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Abstract. A geometric extension algebra is an extension algebra of a semi-simple
perverse sheaf (allowing shifts), e.g., a push-forward of the constant sheaf under a
projective map. Particular nice situations arise for collapsings of homogeneous vector
bundles over homogeneous spaces. In this paper, we study the relationship between
partial flag and complete flag cases. Our main result is that the locally finite modules
over the geometric extension algebras are related by a recollement. As examples, we
investigate parabolic affine nil Hecke algebras, geometric extension algebras associated
with parabolic Springer maps and an example of Reineke of a parabolic quiver-graded
Hecke algebra.

2010 Mathematics Subject Classification. Primary 14F43; Secondary 20C08,
14M99, 14F05.

1. Introduction. A geometric extension algebra is an algebra Ext∗(L,L) :=⊕
n∈� Hom(L,L[n]), where L is a direct sum of shifts of simple equivariant perverse

sheaves on a complex algebraic variety equipped with a suitable group action. For
example, L might be a push-forward of the constant sheaf under an equivariant
projective map of varieties. Examples of such algebras include affine nil Hecke algebras,
skew group algebras of polynomial rings with a Weyl group action and graded parts of
quiver Hecke algebras, see for example [10]. All of these algebras arise from collapsing
of homogeneous vector bundles over complete flag varieties, and in this case it is
often possible to find explicit generators and relations using methods of Varagnolo
and Vasserot, see for example [13, 12, 9]. However, there are also cases of interest
associated with partial flag varieties, to which these methods do not apply. This
includes quiver Schur algebras in [11], where calculations can be made via diagram
calculus.

In this paper, we study geometric extension algebras ZP arising from partial flag
varieties. Associated with such an algebra we construct another geometric extension
algebra ZB arising from complete flags and we show that there is a close relation
between these two algebras. More precisely, we show there is an idempotent element
eP ∈ ZB such that ePZBeP ∼= ZP. This implies that the locally finite modules over ZB

and ZP are related by a recollement (obtained from the idempotent eP). Our result
applies to arbitrary reductive groups and more general collapsings than studied in loc.
cit. As examples, we study parabolic versions of affine nil Hecke algebras, examples
from Springer theory and an example of Reineke.
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112 JULIA SAUTER

2. A recollement relating parabolic and Borel cases.

DEFINITION 1. Let (G, Pi, V, Fi)i∈I be a tuple with G a reductive group with
parabolic subgroups Pi, i ∈ I (where I is some finite set) such that

⋂
Pi contain

a maximal torus T , dim Pi = dim Pj for all i, j ∈ I and V a G-representation
with Pi-subrepresentations Fi ⊂ V . We set EP

i := G ×Pi Fi, EP := ⊔
EP

i , πP : EP →
V, (g, f ) �→ gf . Choose T ⊂ Bi ⊂ Pi, i ∈ I Borel subgroups of G (where T ⊂ ⋂

i∈I Pi)
and consider Fi as Bi-representation, and then (G, Bi, V, Fi)i∈I can be used to define
EB

i , EB, πB, ZB analogously.

For any complex algebraic variety X with an action of an algebraic group A, we
will denote by Db

A(X) the A-equivariant derived category introduced by Bernstein and
Lunts [2]. These categories carry a six functor calculus, and we will denote the right-
or left-derived functors with the same symbol as the functor. They have a dualizing
object DX used to define a duality called Verdier duality.

We define Ext∗Db
A(X)

(U, V ) := ⊕
n∈� HomDb

A(X)(U, V [n]) for U, V ∈ Db
G(X), and

CB := ⊕
i∈I �EB

i
[dim EB

i ] and CP analogously and we set

ZB = Ext∗DA
b (V )(π

B
∗ CB, πB

∗ CB),

ZP = Ext∗DA
b (V )(π

P
∗ CP, πP

∗ CP).

We remark that the shifts in the grading of the constant sheaves ensures DEB (CB) =
CB and DEP (CP) = CP. This implies that both graded algebras ZB,ZP have an anti-
involution given by applying Verdier duality. We denote by ∗ − grmod the category
of finitely generated graded modules over a �-graded algebra ∗. Homomorphisms are
given by homogeneous maps of degree zero. Since ZB and ZP are finitely generated
modules over the commutative noetherian ring H∗

A(pt) (see [10]), they are noetherian
and the categories of graded modules over them are abelian.

THEOREM 2.1. There is a recollement of abelian categories given by an idempotent
element eP,

ZB
A/ZB

AePZB
A −grmod �� ZB

A −grmod
��

��
eP �� ZP

A −grmod .
��

��

In fact, given any graded algebra B and an idempotent e ∈ B in degree 0, such that B
is a module-finite algebra over a commutative noetherian ring, we get that the standard
recollement for the idempotent e restricts to one of the finitely generated graded
modules (using if X and Y are finitely generated Z-modules, then so is HomZ(X, Y )).

The key tool to find the idempotent eP in the theorem is a (topological) operation
of the Weyl group.

2.1. The Weyl group operation. Let T ⊂ B ⊂ P ⊂ G with T be a maximal torus
and B be a Borel in a reductive group G over the �. We choose a maximal compact
subgroup K ⊂ G, then T ′ := T ∩ K is a compact torus in K and the inclusion K → G
induces a homoemorphism K/T ′ → G/B, this is long well known, see, e.g., [1, Section
2]. The Weyl group W associated with G and T coincides with the Weyl group associated
with K and T ′. The group W operates on K/T ′ via nT ′ · kT ′ = kn−1T ′, n ∈ NK (T ′), k ∈
K without fixpoints. Similarly, let WP ⊂ W be the Weyl group of a Levi subgroup L ⊂ P
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and T , it operates on P/B ∼= L/(B ∩ L) ∼= K ′/T ′ for a maximal compact subgroup
K ′ ⊂ L. Now given, a P-representation F , then EB := G ×B F ∼= K ×T ′

F carries a W -

operation and for the map α : EB → EP := G ×P F, (g, f )
B �→ (g, f )

P
one has α ◦ w =

α for all w ∈ WP. This induces an operation of WP on α∗(F) for any sheaf F and
therefore we have an induced functor:

α∗()WP : Db
A(EB) → Db

A(EP).

LEMMA 1. In the notation from before, for the constant sheaf � on EP the adjunction
map � → α∗α∗� is a monomorphism in Db

A(EP). Furthermore, it factorizes over an
isomorphism � → (α∗�)WP , where WP is the Weyl group of a Levi subgroup in P.

Proof. For any variety, we write XA := X ×A EA, where EA is a contractible space
with a free A-operation. We denote α := αA : (EB)A → (EP)A—the associated map. It is
smooth and proper submersion with fibres all isomorphic to P/B. The decomposition
theorem (in the more specific version for a proper submersion, see [5, item (3) after
remark 1.6.2]) implies

α∗� =
⊕
i∈�

Riα∗�[−i].

Since Riα∗� is the sheaf associated with the presheaf,

U �→ Hi(α−1(U)),

this implies (Riα∗�)x = Hi(α−1(x)) ∼= Hi(P/B) for all x ∈ (EP)A. Therefore, Riα∗� is
a local system on (EP)A and since π1((EP)A, x0) (for any x0 ∈ (EP)A) is trivial, it is the
constant local system. Then, one has α∗� = ⊕

w∈WP
�[−2�(w)] because H∗(P/B) =

H∗(L/(L ∩ B) = �[t]/IWP , where the last isomorphism is graded algebras and as WP-
representations by the Borel isomorphism. But since (�[t]/IWP )WP = � in degree 0,
one has (α∗�)WP ∼= �. Furthermore, it is easy to see that the unit of the adjunction is
a monomorphism (since α is locally trivial). By taking the trivial WP-operation on �,
we can make the unit of the adjunction a WP-linear map (because the map is locally
trivial and WP operates only on the fibre), and then taking WP-invariants prove the
lemma. �

Now, let us come back to the setup from definition 1. Let i ∈ I . Consider the
following commutative triangle:

EB
i = G ×Bi Fi

αi ��

πB
i �������������

EP
i = G ×Pi Fi

πP
i�������������

V

,

where πB
i = πB|EB

i
, πP

i = πP|EP
i
. We denote by Wi the Weyl group of a Levi subgroup

in Pi and the torus T . We define two morphisms in Db
A(V ) using the isomorphisms

from Lemma 1.

Inci : (πP
i )∗�EP

i
∼= (πP

i )∗[(αi)∗α∗
i �

Wi
EP

i
] ↪→(πP

i )∗(αi)∗α∗
i �EP

i
= (πB

i )∗�EB
i
,

Avi : (πB
i )∗�EB

i
= (πP

i )∗(αi)∗α∗
i �EP

i
�(πP

i )∗[(αi)∗α∗
i �

Wi
EP

i
] = (πP

i )∗�EP
i
.
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The second map is locally the averaging map (or Reynolds operator) for the
finite group Wi. One has Avi ◦ Inci = id and Inci ◦ Avi =: ei is an idempotent
endomorphism. Now let s := dim Pi − dim Bi for one (and all) i ∈ I and observe
πP

∗ CP[s] = ⊕
i∈I (πP

i )∗�EP
i
[dim EB

i ], we define

Inc :=
⊕
i∈I

Inci[dim EB
i ] : πP

∗ CP[s] → πB
∗ CB,

Av :=
⊕
i∈I

Avi[dim EB
i ] : πB

∗ CB → πP
∗ CP[s],

and we observe that Av ◦ Inc = id and Inc ◦ Av = eP with

eP := (ei)i∈I ∈
⊕
i∈I

EndDb
A(V )((π

B
i )∗�) =

⊕
i∈I

EndDb
A(V )((π

B
i )∗�[dim EB

i ]) ⊂ (ZB)0.

Then, we define a map

θP
B : ZP = Ext∗(πP

∗ CP[s], πP
∗ CP[s]) → ZB,

mapping an element f in degree n to Inc[n] ◦ f ◦ Av. It is easy to see that this map
preserves degrees, θP

B (1) = eP and products are mapped to products since Av ◦ Inc = id.

LEMMA 2. The map θP
B is injective and induces an isomorphism of graded algebras:

ZP ∼= Im(θP
B ) = ePZBeP.

Proof. Assume Inc[n] ◦ f ◦ Av = 0, then Inc[n] is a monomorphism f ◦ Av = 0. But
then f = f ◦ (Av ◦ Inc) = 0. The rest is clear. �

Now, the lower recollement is the standard recollement induced by the idempotent
element. The map eP is left multiplication with the idempotent eP. This completes the
proof of Theorem 2.1.

Let WP := ∏
i∈I Wi, then WP operates on πB

∗ CB with (πB
∗ CB)WP = πP

∗ CP[s], see
before. This induces a WP × WP-operation on ZB, for f of degree n, v,w ∈ WP we set

(v,w) · f := v[n] ◦ f ◦ w−1.

This operation is H∗
A(pt)-linear but does not preserve products.

PROPOSITION 1. θP
B (ZP) = (ZB)WP×WP .

Proof. Let f ∈ ZP of degree n, then θP
B (f ) = Inc[n] ◦ f ◦ Av is WP × WP-invariant;

therefore, �P
B(ZP) ⊂ (ZB)WP×WP . On the other hand, given h ∈ ZB of degree n with

v[n] ◦ h ◦ w−1 = h, v, w ∈ WP, one has h ◦ (Inc ◦ Av) = (Inc ◦ Av)[n] ◦ h, which implies
h((πB

∗ CB)WP ) ⊂ (πB
∗ CB)WP [n]; therefore, restriction induces an element h ∈ ZP and by

definition h = Inc ◦h ◦ Av. �

3. The hypercohomology functor. Let X be a complex variety with the action of
an algebraic group A. We set
H∗

A(X) := H∗
A(X, �) := Ext∗Db

A(X)
(�X , �X ) for A-equivariant cohomology and
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HA
∗ (X) := HA

∗ (X, �) := Ext−∗
Db

A(X)
(�X , DX ) for A-equivariant Borel–Moore homology

with complex coefficients, respectively.
We associate to the data from before the Steinberg variety

ZP :=
⊔
i,j∈I

EP
i ×V EP

j︸ ︷︷ ︸
Zi,j

where EP
i := (G ×Pi Fi), i ∈ I,

and call HA
∗ (ZP), A ∈ {pt, T, G} the Steinberg algebra associated with the data (where

the product is given by a convolution construction defined by [4, Section 2.7]). It is a
graded algebra with respect to

HA
[p](Z

P) :=
⊕
i,j∈I

HA
ri+rj−p(ZP

i,j), where ri := dim� EP
i ;

we write HA
[∗](Z) to indicate this grading. We recall the following result.

THEOREM 3.1 ([4, chapter 8]). Let A ∈ {pt, T, G} we write πi : EP
i → V, (g, f ) �→ gf

and there is an isomorphism of graded �-algebras:

HA
[∗](Z

P) → ZP.

For every F in Db
A(EP), the hypercohomology �∗

A(EP,F) is naturally a bimodule
over the equivariant cohomology ring H∗

A(EP). This is (a generalization of) Sörgel’s
bifunctor which leads to the definition of Sörgel bimodules. We think that the (lesser
known) operation of the Steinberg algebra should also be of interest.

THEOREM 3.2. For every F ∈ Db
A(EP), its hypercohomology �∗

A(EP,F) is a graded
left and right module over ZP with finite-dimensional graded parts. This module structure
is natural in F .

The (ungraded) version of the convolution operation on hypercohomology groups
of objects in the equivariant derived category can adapted from the main result of
[7], the grading follows from the definition of the convolution operation, we explain
it shortly. We shorten the notation here EP =: E, ZP =: Z. Recall Z = E ×V E, set
E = E × pt . Consider the A-equivariant maps

Ei × Ej × pt
p12

������������
p23

��

p13

�������������

Ei × Ej Ej × pt Ei × pt

since ι : Zij ⊂ Ei × Ej is a closed embedding one has �∗
A(Zi,j, DZij ) = �∗

A(Ei ×
Ej, ι∗(D)), where D is the dualizing sheaf and we define

�
p−ri−rj
A (Zi,j, D) ⊗ �

k+rt
A (Et,F |Et )

δj,t(p13)∗(p∗
12[−]⊗p∗

23[−])−−−−−−−−−−−−→ �
k+ri
A (Ei,F |Ei )

using the operators explained in [7, Sections 2 and 4]. The proof of the main result
in [7] adapts straight forward to this situation and proves that this map provides the
left operation (for the right operation permute the factors). If we set �

[t]
A (E,F) :=⊕

i∈I �
t+ri
A (Ei,F |Ei ), this gives it the structure of a graded module.
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For Pi = Bi for all i ∈ I , we write ZB, EB, . . . instead of ZP, EP, . . .. We observe
that WP × WP operates on ZB by homeomorphisms and this corresponds under
the automorphism in Theorem 3.1 to the WP × WP-operation from the previous
section. Furthermore, if we restrict the operation to WP × {1} and consider the
WP-operation on EB, then the multiplication above commutes with this WP-
operation on �

k+ri
A (EB

i ,F |Ei ) = �
k+ri
A (EP

i , (αi)∗F |Ei ), i.e., for x ∈ �
p−ri−rj
A (Zi,j, D), f ∈

�
k+rt
A (Et,F |Et ), w ∈ Wi, we have

w(xf ) = ((w, 1)x)f ∈ �
k+ri
A (Ei,F |Ei ),

and, in particular, ((ZB)WP×{1})�∗
A(EB,F) = �∗

A(EP, α∗(F))WP .

REMARK. So, taking hypercohomology provides us with functors:

�∗ : Db
A(EB) → ZB−grmod,

�∗ : Db
A(EP) → ZP−grmod .

The complex � maps to the equivariant comohomology H [∗]
A (EB) and H [∗]

A (EB).
If one has FT

i = {0} for every i ∈ I and A ∈ {T, G}, then H [∗]
A (EP) and H [∗]

A (EB) are
faithful modules and for A = pt this is not the case, see [10].

So, combining our previous result with the hypercohomology functor, we can
prove the following.

PROPOSITION 2. There is a commutative diagram:

Db
A(EB)

α∗()WP
��

�∗

��

Db
A(EP)

�∗

��
ZB−grmod

eP �� ZB−grmod .

Proof. We have by our previous observation �∗(α∗(F)WP ) = �∗(α∗(F))WP =
(ZB)WP×{1})�∗

A(F) = eP · �∗(F), where the last equality is proved in the proof of
Proposition 1. �

4. Examples and applications.

4.1. The parabolic affine nil Hecke algebra. Let G be a reductive group over �

and B ⊂ G be a Borel subgroup. The affine nil Hecke algebra is defined by the graded
vector space:

NH :=
⊕
p∈�

HG
[p](G/B × G/B),
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where HG
[p](G/B × G/B) := HG

2 dim(G/B)−p(G/B × G/B), and NH is a graded algebra with
respect to the convolution product defined by Chriss and Ginzburg (see [4]). We define

NHP :=
⊕
p∈�

HG
[p](G/P × G/P)

with HG
[p](G/P × G/P) := HG

2 dim(G/P)−p(G/P × G/P), again this is a graded algebra with
respect to the convolution product defined by Chriss and Ginzburg. We call it the
parabolic affine nil Hecke algebra, it is a graded H∗

G(pt)-algebra. The following lemma
has been observed in loc. cit. in the not equivariant case.

LEMMA 3. One has NHP ∼= EndH∗
G(pt)(H∗

G(G/P)) as �-graded H∗
G(pt)-algebras.

Recall that H∗
G(pt) = (H∗

T (pt))W = �[t]W is a commutative and graded �-algebra,
where T ⊂ P is a maximal torus, t its Lie algebra and W the Weyl group for (G, T).
Also we know that H∗

G(G/P) ∼= �[t]WP , where WP is the Weyl group of (L, T) for the
Levi subgroup L ⊂ P. We write W P ⊂ W for the minimal coset representatives of the
cosets W/WP.

We give a proof of the previous lemma on the grounds that we could not find in
the literature.

Proof. Let EG be a contractible free G-space (or an appropriate approximation
of it in the sense of [2]). Let X := G/P, π : XG := X ×G EG → BG the map obtained
from X → pt by applying − ×G EG. By [4, chapter 8], we know HG

[∗](G/P × G/P) ∼=
Ext∗Db

G(pt)(π∗�, π∗�) as graded H∗
G(pt)-algebras. Since π is a proper submersion, we

have (by [5, item (3) after remark 1.6.2])

π∗� =
⊕
i∈�

Riπ∗�[−i]

in Db
G(pt). Since all fibres of π are isomorphic to X and BG is simply connected, we get

that

π∗� =
⊕

w∈W P

�[−2�(w)],

where �(w) is the length of w. Let r = dim� H∗(X) = #W P. We know, that �[t]WP is a
free module over �[t]W of rank r generated by elements bw,w ∈ W P, degbw = 2�(w).
Now, the claim follows from the (well known) algebra isomorphism Ext∗Db

G(pt)(�, �) ∼=
H∗

G(pt). �
Our maps from the earlier section give a natural homomorphism of graded H∗

G(pt)-
modules

� : NHP = EndH∗
G(pt)(H∗

G(G/P)) → NH = EndH∗
G(pt)(H∗

G(G/B))

f �→ Inc ◦f ◦ Av,

where Inc : �[t]WP ⊂ �[t] is the natural inclusion and Av: �[t] → �[t]WP , f �→
1

#WP

∑
w∈WP

w(f ) is the averaging map. We set eP = Inc ◦ Av(1). Furthermore,
WP × WP operates on NH via graded H∗

G(pt)-module homomorphisms defined by
(v,w) · h(f ) := v(h(w−1(f ))), v, w ∈ WP, h ∈ NH, f ∈ �[t].
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Our previous results, imply NHP ∼= ePNHeP as graded H∗
G(pt)-algebras.

Furthermore, one has NHP = NHWP×WP as graded H∗
G(pt)-modules and NHW×W =

�[t]W = H∗
G(pt).

PROPOSITION 3.
(1) Let s = #WP. We have an isomorphism of �[t]W -algebras

NH ∼= Ms(NHP),

in particular it is a free module over NHP of rank s2.
(2) Let r = #W P. We have an isomorphism of �[t]W -algebras

NHP ∼= Mr(�[t]W ),

in particular it is a free module over �[t]W of rank r2.
A basis is given by cv,w, v,w ∈ W P with cv,w is a lift of [BvP/P × BwP/P] ∈
H∗(G/P × G/P) to HG

∗ (G/P × G/P), i.e., elements in the fibres of the forgetful
map (which is a surjective ring homomorphism),

HG
∗ (G/P × G/P) ∼= Mr(�[t]W ) � Mr(�) ∼= End�(�[t]WP/IW )
∼= H∗(G/P × G/P),

(fi,j)i,j �→ (fi,j(0))i,j,

where IW is the ideal generated by the W-invariant polynomials of degree ≥ 1

Proof.
(1) Let s = #WP, it is the rank of �[t] as module over �[t]WP and therefore

NH ∼= End�[t]W ((�[t]WP )⊕s) ∼= Ms(NHP).

(2) r = #W P is the rank of �[t]WP as module over �[t]W and the dimension as
�-vector space of �[t]WP/IW . The rest follows as in (1).

�
REMARK. Let S ⊂ W denote the simple reflections with respect to the Borel B and
n = rk T . For s ∈ S let αs ∈ �[x1, . . . , xn] be a linear polynomial with s(αs) = −αs. We
denote by δs : �[x1, . . . , xn] → �[x1, . . . , xn] the operator δs(f ) := s(f )−f

αs
called divided

difference operator. It is well known that the affine nil Hecke algebra NH = NHB

(with B a Borel group) is isomorphic to the subalgebra of End�[x1,...,xn]W (�[x1, . . . , xn])
generated by x1·, . . . , xn·, δs, s ∈ S. But we do not know any description of generators
(and relations) for the parabolic nil Hecke algebra NHP, the analogues of the divided
difference operators are missing.

4.2. On the parabolic analogue of the Springer map.

DEFINITION 2. Let (G, B, T) a complex reductive group with Borel subgroup and
maximal torus T . Let (W, S) be the associated Coxeter system and J ⊂ S, we set
WJ := 〈J〉 ⊂ W and write PJ = BWJB for the standard parabolic group. Recall, the
affine nil Hecke algebra is the graded �-algebra NH := End�[t]W (�[t]). Now, we define
a subalgebra AJ ⊂ NH to be the subalgebra generated by multiplication with elements
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in �[t] and for each s ∈ S a generator

σ (s) :=
{

δs, if s ∈ J
s − id, if s /∈ J

.

We have for J ⊂ K ⊂ S that AJ ⊂ AK and for arbitrary two subsets J, K ⊂ S one
has AJ ∩ AK = AJ∩K and the subalgebra generated by AJ and AK is AJ∪K . Since
A∅ = �[t]#�W , AS = NH, we see these algebras as a lattice of interpolations between
the Steinberg algebra A∅ corresponding to the Springer map and the nil Hecke algebra
AS.

We shorten the notation P := PJ . Now, the parabolic version of the classical
Springer map, is given by

π : G ×P uP → N , (g, f ) �→ gf

with uP = Lie UP, where UP ⊂ P is the unipotent radical. The fibres of this map have
been studied in [3]. Let ZP be the associated Steinberg algebra (i.e., ZP = HG

[∗]((G ×P

uP) ×N (G ×P uP))). The degree zero part of these algebras has already been described
in the main result of Douglas and Röhrle, see [6]. Our result gives us the following.

PROPOSITION 4. In the notation as before with P := PJ one has the following:
(1) The algebra AJ is the Steinberg algebra ZB associated with the map π : G ×B

uP → N , (g, f ) �→ gf.
(2) Let e := 1

#WJ

∑
w∈WJ

w ∈ NH be the idempotent element given by the averaging
map from the first section. One has e ∈ AJ and

eAJe = ZP.

Furthermore, one has eAJe = AJ ∩ NHP with P = PJ.

Proof.
(1) We have the monomorphism ZB → EndH∗

G(pt)(H
[∗]
G (EB)) = EndH∗

G(pt)

(H∗
G(G/B)) = NH from the Remark before Proposition 2. By the main

result from [9], we know that the image is the subalgebra generated by the
elements σ (s), s ∈ S as given above and multiplication by polynomials in �[t].

(2) Follows from (1) using our main result. For the last statement, we have to see
eAJe = AJ ∩ eNHe. Clearly, eAJe is a subset of AJ ∩ eNHe. If you take an
element ebe = a ∈ AJ, b ∈ NH, then ebe = eae ∈ eAJe.

�

4.3. Reineke’s example. In the end of [8], Reineke looked for a description of
a parabolic Steinberg algebra, we give the answer which we obtained from our main
result. Let Q be the quiver (1 → 2) and let (d1, d2) ∈ �

Q0
0 . A directed partition of

the Auslander–Reiten quiver of �Q is given by I1 := {E2 := (0 → �)}, I2 := {E1,2 :=
(�

id−→ �)}, I3 := {E1 := (� → 0)}, i.e., it is a partition of the vertices of the Auslander–
Reiten quiver {It}t such that Ext1(It, It) = 0 and ∀t < u Hom(Iu, It) = 0 = Ext1(It, Iu).
Let M = Ed2

2 ⊕ E1,2 ⊕ Ed1
1 . Then, Reineke proved that quiver-graded Springer map

corresponding to the dimension filtration (0, (d1 − 1, 0), (d1 − 1, 1), (d1, 1), (d1, d2))
gives a resolution of singularities (i.e., birational projective map) for the orbit closure
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of M. Yet, we will consider the even easier dimension filtration d := (0, (d1, 1), (d1, d2)).
The associated Steinberg variety is

Z := {(A, L1, L2) ∈ Md2×d1 (�) × �d2 (�) × �d2 (�) | Im(A) ⊂ Li, i = 1, 2};

it carries an operation of Gld := Gld2 × Gld1 via

(A, L1, L2) �→ (g−1
2 Ag1, g−1

2 L1, g−1
2 L2), (g2, g1) ∈ Gld .

We want to describe the Steinberg algebra HGld
∗ (Z) with our method. We set

� := Gld , d := d1 + d2,

T := invertible diagonal matrices,
� := invertible upper triangular matrices,
� := invertible upper block matrices with diagonal block sizes (1, d − 1),
U = Lie 	�, where 	� is the unipotent radical of �,
G := Gld2 × Gld1 diagonally embedded into �,
V = Md2×d1 embedded into the right upper corner of G = gld ,

as usual set B := � ∩ G, P := � ∩ G, F := U ∩ V .
The algebra HG

∗ (ZB), ZB := (G ×B F) ×V (G ×B F) can by Theorem 2.1 of [9]
be described as the algebra 1e ∗ Z ∗ 1e for Z being the Steinberg algebra associated
with (�, �,U , V ) and e ∈ W \ 
 be the coset of the neutral element. If we set si :=
(i, i + 1) ∈ Sd and

δi := δsi : �[t1, . . . , td ] → �[t1, . . . , td ], f �→ si(f ) − f
ti − ti+1

Then, H∗
G(ZB) is the subalgebra of End

�[t1,...,td ]Sd2
×Sd1 (�[t1, . . . , td ]) generated by

(tj·), 1 ≤ j ≤ d, δi, i ∈ {2, . . . d2 − 2, d2, . . . , d − 1},

θ :=
d∏

j=d1+d2+1

(t1 − tj)δ1.

Now, Reineke’s variety equals Z = (G ×P F) ×V (G ×P F), by the previous section we
conclude that it is the corner algebra of ePHG

∗ (ZB)eP, where

eP : �[t1, . . . , td ] → �[t1, . . . , td ], f �→ 1
(d2 − 1)!d1!

∑
w∈<s2,...sd2−2,sd2 ,...,sd−1>

w(f ).
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