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ABSTRACT 
If rain falls on a new snowcover, a water saturated 

layer is often clearly formed in it. A snowcover with a 
saturated layer is sometimes unstable; the snowcover is 
folded and dimples appear on the snow surface. The 
mechanism of this instability is discussed theoretically. As a 
result, we find that a snowcover with a saturated layer can 
be unstable owing to lateral movement of water along a 
saturated layer and elastic deformation of the snow layer 
directly under it. Then the wavelength of the instability 
depends on the snow density; this result is consistent with 
field observations. 

INTRODUCTION 
The dimple pattern (Figure I) due to rainfall or snow 

melting had been observed by many researchers; Seligman 
(1936), Gerdel (1954), Wakahama (1963), Wankiewicz and de 
Vries (1978), and Nohguchi (I 984}. Whenever dimples begin 
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Fig.I. The occurrence of dimple pattern and water 
movement in a snowcover. 

to appear on a snow surface, a saturated layer exists in 
snow (Nohguchi 1984). Moreover, it is always folded with a 
constant wavelength determined simultaneously with the 
formation of the saturated layer. The occurrence of this 
folding is often followed by the formation of vertical 
drainage channels due to concentration of water; as a result, 
the dimple pattern becomes clearer. Folding with a 
characteristic wavelength suggests that the elastic instability 
is the trigger forming the regular pattern. Not only elastic 
deformation but also viscous deformation and solar radiation 
can explain the growth of dimples . However, viscous 
deformation and solar radiation cannot explain the 
wavelength because they are positive feedback mechanisms 
for any wavelength. 

The purposes of this paper are to show the elastic 
instability of a snowcover with a saturated layer and to 
present an expression for the wavelength. 

THEORY 
Snow is a visco-elastic material, though for quick 

processes it can be dealt with as an elastic material. To 
show the instability, consider a homogeneous snow layer 
(thickness: L, density: p) neighboring a saturated layer at 
the upper boundary (z = L) and with a rigid body at the 
lower boundary (z = 0) (Figure 2). To make the theory 
simple we neglect the horizontal components of elastic 
displacement because they have little effect on this 
phenomenon. Then the elastic state of the snow layer can 
be approximately described by the following equations 
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Fig.2. Snowcover with a saturated layer, and coordinate 
system. 

aa/ a z + aT/ay = pg 
(I) 

a = E(au/az) , T = Es(au/ay} 

where u is the z component of elastic displacement, and E 
and Es are coefficients of elasticity. 

As 10ng as the boundary conditions are independent 
of y, each of u, a and T is also independent of y. Let the 
deviations of u, a and T from this uniform state be u', a' 
and T' respectively, then Equation I can be rewritten in 
terms of the deviations as 

aa' / az + aT'/8y = 0 
(2) 

a' = E(au'/az), T' = Es(au'/ay) 

The stability of the uniform state can be examined by 
giving an infinitesimal deviation (amplitude: 6 , wavenumber: 
k) of displacement at the upper boundary; the boundary 
conditions are as follows: 

u' 6 sin ky 

u' o 

(z 

(z 

L) 

0) 
(3) 

because any deviation can be expressed by superposing it. 
Let the deviation of normal stress at z = L calculated 

from Equations 2 and 3 be ae', then we find 

ae' = 6k#s coth(jEJE kL) sin ky (4) 

On the other hand, this displacement deviation at the 
upper boundary brings about a non-uniform distribution of 
water in the saturated layer because the water moves to 
lower position along the upper boundary as mentioned by 
Wakahama (1963). As a result, it can be reasonably assumed 
that the deviation (aw ') of normal stress due to water 
movement is an increasing function of the displacement 
deviation (u' I z=L) and vanishes at u' I z=I" = O. Therefore, 
when the displacement deviation is sufficiently small, uw ' 
can be first approximately represented as 

(5) 
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where a is proportional constant defined by Equation 5 
itself. Thus from Equation 3 

aw' = sag sin ky 

If 

(6) 

(7) 

this initial deviation as a disturbance becomes larger. 
Therefore, the uniform state is unstable; the pattern of the 
wave number k (wavelength ,. = 2tt/k) is formed. On the 
other hand, if not, it is stable; the pattern is not formed. 

RESULTS 
From Equations 4, 6 and 7 we can obtain the 

condition for the occurrence of the instability with the 
wavenumber k 

(E/agL) k* < tanh k* 

k* = /E;iE Lk 
(8) 

This indicates that if E/agL < I, the uniform state is 
unstable for a wavenumber less than kc' which is the 
solution of the following equation 

(E/agL) k* ~ tanh k* (9) 

and that if E/agL > I, it is stable for any wavenumber k 
as shown in Figures 3 and 4. In general, a natural 
snowcover can be assumed to be disturbed in every 
wave number. Therefore, we can find that the occurrence of 
the instability (that is, the formation of the pattern) is 
governed by the nondimentional parameter E/ agL as 
follows 

E/agL > not occur 
(10) 

E/agL < occur 

3 
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Fig.3 . If E/agL < I, (E/agL)k* < tanh k* for k* < kc*· 

Whereas, if E/agL > I, (E/agL)k* > tanh k* for any 
k* . 

5 

4 

3 

2 

0.5 

I Stable 
I 
I 

E lo(gL 

Fig.4. The instability domain for the 
parameter E/agL and the nondimentional 
k*. 
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When E/ agL < I, the wavelength of the instability is 
characterized by the minimum wavelength "c = 2tt/kc. From 
Equation 9 it can be shown that "c increases with 
increasing E and Es. In particular, if E/ agL « I, "c can 
be represented as 

(11) 

independent of the thickness L. 

CO MP ARISON WITH OBSER V A TIONS 
According to the theory, both the occurrence of new 

pattern and its wavelength on a new snowcover are 
determined only by the snowcover at the time when the 
saturated layer was formed. Therefore, observations to 
compare with the theory must be carried out simultaneously 
with the beginning of the occurrence of dimples. 

In general, both E and Es increase with increasing 
snow density (Kojima 1954, and Shinojima 1966). Therefore 
from Equation 11, "c also increases with increasing snow 
density p . This can be assured by the field observations in 
Niigata Prefecture, Japan, as shown in Figure 5; it is found 
that the number of dimples per square meter (f) decreases 
with increasing snow density directly under the saturated 
layer. The broken line in Figure 5 represents the following 
relation of f to p (kg/ ms) 
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Fig.5. The number (f) of dimples per meter2 vs snow 
density (p) just under the saturated layer: in 1983 and 
1984 winters, Niigata Prefecture. 

f = 1/,.2 a: exp(-O.0534p) (12) 

Then, by using Equations II and 12, the relation of E (or 
Es) to p can be derived as 

E (or Es) a: exp(0.0267 p) (13) 

The nondimentional parameter E/ agL increases with 
time and becomes larger than unity, because both E and 
I/ L increase with time owing to snow settlement. Therefore, 
if the snow layer is sufficiently old, the dimple pattern 
cannot appear, even if a saturated layer is formed . This 
theoretical result also is consistent with the fact that the 
pattern has never occurred for high density (p > 200 
kg/ ms) as shown in Figure 5. 

As mentioned before, measurements of the snow 
density must be carried out immediately after the 
occurrence of dimples, or at latest within several hours. In 
addition, it must be carried out at the most soft snow just 
under the saturated layer and before melt-freeze 
metamorphism. Otherwise, higher density than the right one 
would be always measured owing to snow settlement and 
melt-freeze metamorphism. 

CONCLUSION 
It was theoretically shown that the uniform state of a 

snowcover with a saturated layer is unstable when the 
nondimentional parameter E/ agL < 1. Then the wavelength 
of the instability is characterized by the minimum 
wavelength "c. In particular, when E/ agL « I, "c 
increases with increasing snow density and is independent of 
the thickness of the snow layer. These results are assured 
by the field observations. Thus we conclude that the elastic 
instability of a snowcover with a saturated layer triggers the 
occurrence of the dimple pattern. 
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