s - l ) 2 ^ f 1 few/ (l +(s— l)(s\ - \))P = 

1, (\+(Sl-\)
2)P = 1 and (l+Pf = 1; fftitf, (T+~f3f = 1. 

PROOF. From the presentation of G we see that (l + (s - ifY = 1 + (sp - l)2 = 
1 + {s[ — 1 )2 • Now (S4 — 1 )2 is an element of the Jennings' basis constructed using the s's. 
By Lemma 1.2, Q has a basis consisting of the union of all Jennings' basis elements in the 
idealsIl\,F+Xh andI2p+l. But (s4 - 1 )2 is not among these while (sE

4 - 1 )2 = £2(s4 - 1 )2 

modulo a . As 110, (^ - l)2 £ Q and so (l + (s - \)2)P £ 1 modulo 1 + Q. 

Next, for any g e G, (l + (g - l)(*i - l ) / 7 = 1 + ((g - l)(s, - 1))P, which, by 
Lemma 1.15, is equivalent modulo 1 +Q to 1 +(g— lY(s\ — If. But this is 1 ass1] is of 
order p. Also, as P? C Q, (1 +73y7 = 1. 

The last point can be seen by the use of the Hall-Petrescu formula, by the previous 
points and by the facts that exp(G2) = p, that 72(1 +72y? = 1 by Lemma 1.11 and that 
7P(1 +Z2) = 1 by Lemma 1.12. 

PROOF OF PROPOSITION 2.3 (CONTINUED). Suppose first that p > 7. The Hall-
D D (P) (P) 

Petrescu formula, applied in T, shows that 1 = f{ = rj (1 + ot\ fv\2j • • • v),"J • • • vp, where, 
for 2 < n < p, vn € Tn. But v„ = 1 for 2 < w < p — 1 as T2 is elementary by 
Lemma 1.11; also Tp = 1 by Theorem 1.10 so that vp = 1. As exp(Gi) = p, rf - 1. Using 
the Hall-Petrescu formula again, we find that 1 = (\+a{f = ( l + ( s - \f)pb(\+PY. 
As the last factor vanishes and as (l + (s — l)2)^ ^ 1, we conclude that b = 0 as desired. 

For/? = 5 we no longer have available the conclusion that Tp = 1; that c£(r) < 5 
is all that Theorem 1.10 provides. The argument which shows that b = 0 is much more 
taxing in this case. It is here that the approximation to the upper central series of T plays 
its role. We begin by specifying explicitly the ideals of Section 1: 

A ^ / , + 7 2 

A2 = II2+h+Q 

A3 = / 3 / 2 + / 2 / 3 + / / 4 + / 2 + ^ 

A4 = I5h+Ph +/3A +hh +/i + ^ 

A5 =I5I4+ll+n 

Y0 = Q = / /2+/ 6 / 2 +/ 1 1 

Y, = I5h + fh + I2hU + /3A + ^ 

Y2 = fh +/ 3 /3 + / 2 / 4 +//1/3 +/1/4 +/2 /3 + ^ 

Y3 = / 2 / 2 + / / 3 + / 4 + / l / 2 + ^ 

Y4 :=//i + / 2 + Q . 

The last ideal is introduced here for its utility in this case; such an ideal does not seem to 
be readily available in the more general context. That the condition (Y„, Ai) C Y„_i is 
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satisfied for 1 < n < 3 follows from Lemma 1.14; it is not difficult to use the techniques 
of Section 1 to show that it is true for n - 4 as well. It is also simple to check that 
IK C Y5-„ for 2 < n < 5. 

Once again we set out to expand fx but this time for p = 5. We factor the element 
differently to avail ourselves of the more precise results we have proved concerning the 
nilpotency class of the group 1 + T2. To ease the notation, write u := 1 + (s — l)2. By 
the Hall-Petrescu formula, 1 = t\ = (xxu

bf(\ + (3)5v5
2v

5
3v

5
4v5 where, for 2 < n < 5, 

vn G ln((xxu
b, 1 +/?)). Now (1 + 0)5 = 1 by Lemma 2.4. For 2 < n < 4, ^ = 1 since 

7 | = 1 by Lemma 1.11. Lastly we show that vs = I. Note that 1 +(5 — l)(si — 1), 
l+ ( s , - l)2 and s2 are in 1 + IIX + 72, a subset of 1 + Y4, and that 1+Y4 < CA(T) by 
the remark in the previous paragraph. Next we show that 1 +T3 < C^(T) as well. Now 
(73,/) is contained in f and in FGh\ as seen in the proof of Lemma 1.12, it follows 
that (73,/) C I2I2 + Ih + 74 which is in Y3; hence [1 +T3, 7] < T+T^" < £(7) by 
Proposition 1.13; thus 1 +P < (^(T) as desired. Consequently, l5((xxu

b,l + /?)) = 1. 
Thus (JCI w*)5 = 1 modulo 1 + Q. 

As we can go no further using the Hall-Petrescu identity, we will calculate (xx u
b)5 by 

using the techniques of restricted Lie algebras. For this we view xx u
b as xx (u

b — 1) + x\. 
Working in FG/Q, as restricted Lie algebra of characteristic 5 and adapting the notation 
standard in this setting [7, Section V.7], we see that, modulo Q, 

(xxu
b)5 = (xx(u

b - l))5 +x\ + J2 Si{x^ ~ 0 ,*i) . 
1 </<4 

But, modulo 73, *,(«* - 1) = w6 - 1 = b(s - l)2 so that (xx(u
b - l))5 = 65(s - l)10 = 

b(s4 — 1 )2 modulo Q as b5 = b in F, (s — 1 )5 = s4 — 1 and 71 x C Q . Therefore, modulo Q, 

(xXUb)5 = 1 + ^ 4 - l)2 + E *(*l(«* - O^l) -
1 </<4 

For p = 5, Jacobson has conveniently given the values of the 5/ in [7, Section V.7]. If 
/x, z/ are elements of a restricted Lie algebra, then 

S\(IJL,I/) = (JI,I/,I/,I/,I/), 

2S2(ji, v) = (/x, v, /x, v, v) + (/x, 1/, 1/, /i, 1/) + (/i, 1/, 1/, 1/, /i), 

3S3(/x, 1/) = (/x, 1/, /i, /x, 1/) + (/x, 1/, /x, 1/, /x) + (/x, 1/, 1/, /x, /x), 

4S4(/x,i/) = (/x,i/,/x,/x,/x). 

The reliable calculation of the values of the 5/ in our case is not a easy matter. As a 
check for the industrious reader, we give the results of our calculations, modulo Q, for 
/x = x\(ub — 1) and 1/ = x\. Indication of our intermediate steps is also provided along 
with some general principles. We begin with these. 

LEMMA 2.5. Let 77 G Ai U (1 + A}), 1 < 1 < 5. Suppose that, for somej, TJ - TJT" 
whereT'J,TJ € 1 + A\. Then, modulo Q, 

( r i , . . . ,7 / , . . . ,r5) = ( r i , . . . ,7^, . . . ,r5) + ( n , . . . , 7 ^ , . . . ,r5). 
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PROOF. We may assume that, for / fj, 77 E A]. The following is the key observation; 
its proof makes use of the properties of and interrelationships between the A and T ideals. 
For 2 < m < 5 and \ < i < m, let 07 E A\. Then, modulo 1 + Y5_w, 

[1 + < 7 i , . . . , l +CTm] = 1 + ( < 7 , , . . . , < 7 I W ) . 

To prove this, note first that, for 1 < n < 4, if p E A„ and a € Ai, then (p, a) = 
(1 + a)(l + p)([l + p, 1 + a] - 1) whence [1 + p, 1 + a] = 1 + (p, a) modulo 1 + T5_(n+i). 
This is because [1 + A„, 1 + Aj] < 1 + A„+i and/Aw+i C T5_(„+i). The observation now 
follows by induction on m. The case m = 2 has just been demonstrated. If m < 5, the 
induction hypothesis shows that, for some 7 E Ts_w, 

[ l + a 1 , . . . , l + a w + ] ] = [ l + ( a 1 , . . . , a w ) ( l + 7 ) , l + c r w + i ] 

= [1 +(cri,. . . ,crw), 1 +crw+1] 

= l+(CTi,...,CTw+i)modl+T5_(W+i); 

the last steps follow from Lemma 1.14 and the previous remark since (a\,..., am) E Am 

by Proposition 1.9. 
To make use of this observation in the proof of the lemma, we rely upon the fact that, 

in a group of nilpotency class c, c-fold commutators are multiplicative in each variable 
[6, III.6.8]. Thus, modulo 1 +Q, 

[ l + T 1 , . . . , T y , . . . 7 l + T 5 ] = [ l + T 1 , . . . , 7 }
, , . . . , l + r 5 ] [ l + T 1 , . . . , 7 }

/ , , . . . , l + T 5 ] . 

The observation then gives 

l + ( T 1 , . . . , T 7 , . . . , T 5 ) = ( l + ( T 1 , . . . , 7 }
/ , . . . , T 5 ) ) ( l + ( T 1 , . . . , 7 }

/ / , . . . , T 5 ) ) 

as Q = Yo. But the product of two such 5-fold Lie commutators is 0 modulo Q. because 
A5 C T8 and/16 C Q. The result follows. 

COROLLARY 2.6. Letri £ Ai U(l + Ai), 1 < / < 5. Suppose that y =x\(uh - \)for 
somej. Then, modulo Q, (T\ , . . . , 77,. . . , T5) = b(r\,..., w, . . . , T5). As a consequence, 
Si(xx{ub - 1),JCI) = tf-tySiiUiSfifor 1 < / < 4. 

PROOF. The fact that Lie commutators are linear in each variable gives the equation 
Cn, . . . , 77,. . . , T5) = (T] , . . . , x\ ub,..., T5) - (TI , . . . ,X] , . . . , r5). But, by the lemma, 

( T I , . . . , * I I / \ . . . , T 5 ) = ( T I , . . . ,jfi,...,T5) + fe(Ti,...,M,...,r5)modQ 

from which the first point follows. Its repeated application, together with appeals to the 
lemma itself for the factors k, establishes the last. 

This corollary simplifies the calculation of the required 5-fold Lie commutators. We 
now set about finding their values by calculating the values of the various constituent 

https://doi.org/10.4153/CJM-1996-055-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-055-x


MODULAR GROUP ALGEBRA PROBLEM 1077 

Lie commutators in u and s\. Because of Lemma 1.14, it is only necessary to carry out 
these calculations modulo the appropriate term Y,; this provides further simplification: 

(u<s\) = —2(5 — l)(s2 — 1) — (S3 — l)modT3 

(u,s\,s\) = 2(5 — l)(s4 — 1) — 2(52 — l)2modY2 

(u,suu) = (s- l ) 2 f c ~ l) + ( 5 - l)(s4- l)modY2 

(u,s\,si,s\) = —(s2 — \)(s4 — l)modYi 

(u,sus\,u) = -(52 - 1)(S4 - 1 ) - fc - l)2modYi 

(u,s\iU,s\) = -{s2 - 1)(54- l ) - ( 5 3 - l)2modYi 

(u,s\,u,u) = 2(5 — \f(s4 — l)modYi. 

Thus, modulo Q, the eight relevant 5-fold brackets are: 

(U,S\,S\,S\,S\) = (S4 - l ) 2 

(U,S\,S\,S\,U) = -(S4- l ) 2 

(U,S\,S\,U,S\) = (S4- l ) 2 

(w,5j ,5i , w, u) = 2(^4 — l ) 2 

(u,si,u1susi) = (s4 - l)2 

(«,5i ,W,5i , U) = 2(5*4 — l ) 2 

(W, S\, W, U,S\) = —2(54 — 1 ) 2 

(w,5i? w, w, w) = 0. 

We now complete the calculation of (x\ub)5 modulo 1 + Q. Our work has given the 
values of the S/'s modulo Q as: 

Sx(xx(u
b - \),x\)=b(sA- I)2 

52(jci(tt* - 1),JCI) = -2h?b\s4 - l)2 

Si{xx(J>-\),xx) = -l?b\sA-\f 

S4(xi(ub- 1),JC,) = 0. 

Thus, modulo 1 + Q, 1 = (*,ubf = 1 - (k2b2 + 2k3b + 3)b(s4 - l)2. Since (54 - l)2 ^ 0 
modulo Q and k2b2 + 2k3b + 3 = (J^b)2 + 2(k3b) + 3 ^ 0 modulo 5, it must be the case 
that b - 0, the long-sought-for conclusion. This completes the proof of Proposition 2.3 
and, with it, the proof of our main theorem. 
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