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1. Introduction. In [3], a group G was said to be a CF-group if, for every subgroup
H of G, H/Cor&c H is finite. It was shown there that a locally finite CF-group G is
abelian-by-finite and that there is a bound for the indices \H: Corec H\ as H runs through
all subgroups of G. (Groups for which such a bound exists were referred to in [3] as
BCF-groups.) The CF-property was further investigated in [10], one of the main results
there being that nilpotent CF-groups are (again) abelian-by-finite and BCF. In the
present paper, we shall discuss the CF-property in conjunction with some related
properties, which are defined as follows.

A group G has property SUA: or Cx respectively if every subgroup, every abelian
subgroup or every cyclic subgroup (respectively) of G has finite index over its core in G.
A group G has property S2,A2 or C2 respectively if the index \H:HC\HX\ is finite for
every element x of G and every subgroup, every abelian subgroup or every cyclic
subgroup H of G.

It is clear that SltS2, C\ and C2 are inherited by homomorphic images. Not
surprisingly, this is not true of properties Ax and A2, and a suitable example is given in
Section 5 below. The class of 5]-groups is precisely that of CF-groups, and it is contained
in all of the other classes. Indeed, it is clear that Si^S2, A^A2 and Ci=£>C2 and that
Sj^Aj^Cj, i = l,2. We shall see in Section 5 that there are no further implications
between any of the above properties, even with the additional hypothesis of nilpotency
(which, as stated above, proved quite decisive for CF-groups). Another hypothesis that it
is reasonable to impose is that of finite generation. It will be shown that a finitely
generated C2-group is a C]-group and that a finitely generated v42-group satisfies Ax. We
have not resolved the problem as to whether a finitely generated 52-group is Su but such
evidence as we have suggests to us that this is the case. On the other hand, for finitely
generated soluble groups, the property C2 certainly suffices to ensure that 5] holds (see
Corollary 2.5). The key to establishing the relevant properties of C2-groups is Proposition
2.1, which shows that torsionfree elements of a C2-group "almost commute"—a finitely
generated torsionfree C2-group is then seen to be centre-by-periodic. Clearly such groups
will be centre-by-finite in many cases, and centre-by-finite groups are of course BCF.

2. Cyclic subgroups. We begin by considering the relationship between any two
torsionfree elements in a C2-group. We have the following.
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PROPOSITION 2.1. Let G be a group such that \(g):(g) D (g)h\ is finite for all g, h in G
and let a,x be elements of infinite order in G. Then there exist nonzero integers a, /3 such
that[a,xa] = l = [x,a<3].

Proof For a contradiction, we may assume that no nonzero power of x centralizes a.
By hypothesis, there exist nonzero integers m,n,r,s such that (ax)m =a", (x"Y = xs. Set
d = (m,n) (the greatest common divisor) and write m = dmu n = dnx. Similarly, let
r = erj, s = eslt where e = (r,s). Thus (m1,n1) = l = (r1,Si). Let v = ad, w=xe and
suppose first that |r,| = \Si\ = 1. Thus r=±s. If r = -s then (xr)a =x~r, that is, (xer>)fl =
A:~eri and so w" = w~1 and w"2 = w, giving (wa2)" = w~!fl2 and hence (wa2)" = (w~1a2).
Now if w = a~2 then w" = w = w"1 and we have the contradiction w2 - 1. Thus (WG2)^ 1
and, by the C2-property, it follows that {wa2)C\(w~*a2)¥=l, that is, there exist nonzero
integers y, 8 such that {w~xa2)y — (wa2)6. Since a2 and w commute, we have wy+e =
a2{y~s\ giving (wy+s)a = wy+s and hence 7 + 5 = 0. Thus a1(y~b) = l and y = S = 0, a
contradiction which shows that if |ri| = |.s1| = l then r = s and hence [xr,a] = l, another
contradiction. So either IrJ ^ 1 or l̂ il 5̂  1.

Now write w2 = m^, n2 = «i, r2 = rf, s2 = si Then (um2)-= v«2 and (w^)" = w\
Further, (w1"?)*'2 = un? and so (w

mS2)^2 = (w'n?)(""2)" = w-I((i;'n2)r2)^2t; = i;»Sl, that is,
(v^y* = (v"*?)""2 and so [vm?, wr2~S2] = 1. Similarly, K"2, u"12""2] = 1. Now \r2\ and |52|
are coprime and not both equal to 1, so r2-s2

:^0. Also, z = v(m?)im*~n*) is centralized by
both wn~Sl and w''"2 and hence by w (since (r2 - s2, r2) = 1). Thus z = zw =
((um2^^2-i{m2-/l2) = un2m52-'(m2-n2)_ B y torsionfreeness we have vm2(m2""2) = v"2(m2~n2) and
hence m2 = n2, which implies \mi\ = |«i| = 1 and m-±n. But m = -n leads to a
contradiction in exactly the same way as did the hypothesis r = —s, so we may assume
(am)x = am and thus x"m=x. Now (xr)° = xs and so (*r")°" =je". But [x,am] = 1 implies
( i ' " f = *rm and we have xrm =xsm and hence r = ±s (again bytorsionfreeness). This in
turn implies \ri\ = |si| = 1, which we have seen to be impossible. This completes the proof
of Proposition 2.1.

Note that the infinite dihedral group (x,a:xa =x~\a2 = 1) satisfies C2 but no nonzero
power of* centralizes a. Thus torsionfreeness is an essential hypothesis in the above.

The main consequence for us of Proposition 2.1 is the following.

THEOREM 2.2. Every finitely generated C2-group satisfies Cx.

Proof. Let {gu..., gr} be a generating set for the C2-group G and let x e G. If x has
finite order then of course (j:)/CoreG(x) is finite, so suppose (x) is infinite. If gt has infinite
order then, by Proposition 2.1, there is a nonzero integer a, such that [*",g,] = 1, while if
gi has finite order k then there exist nonzero integers mh n, such that (*m-)gi = x"> and
hence xm' - (x"7*)^ = *"* and m( = ±nt. Let a, = /n, in this case and write a = ax... ar.
Then {xa) < G and the theorem is proved.

The next result is also a consequence of Proposition 2.1. Its proof is easy and is
omitted.

COROLLARY 2.3. Let G be a finitely generated torsionfree C2-group and let Z denote
the centre of G. Then G/Z is periodic.

In the context of this corollary, it is worth remarking that Adian has constructed a finitely
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generated torsionfree group G, with cyclic centre Z, such that GIZ is a Tarski p-group.
Every subgroup of G thus has index at most p over its core.

As we mentioned above, the infinite dihedral group satisfies C2, although it is not
centre-by-periodic. However, finitely generated groups satisfying C2 are almost centre-by-
periodic, in the following sense.

COROLLARY 2.4. Let G be a finitely generated C2-group. Then there is a normal
subgroup C of G such that |G/C|«2 and C/Z(C) is periodic. In particular, G is
abelian -by -periodic.

Proof. By Theorem 2.2, G satisfies CV Let A be the subgroup generated by all
infinite cyclic normal subgroups of G. As in Lemma 4.3 of [3], A is abelian and its
centralizer C has index at most 2 in G. By the Crproperty, CIA is periodic.

Of course, for many familiar classes $£ of groups, all finitely generated periodic
Sf-groups are finite. A class which contains many such 'SC as subclasses (for instance, the
class of hyperabelian groups) is that of groups with ascending series whose factors are
locally (nilpotent or finite). Denoting this class by PL(JfU 2F), we have the following.

COROLLARY 2.5. Let G be a finitely generated C2-group belonging to the class
PL(JfU &). Then G is abelian-by-finite and BCF. In particular, G satisfies 5j.

Proof. By Corollary 2.4, such a group G is abelian-by-finite. The argument of the proof of
Corollary 4.4 of [3] now shows that G is BCF.

We see from Corollary 2.5 that a torsionfree, locally nilpotent C2-group is abelian.
We now record a few more results on torsionfree C2-groups. Firstly we note that, with the
notation of Corollary 2.4, if |G:C| = 2 then there exists x eG such that g* = g~] for all g
in A (see Lemma 4.3 of [3]), but this is impossible if G is torsionfree, since G/A is
periodic. Thus A =£ Z(G) and G is centre-by-periodic. Since a torsionfree centre-by-finite
group is abelian, we may state the following.

COROLLARY 2.6. Let G be a torsionfree C2-group. If G is finitely generated and every
periodic image of G is finite then G is abelian. In particular, if G is locally radical or
locally (soluble-by-finite) then G is abelian.

3. Abelian subgroups. We turn our attention now to the properties A] and A2.
Firstly, we recall from [3] that a subgroup H of a group G is said to be G-hamiltonian if
every (cyclic) subgroup of H is normal in G. If x is an element of G and H is a subgroup
of G, we shall say that H is jc-hamiltonian if every subgroup of H is normalized by x. Now
suppose that G is a CVgroup and that N = (g e G:(g)<G and \g\ = °°). Then N is abelian
and even G-hamiltonian (see the remarks preceding Corollary 2.6), and GIN is periodic.
This property of N is useful in the proof of our next main result.

THEOREM 3.1. Let G be a finitely generated A2-group. Then G satisfies Au

Proof. Let G be as stated and assume, for a contradiction, that some abelian
subgroup A has infinite index over its core C. By Theorem 2.2, G is a Crgroup and so,
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with the notation as above, N is G-hamiltonian. Thus A D N < G and, in particular,
A n N =£ C and yl/C is periodic. Although the property A2 is not inherited by
homomorphic images, from now on we shall only be using the j42-property as it applies to
subgroups of A. For convenience, then, we shall assume that C = 1 and hence that A is
periodic. Every subgroup of A of type Cp~ is G-hamiltonian and so A must be reduced. If
some p-component of A is infinite then we may assume that A is an elementary p-group.
Otherwise, we may suppose that A = D r ^ ) , where each ap has prime order p and the set

pen

n is infinite. In the latter case, let x be an arbitrary element of G. Then A n A* has finite
index n, say, in A. For all primes p not dividing n we have ap e A C\AX. Thus (ap) = (ap)
and x e No((ap)). Letting x run through a generating set for G, we see that (ap)<G for
almost all p in n, a contradiction. Thus we may assume that /4 is an elementary p-group,
for some prime p. Again let x e G.

Claim. A is "almost *-hamiltonian", that is, there is a subgroup K of finite index in A
such that (a)x = (a) for all a in K Suppose that the claim is false. Since A DA*'1 has finite
index in A, there exists a, in A C\ Ax~l such that (a,) ^ (a,)*. Let Bj = («j, ax). Then B, =£ ,4
and A = B, x Au for some >li. Since .4] ri/4f ' has finite index in Ax and hence in A, there
exists a2eAnv4*~1 such that (a2)¥=(a2)

x. Let B2 = (a2, a
x
2). Then B2^/4i a nd so

(Bl5 B2) = B\ x B2 and /I, = B2 x A2, for some ^42. We may then choose a3 in A2 fl y42

such that <a3) T4 (fl3)* and we get B3 = <a3, a3) =s A2. Eventually, we obtain a subgroup B of
,4, where B = Btx B2X ... , B, = (a,, ax) and <a,) ^ <a,>x for each /. Let D = (ax

u a
x
2,...).

Then D*'* = (aua2,...) and so D C\ Dx~' = 1, contradicting the ,42-property. This estab-
lishes the claim.

Now let A' be a finite generating set for G. Then A is almost *-hamiltonian for each x
in A'U X'1 and so A certainly has finite index over its core in G, a contradiction.

The theorem is thus proved.

4. Arbitrary subgroups. Our main concern in this section is with the question: Does
every finitely generated 52-group satisfy Si? As stated in the introduction, we do not know
the answer, but we have been able to effect a reduction which allows us to deal with one
or two special cases and provides strong evidence (in our view) that the answer to this
question is in the affirmative. We begin with a result which allows us to focus our
attention on finitely generated subgroups.

LEMMA 4.1. Let G be a finitely generated S2-group in which every finitely generated
subgroup has finite index over its core in G. Then G has the property 5j.

Proof. Suppose that G is as given and assume, for a contradiction, that there is a
subgroup H of G such that H/CoreG H is infinite. Now it is easy to see that the property
on finitely generated subgroups is inherited by homomorphic images of G and so we may
assume H is corefree in G. Since H is countable, there is an ascending chain
Hi < H2 <... of finitely generated subgroups whose union is H. Then each //, is corefree
in G and therefore finite, and so H is locally finite. Since H is also infinite, it contains an
infinite abelian subgroup [5] and we may thus assume that H is abelian. Theorem 3.1 now
gives a contradiction.

We note that the above proof also establishes the following.
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LEMMA 4.2. Let G be a finitely generated S2-group and H a locally finite subgroup of
G. Then (every subgroup of) H is finite over its core in G.

Our next reduction is to the case where G is periodic.

LEMMA 4.3. Let G be a finitely generated S2-group all of whose periodic images satisfy
S). Then G also satisfies 5j.

Proof. By Corollary 2.4, there is a normal subgroup C of index at most 2 in G and a
G-invariant subgroup A of Z(C) such that G/A is periodic. With A as defined in
Corollary 2.4, we also know that every subgroup of A is normal in G (again see the
remarks preceding Corollary 2.6). Let H be an arbitrary subgroup of G. In order to show
that ///Corec H is finite, we may of course assume that H is contained in C and that H is
corefree in G. By hypothesis, there is a normal subgroup N of G such that A^N =£ HA
and HA/N is finite. Then N = A(N D H) and \H:N P\H\ is finite and we may assume that
N = AH. We now have N' = (AH)' = A'H'[A, H] = H\ since H =s C and A =£ Z(C). Since
/ / is corefree and N' <G we see that / / is abelian. Also, / / fl A is normal in G and hence
trivial, giving H periodic and hence of finite index over its core, by Lemma 4.2.

We have already seen that it is finitely generated subgroups of a finitely generated
52-group that need to be considered. The following lemma provides the basis for an
inductive argument. Its proof will involve an appeal to some deep results of Zel'manov
and others and, although this is somewhat unsatisfactory here, we note that we are in the
realm of finitely generated infinite periodic groups and that a positive solution to the
question we have raised may well depend on some difficult theorems. In any case, here is
the reduction.

LEMMA 4.4. Let G be a periodic S2-group and let H, K be finitely generated subgroups
of G such that H =£ K. Suppose that ///Core* H and A7CoreG K are finite. Then
H/Corec H is finite.

Proof. We shall assume that H is corefree in G. Set L = Corec K, M = Core* H,
N = L n M. Then H/N is finite and N is normal in K and so N < Nc <J G. Now for all g in
G we have NS<NC and \NgN:N\ = \N8:N8 DN\, which is finite. Thus N°/N is locally
finite. Further, K/N is a finitely generated S2-group and hence, by Lemma 4.2, every
subgroup of Nc/N is finite over its core in K/N and hence over its core in NG/N. By the
main result of [3], Nc/N is abelian-by-finite. Let T be a normal subgroup of finite index t,
say, in Nc such that JV« T and T/N is abelian, and let P = ((Nc)')'. Then P<G and
P^T'^N^H. Since H is corefree, P = 1 and so N' is abelian. Also, H/N' has finite
exponent. Let B be a maximal normal abelian subgroup of H containing N'. Again since
H is corefree in G, the 52-property tells us that H is residually finite and hence that H/B is
residually finite (by the maximality of B). But H/B is finitely generated and of finite
exponent and so, by Zel'manov's solution to the Restricted Burnside Problem ([11] and
[12]), there is a bound for the order of a finite image of H/B. It follows that H/B is finite
and so H is finitely generated abelian-by-finite and hence finite, since G is periodic. The
result follows.

Our final reduction is to the case where G = {H, x) (where H is finitely generated
and, for a contradiction, has infinite index over its core). Probably the clearest manner in
which to make our point is simply to exhibit the reduction for what it is.
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LEMMA 4.5. If'there exists a finitely generated S2-group which is not Su then there exists
such a group G which is periodic and generated by a finitely generated subgroup H and an
element x such that H/Cortc H is infinite.

Proof. Suppose G is a finitely generated periodic 52-group which is not Sx. By
Lemma 4.1, there is a finitely generated subgroup H of G which has infinite index over its
core. Then G = (H,gu... ,gr) for some elements g, and we may assume, as inductive
hypothesis, that r is minimal subject to the pair (G, H) being a counterexample (with H
finitely generated). Since r > l we may write K = ( / / ,gu . . . ,gr_i). The induction
hypothesis and Lemma 4.4 now give the contradiction that ///Corec H is finite. The
lemma is thus proved.

Lemma 4.5 seems to provide us with quite a substantial reduction of the problem. We
now consider the special case where G is a p-group. Even here we have met with only
limited success. The key result is the following.

PROPOSITION 4.6. Let G be an S2-group and H a proper subgroup of G. If G is a
p-group, for some prime p, then there exists an element g of G\H such that ///CoreGl H is
finite, where G^ = (H,g).

Proof. Let x e G\H and write n = \x\, V = H n Hx n . . . n H*"1. Then \H:V\ is finite
and V is normal in (V,x). Thus the set Cl = {T^H:T^V and 3g e G\H such that
T/Core<Tg> T is finite} is nonempty. Let M be maximal in Q. Then there exists g in G\H
and a normal subgroup C of (M, g) such that C =£ A/ and MIC is finite. If M = H then we
have the result, so assume, for a contradiction, that M<H. So there is a subgroup B of
H, with M a normal subgroup of B, such that \B/M\=p and, for every XGG/H,

B/Core{Bjc} B is infinite. Thus B £ (M, g). Write B = M{h), with hp e M and S = (M, g) D
(M,g)"n.. .D(M,gf~\ Clearly M =sS and B^NC(S). Further, \(M,g):S\ is finite. Now
suppose S£H. Then (S,B) = SB^S and \SB:S\ = \B:SDB\ = \B\M\ =p and hence
S<SB, \SB/S\=p and SB = S(h). We have C<S and MIC finite and, for every
i = 0 , 1 , . . . ,p - 1, Ch'<S, M/Chi finite. So, writing D = C n C" n . . . n C""', we have
5 =£ NC(D), BID finite and D<SB£H, contradicting the maximality of M. Thus S^H.
Therefore \{M,g):(M,g)DH\ is finite and {M,g)/C is a finite p-group. Hence there exists
y e (M, g)\H such that y e NC((M, g) D H). Hence (M, g) D H = M, since M is maximal in
Q.. But now we have y e NG(M), B ^NC(M) and A/ <<B,y), again a contradiction to the
maximality of M. This completes the proof.

We now present a few positive results on 52-groups.

THEOREM 4.7. Let G be an S2-group with the maximal condition on subgroups. If G is
a p-group, for some prime p, then G satisfies Sj.

THEOREM 4.8. Let G be an S2-group with is also a 2-group. Then G is locally nilpotent.

COROLLARY 4.9. / / the 2-group G is a finitely generated S2-group then G is finite (and
therefore certainly an S^-group).

Proof of Theorem 4.7. Let G be as stated. Assuming the result false, let H be a
subgroup of G which is maximal subject to H/CoreG H being infinite. By Proposition 4.6,
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H/CoreK H is finite for some K = (H, g) > H. By maximality, A7CoreG K is finite. The
result follows by Lemma 4.4.

We remark that Theorem 4.7 does not in fact require the results of Zel'manov—the
proof of Lemma 4.4 is much more elementary in the case where G satisfies max, since
(with the same notation) the group Nc/N is locally finite with max and hence finite, which
implies N/CoreG N finite and thus ///CoreG H finite.

Proof of Theorem 4.8. Again with G as stated, let H be an arbitrary proper subgroup
of G. We shall show that H <NG{H)—the result will follow from a theorem of Plotkin
(see Section 6.1 of [8]). By Proposition 4.6, there exists g e G\H such that ///CoreGl H is
finite, where G, = (H, g). Then ///CoreG] H is a proper finite subgroup_ of the 2-group
G = G,/CoreCi H and is thus properly contained in its normalizer in G (see Theorem
3.15 of [8]). The result follows.

The existence of finitely generated, infinite p-groups all of whose proper subgroups
are cyclic (see, for instance, [7]) shows that there is no equivalent of Theorem 4.8 for odd
primes p.

We conclude this section with the obvious

CONJECTURE. Every finitely generated S2-group is an S^-group.

5. Some examples. We remarked in the introduction that there are certain very
obvious inclusions among the classes of groups defined by our six properties. We now
show that these are the only inclusions.

THEOREM 5.1. (a) S^A^CU S2^A2^C2, S^S2, A^A2, C,
(b) Apart from the implications given in (a) (and those which are formal logical

consequences of these) there are no further implications among the six properties, even with
the additional hypothesis of nilpotency.

Proof. Of course, only part (b) needs verifying. To do this, we exhibit three nilpotent
groups GUG2 and G3 such that Gx has S2 but not Cu G2 has Ax but not S2 and G3 has C,
but not A2.

For each prime p, let (ap) be a cyclic group of order p2 and set A = Dr(ap). Define
p

z e AutA by a\ = a£+1 for all p, and write G, = A](z). Then G[ = Dr(fl£) = Z{GX) and G,
p

is nil-2 (and of rank 2). Clearly CoreGl(z) = 1 and so Gx is not Cj. Now let H ^ Gu x e Gx.
We wish to show that \H:H DHX\ is finite. Modulo HC\A (which is normal in G{) we
have H cyclic and hence (H,x) finitely generated and finite-by-cyclic. This gives (H,x)
centre-by-finite (mod H !~\A) and the result follows.

Next, let p be an odd prime and G2 the free nil-2, exponent-/? group on generators
Oo,oua2,... . So G2 = Z(G2) = ([a,, fl;]:/</) = Z, say. If A is an arbitrary abelian
subgroup of G2 then it is easy to see that \AZ/Z\ =£p and so G2 is certainly an A]-group.
Now let H = (aua2,...) and write B = H' = ([ai,aj]:i,j>0), x=ao. Then HX =
(fl,[fl,,flo]:/ = l ,2, . . . )and clearly H n Hx = B and so \H:HC\HX\ is infinite and G2 is not
an S2-group.

For our group G3 we take the wreath product of an infinite elementary abelian

https://doi.org/10.1017/S0017089500031608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031608


334 JOHN C. LENNOX ET AL.

p-group A by a cyclic group (x) of order/?. Then G3 is nilpotent [2] and obviously satisfies
Cj, since it is periodic. However, identifying A with the "first component subgroup" of
the base group of G3, we have that A D Ax = 1 and hence G3 is not an yl2-group.

This completes the proof of the theorem.

The group G2 above also provides an example of an A^-group which has a
homomorphic image not satisfying A2—indeed, with H and B as defined, the image of H
in G2/B is abelian but has infinite index over its intersection with (the image of) Hx.
Further, the fact that an Ax-group need not satisfy Sx shows that there is no generalization
of the main theorem of [3] along the lines of Eremin's improvement to the theorem of
B. H. Neumann on groups with finite classes of conjugate subgroups (see [6] and [4]).

The property of being finitely generated has been seen to be quite a strong one with
regard to the pairs (AUA2) and (CUC2), and at least of some influence with regard to
(SUS2). We may now ask whether finite generation leads to some interdependence
between these pairs, other than as stated in Theorem 5.1. That there are no further
implications of this kind is the import of our final result, although we recall that the
situation is quite different for soluble groups (Corollary 2.5).

THEOREM 5.2. There exist finitely generated groups G4, G5 such that G4 satisfies C] but
not A2, while G5 satisfies Al but not S2.

Proof. Let H be any finitely generated, infinite periodic group having an infinite
abelian subgroup A (see e.g. [9]) and let G4 be the wreath product of H with a cyclic
group (x) of order 2. Then G4 is finitely generated and periodic and hence a Cj-group, but
ADA" = 1 and so G4 does not satisfy A2.

Now let K be any finitely generated, infinite periodic group in which all abelian
subgroups are finite (see [1]) and let G4 = K wr(*), where again x has order 2. Then all
abelian subgroups of G5 are finite and so G5 is an ylj-group. But K D Kx = 1 and so G5

does not satisfy S2.

The easy constructions above rely, of course, on some highly nontrivial examples.
Corollary 2.5 may provide us with some justification for this apparent extravagance.

REFERENCES

1. S. I. Adian, The problem of Burnside and identities in groups, (Nauka, 1975) (Russian).
(Translation by J. C. Lennox and J. Wiegold, (Springer-Verlag 1979)).

2. G. Baumslag, Wreath products and p-groups, Proc. Cambridge Phil. Soc. 55 (1959),
224-231.

3. J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith and J. Wiegold, Groups with all
subgroups normal-by-finite, J. Australian Math. Soc. (to appear).

4. 1.1. Eremin, Groups with finite classes of conjugate abelian subgroups, Dokl. Akad. Nauk.
SSSR (N.S.) 118 (1958), 223-224.

5. P. Hall and C. R. Kulatilaka, A property of locally finite groups, J. London Math. Soc. 39
(1964), 235-239.

6. B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z. 63 (1955),
76-96.

7. A. Yu. Ol'shanskii, Geometry of defining relations in groups, (Nauka, 1989).
8. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, (Springer-Verlag

1972).

https://doi.org/10.1017/S0017089500031608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031608


INTERSECTIONS OF CONJUGATES OF SUBGROUPS 335

9. A. V. Rozhkov, On subgroups of infinite finitely generated p-groups, Mat. Sb. 129 (171)
(1986) (=Math. USSR Sbomik 57 (1987), No. 2).

10. H. Smith and J. Wiegold, Locally graded groups with all subgroups normal-by-finite, J.
Austral. Math. Soc, to appear.

11. E. I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent,
Izv. Akad. Nauk. SSR Ser. Mat. 54 (1990), 42-59.

12. E. I Zel'manov, Solution of the restructed Burnside problem for 2-groups, Mat. Sb. 182
(1991), 568-592.

John C. Lennox and James Wiegold
SCHOOL OF MATHEMATICS

UNIVERSITY OF WALES COLLEGE OF CARDIFF

CARDIFF CF2 4AG

WALES

Patrizia Longobardi and Mercede Maj
DlPARTIMENTO DI MATEMATICA E A P P L I C A Z I O N I

UNIVERSITA DEGLI STUDI DI NAPOLI

MONTE S. ANGELO—VIA CINTIA

80126 NAPOLI

ITALY

Howard Smith
DEPARTMENT OF MATHEMATICS

BUCKNELL UNIVERSITY

LEWISBURG PA 17837
U.S.A.

https://doi.org/10.1017/S0017089500031608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031608

