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Predictions in avalanche forecasting
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ABSTRACT. Verification of avalanche forecasts depends on the spatial and temporal
scale of the forecast, and the classes of informational entropy of data implicit in the fore-
cast. First I present a classification system for avalanche forecasts based on these para-
meters. Verification of models in avalanche forecasting may consist of two stages. Often,
the first stage is to ensure that the model matches the scales (space and time) and the
classification of forecast and that redundant variables and parameters are eliminated.
Once that 1s achieved, verification can proceed to the second stage, testing the model
against relevant field data and situations. I provide an example based on the public-danger
scale bulletin used for warnings in the back country in North America and Europe. Using
data on deaths and accidents from Alpine Europe with Bayesian statistics, I conclude the
danger scale has more classes than necessary for back-country applications. This could be a

first stage prior to actual verification of this experience-based model.

INTRODUCTION

Avalanche forecasts vary according to spatial and temporal
scale and data collected or information available before
making a forecast. A systematic approach to verification
can profit from a classification system for forecasts. Such a
system 1s presented for the first time in this paper, based on
time and spatial scales and data available.

In avalanche forecasting, errors increase if model con-
straints and data input do not match the scales (time and
spatial) or if redundant variables or prediction categories
are retained. Given the variety and classes of forecasts there
can be two stages to verification: (l) ensuring that data
available and model constraints match the scales (time and
spatial) and that only variables or portions of the model
which are necessary are retained, and (2) verification of
the corrected model using data from field testing. It is not
useful to proceed to verify a model which is not a physical
match for the problem attempted. In this paper, I discuss
the process and present an example of the first stage of ver-
ification for the experience-based public-danger scale for
back-country warnings. The analysis results in a simplified
scale which takes into account human perception, the root
cause of most back-country avalanche accidents.

CLASSIFICATION OF AVALANCHE PREDICTIONS

To provide a framework to discuss verification of avalanche
forecasts, it is useful to classify forecasts in relation to data
used. The discussion here is in two parts: classification of
the data used in avalanche forecasting, and the classification
scheme in terms of data predicted or measured/observed.
The classification scheme follows the logic of Lambe (1973)
for geotechnical predictions. To frame the discussion, it is
useful to have the definition and goal of avalanche fore-
casting. I propose these as:

Definition: Avalanche forecasting is the prediction of current
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and future snow instability in space and time relative to
a given triggering (deformation energy) level.

Goal: The goal of avalanche forecasting is to minimize the
uncertainty about instability introduced by the tempor-
al and spatial variability of the snow cover (including
terrain influences), any incremental changes in snow
and weather conditions and any variations in human
perception and estimation.

Data used in forecasting

Data used to forecast avalanches consist of two general
types: singular or case data about the specific situation at
hand, and distributional data and information about
similar situations in the past. The classification system
below is stratified according to measurements or obser-
vations of singular data, but both singular and distribu-
tional data will normally be used to make a forecast.
Distributional data (information) are not measured to
make a forecast, but are contained in experience, rule-based
expert systems or calculations such as nearest neighbours
(Buser and others, 1987) from computer models.

Individual data elements can be further classified ac-
cording to their informational entropy: the relevance and
ease of interpretation for prediction of avalanche occur-
rences (LaChapelle, 1980, 1985; McClung and Schaerer,
1993). Three general classes are identified:

ITI. Snow and weather data: mostly numerical, measured
at, near or above the snow surface

II. Snowpack factors: data from the snowpack including
snow structure, layering, snowpack parameters: mostly
non-numerical

I. Stability factors: data such as stability tests which give
direct information about avalanches (including ava-
lanche occurrences).

McClung and Schaerer (1993) provide a comprehensive
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Table 1. Classification for avalanche predictions

Type When prediction made — Typical singular data classed Results at time

by informational entropy Jorecast
(excluding avalanche
occurrences )

A Before incremental III: predicted True
changes' measured II: predicted forecast
or sensed I: predicted

B Incremental changes III: mostly measured ~ Avalanche
have taken place or or observed occurrences
are taking place II: predicted or not yet

partially? searched
observed
I: predicted or
partially
observed

Bl  Incremental changes III: mostly measured Avalanches

have taken place or or observed searched
are taking place II: predicted or for
partially
observed
I: predicted or
partially
observed
C  Incremental changes  III: measured or Clurrent instability
have taken place observed or “Nowcast” based
II: observed on data sampling

and observations
including ava-
lanche occurrences

1. observed

1
Incremental changes refer to snow and weather.

2 Partially observed refers to data observed, for example in a snow profile,
rather than extensive data sampling.

discussion of the factors. In general, the higher the class, the
higher the informational entropy (uncertainty) with
respect to prediction.

Classification scheme

Following Lambe (1973), I place predictions into three main
categories in terms of uncertainty in data and measure-
ments available. The categories and descriptions are given
inTable 1. The aim is to present an approximate method to
class forecasts to frame discussion of verification.

Almost all initial (early-morning) forecasts in ski or
highway operations are type B since snow and weather
observations are taken and sometimes stability tests are per-
formed in a snow profile but often avalanche occurrences
are not yet scanned for. Type A forecasts depend heavily on
the accuracy of weather forecasts including snowfall, and,
as such, they contain the inherent uncertainty of weather
forecasts as well as the effects on snowpack instability. Good
snow and weather forecasting, combined using SAFRAN,
Crocus and MEPR A models in France (Durand and others,
1998), provides a type A forecast. Prediction of the public-
danger scale for 48 and 72 hours in advance (Cagnati and
others, 1998) is also a type A forecast. Type C forecasts are
typically made in helicopter skiing operations or back-
country travel after avalanche occurrences are scanned for
and stability tests and skiing have been performed.

Typically, as the forecast progresses from A to C, the spatial
scale of the forecast reduces and more information is sought. A
type A forecast is usually targeted toward the synoptic or
meso-scale, whereas type B forecasts are usually targeted to-
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ward the meso-scale. Type C forecasts are usually sought in
back-country skiing including helicopter skiing where interest
is on the micro-scale and extensive information is sought to
make predictions for particular ski runs or terrain features.
In general, as the scale of forecasts decreases, the difficulty in-
creases (higher accuracy is sought) and people compensate by
seeking more information, particularly of low entropy. The
reader is referred to McClung and Shearer (1993) for a discus-
sion of spatial scales in avalanche forecasting.

Avalanche forecasting is not an event, but an evolution-
ary process by which the forecast 1s updated as more infor-
mation 1s collected. Table 1 reflects this evolutionary process
as time proceeds. Back-country travellers often begin with
only synoptic-scale information (e.g. type A or B such as
public-danger scale bulletins), and this must be updated
with low-entropy data to produce an optimal forecast rele-
vant to the micro-scale (e.g. type C).

The reduction method (Munter, 1997) is a proposal to
bypass low-entropy data collection such as stability tests or
other information from snow profiles for micro-scale fore-
casting, but such a proposal can be easily discounted under
conditions of highest probability of involvement (see
Analysis section below) when avalanche occurrences may
not be available. In these cases, other low-entropy data are
of vital importance (Fohn and Schweizer, 1995) and vari-
ations in human perception are greatest. There are no
short-cuts to good avalanche forecasting.

VERIFICATION OF AVALANCHE FORECASTS

Verification of avalanche forecasts is linked to the spatial
scale that forecasting is made for. McClung and Schaerer
(1993) discuss three scales for forecasting: synoptic (a signifi-
cant portion of a mountain range: order of 10 000 km?), meso
(spatial scale such as a highway avalanche area or a typical
ski area: about 100 km?) and micro (for an individual ski run
or terrain feature including back-country skiing: <lkm?. As
the scale decreases, the need for accuracy increases, the fore-
cast progresses from the general to the specific, and the veri-
fication problem changes from general to specific.

Verification at the synoptic scale (e.g. Elder and Armstrong,
1987) may consist of looking at the general picture of avalanche
occurrences. Verification at the micro-scale requires extensive
data sampling including test skiing, test profiles and ava-
lanche-occurrence information.

Statistical models including neural networks, para-
metric discriminant analyses, non-parametric discriminant
analyses (nearest neighbours) and expert systems are nearly
all built using distributional data, and these models are nor-
mally applied at the meso-scale. Any such model built on
distributional data cannot legitimately be verified by use of
the data it is built on. Also, such models are valid only for
the location from which training data are taken. They pro-
vide mostly type B forecasts.

Experience  with  computer-assisted  forecasting
(McClung, 1994; Fohn and Schweizer, 1995; Schweizer and
F6hn, 1996) has shown that maximum expected accuracy is
about 60-65% unless the expert help is applied (Bayesian
statistics or interactive expert system), in which case accu-
racy improves to 70-75%. This is because data input con-
sists largely of class IIT information which must necessarily
give an incomplete picture of instability. For example, the

expert system MODUL of Schweizer and Fohn (1996) pro-
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vides a type B forecast using class III, class II and class I
(usually unavailable) information to achieve 70—75% accu-
racy. Similarly, the study of McClung (1994) on verification
of a numerical meso-scale forecasting model showed that
the forecaster’s input of judgemental information (e.g. Baye-
sian prior), which can include class II and I information,
must be combined with numerical predictions to achieve
70-75% accuracy.

ANALYSIS: PUBLIC DANGER-SCALE BULLETINS
FOR BACK-COUNTRY APPLICATIONS

When verification of a model is attempted, it 1s often assumed
that the model provides an adequate picture of reality and
that the physical definition of the model is correct. The five-
part public-danger scale was developed from extensive prac-
tical experience and data on avalanche occurrences, and
there are now enough data on fatalities and accidents to
perform simple analyses of the scale with respect to a parsi-
monious model for the number of prediction classes. Féhn
and Schweizer (1995) and Cagnati and others (1998) looked
at verification of the five-part danger scale. I prefer first to
use data on statistics of deaths and accidents to assess whether
the model might be simplified or improved for back-country
use: the first stage in model verification.

In this section, I present a simple analysis for the five-part
public-danger scale as used in North America and Europe,
with statistics on fatalities and accidents from Switzerland
and France used to assess the model. The data include statis-
tics on the deaths recorded (Switzerland: ten winters of data,
255 fatalities, 1981-91), accidents (involvements: including
death, injury or avalanche release affecting people) recorded
(France: five winters of data, 166 accidents, 1993-98) in each
portion, Dy(k =12,34,5: low, moderate, considerable, high,
very high or extreme) of the danger scale and the fraction of
time (exposure) that the danger scale was applied for each
class (for typical descriptions of danger-scale classes and
how they are applied in practice from data and experience,
see Meister, 1994; Cagnati and others, 1998). The result of the
analysis (given below) is that for back-country use a simpler
model is possible by reducing the danger scale to four classes,
with adjustment to account for variations in human perception.

Avalanche forecasting, including decisions, is part of a
risk analysis. As such, there is a probabilistic nature to the
problem which shapes the nature of forecasts including the
number of reasonable levels or categories for the danger
scale. When the danger level is specified by a forecaster, the
result is a function of human perception of the forecaster
which is conditioned by observations and judgemental esti-
mates about the temporal and spatial state of instability of
the snow cover. A back-country traveller using the danger-
scale forecast makes use of it but adds his or her own percep-
tion of the situation. The result is that decisions are filtered
through human perception from at least two sources. The
number of levels in the danger scale and the wording at-
tached to those levels can therefore have significant effects
upon decisions. The number of levels should be consistent
with an order-of-magnitude probabilistic analysis (not too
many levels), and the descriptors attached to the levels
should take into account human perception and its vari-
ations as contained in the goal of avalanche forecasting.
The great majority of avalanche accidents and fatalities in
western Europe and North America now occur in the back
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Table 2. Posterior probability for deaths (P(Dy: D)) and

accidents (P(Dy:A)) and likelihood for deaths
(L(Dy: D)) and accidents (L(Dy: A))
Swiss death statistics: 255 deaths; 10 winters
Dy P(Dy;) P(D;:D) L(D;:D)
1 0.300 0.047 0.16
2 0.380 0.325 0.86
3 0.240 0475 1.98
4 0.050 0.094 1.88
5 0.030 0.059 1.97
French accident statistics: 166 accidents; 5 winters
Dy P(Dy;) P(D;:4) L(Dy:4)
1 0.154 0.000 0.00
2 0.393 0.084 0.21
3 0.344 0.422 1.22
4 0.094 0.422 449
5 0.015 0.072 4.80

Note: The likelihood is proportional to the ratio of posterior probability to
P(Dy) and is evaluated up to an arbitrary constant.

country (see McClung and Schaerer, 1993), and most of
these are caused by human triggering. Thus, a major source
of fatalities and accidents is failure in human perception:
people perceived the state of instability of the snow cover
to be something other than what it was. Any system for fore-
casting avalanches in the back country which does not take
into account human perception is incomplete.

Since avalanche forecasting is related to a probabilistic
risk analysis, it 1s useful to analyze data about the danger
scale in a probabilistic sense. For the danger scale, I define
a temporal exposure probability P(Dy) as the fraction of
time for which danger-scale level Dy, is applied. I define a
conditional probability P(D : Dj) as the probability that
death (D) occurs given that level Dy, is applied, and simi-
larly P(A: Dy), with A (accident) replacing D (death).
The quantities P(D : D) and P(A : Dy) are both defined
only if death or accident is assumed to occur, and they are
both related to the likelihood of death or accident. Similarly,
I define the conditional probabilities P(Dj : D) and
P(Dy, : A) as the probabilities that death or accident occur
in Dy, (given death or accident). The latter probabilities
define posterior probabilities in a given danger level Dy, in
Bayes’ theorem as posterior probability o likelihood X ex-
posure. By application of Bayes’ theorem, the posterior
probability is obtained:

P(Dy: D) = LPOPD: D) P(Dy)L(Dy 2 D)

; 8]
> P(Dy)P(D: Dy)
=

where C is a normalization constant, C' = P(D). From the
above equation, the likelihood L(Dy, : D) is proportional to
P(Dy : D)/P(Dy) up to an arbitrary constant (Edwards,
1992). The equation gives the elements of a probability mass
function (pmf) for the posterior probability, P(Dy : D),
combining likelithood and temporal exposure in danger
level kif death occurs. An analogous expression for accident
can be written by substituting A for D. The probability and
likelihood elements are given inTable 2.
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pmf: posterior probability of death
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Iug. 1. Probability mass function ( pmf): posterior probability
of death for public-danger scale levels 1 (low ), 2 (moderate),
3 (considerable), 4 (high) and 5 (very high or extreme).
Data are from fatalities in Switzerland.

ANALYSIS RESULTS

Table 2 and Figures 1 and 2 show that maximum posterior
probability is around the considerable (k= 3) range. Of
further interest is that, for the posterior probability, the frac-
tion of the pmf contained in danger level 5 1s 0.059 (Swiss
deaths) and 0.072 (French accidents). This suggests that
overall posterior probability in danger level 5 (which
combines time exposure in a danger-scale class k and like-
lihood in the class k) is a small proportion of the total pmf.
I also analyzed data fromTyrol, Austria (46 fatalities; 5 years
of data, 1993-98), and the results are similar to those pro-
duced by the Swiss data: >80% of the deaths occur in the
moderate—considerable range, with none of the posterior
probability or fatalities in danger level 5.

Given that accident or death occurs, the likelihood ex-
presses the likelihood of its occurring in Dy, up to an arbi-
trary constant. Figure 3 shows the likelihoods for the death
and accident statistics. For the present data, from Swiss
death statistics, there is essentially no support for a hypoth-
esis that deaths are more likely in level 5 than in level 4 or 3.
French accident statistics show that accidents are slightly
more likely in level 5 than level 4. Both datasets show that
the likelihood increases sharply from the moderate (k = 2)
to the considerable (k = 3) level.

1.0 T T T T

08 -

06 .

0.4

0.2

pmf: posterior probability of accident

0.0

1 2 3 4 5

Degree of danger

Fig. 2. Probability mass function ( pmf): posterior probability
of accidents for public-danger scale levels similar to Figure 1.
Data are from accidents in France.
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The posterior probability and likelihood results can be
combined to provide a suggestion for a simplified scale.
The relatively low posterior probability in level 5 and the
lack of sensitivity of likelihood in going from level 4 to 5 sug-
gests that for back-country use levels 4 and 5 could be com-
bined into one level, resulting in simpler scale: low and
moderate (k =1and 2) could remain the same, with consid-
erable (k = 3) called high to represent high probability and
the jump in likelihood, while high (k = 4) and very high
(k = 5) could both be called very high.

Both likelihood (L(Dy : Dor A)) and posterior prob-
ability (P(Dy, : Dor A)) are important for avalanche fore-
casting. On a given day with a danger level specified by a
forecast, one is most interested in the likelithood of death or
accident for the day. The estimates in Table 2 (column 3:
posterior probability) contain implicit information in terms
not just of number of people exposed and time of exposure
but also of variations in human perception. Both the poster-
ior probability and the likelihood estimates are of interest
for model assessment.

Both likelihood and posterior probability contain infor-
mation (not precisely known) about the number of people ex-
posed, since specification of the danger level influences that
number. The unknown number of people exposed prevents a
full, formal risk analysis but does not affect the Bayesian
analysis above since the assumptions for application of Bayes’
theorem are not violated.

LIKELIHOOD-FUNCTION MODELS

I made numerical models of the likelihood wvalues,
P(Dy, : D)/P(Dy,) and P(Dy, : A)/P(Dy), and the expres-
sions are:
P(Dy : D)/P(Dy) = 1.33In(Dy, + 0.15)
(% variance explained = 98)
P(Dy, : A)/P(Dy) = 2.63In(Dy, — 0.22)
(% variance explained = 87) .
For the Swiss data on fatalities a similar expression was derived:
P(Dy: D) =1.43In(Dy, + 0.10)P(Dy,) ,

and a x? (chi-square) goodness-of-fit test to fatality num-

5 T T T

- - -
L
— — Franch accidents 1
—_— Swiss deaths /
4+ I 7
I
I/
II
3l |
§ )
g /
2
-
1
4 5

Degree of danger

Fig. 3. Likelihood values that accidents or deaths occur per day
of exposure vs danger-scale level.
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bers gave x? = 9.5 with 4 degrees of freedom (a = 0.05),
indicating a good fit. These results indicate that likelihood
increases approximately in a logarithmic fashion with Dy,
and they mirror the lack of sensitivity of the ratios to Dy,
for k=4 and 5, as implied by the data. The logarithmic
dependence 1s encouraging since it is consistent with order-
of-magnitude estimates typical of formal risk analyses.

DISCUSSION

Avalanche forecasting is analogous to a probabilistic
analysis to gauge the snowpack instability in space and
time relative to a given triggering level. When human
activity is contemplated and decisions are included, it
becomes a risk analysis. Risk analyses normally proceed
by order-of-magnitude estimates with a limited number
of useful risk classes.

Any model gives an imperfect picture of reality in ava-
lanche forecasting, and no model can be expected to pre-
dict accurately effects which are not contained in data
input (entropy classes). The first stage in model verifica-
tion may consist of correcting model deficiencies and/or
illuminating inadequacies. Table 1 provides a framework
for discussing forecast type based on scale in space and
time and on data available. Once model input and predic-
tive capability matches the physical problem, including
scale and type, a second stage of verification can be ap-
propriate. It is not useful to proceed with verification for
models with a proliferation of parameters or mismatch of
scale, data input, physical problem and model output.

The only data readily available to assess model charac-
teristics for the public danger scale are low-entropy data
from accident and death statistics and avalanche occur-
rences (or lack of them). In common with other aspects
of avalanche-forecasting modelling, both high- and low-
entropy data are used to specify Dy, including human
experience, and verification must also involve high- and
low-entropy data (Fohn and Schweizer, 1995).

The public danger scale was developed mainly from
human experience and data on avalanches, but quantita-
tive analysis suggests a simplified scale for application in
the back country. The overall posterior probability (time
exposure and likelihood in a danger class) contained in
category ) is fairly low (about 6-7% of the pmf) and the
likelihood is nearly independent of Dy, for categories 4
and 5. These results suggest that the scale could be simpli-
fied by calling D high and both D4 and Dy very high. In
addition to a simpler scale, such modification would mean
that the category with highest overall posterior probabil-
ity and sharply increasing likelihood (from moderate to
considerable) would be called high instead of consider-
able, giving a stronger warning signal to the public. Since
most deaths and accidents in Western countries are caused
by human triggering, the root cause of such accidents is a
failure in human perception, which is something the
danger scale should take into account.

For back-country applications, the same level of caution
for human activities should be used for categories 4 and
5 so that decision changes would be minimal for these
levels. However, the proposal here is for a higher level
of caution for category 3 where it is most needed: acci-
dents and fatalities are most prevalent and likelihood

https://doi.org/10.3189/172756400781820507 Published online by Cambridge University Press

McClung: Predictions in avalanche forecasting

sharply increasing. In category 3, more people are ex-
posed than at level 4 or 5 and variations in human per-
ception of instability in the snow cover are expected to
be greatest. The goal of avalanche forecasting includes
reducing such variations.

From data analyzed thus far, the likelihood of death or
accident increases approximately with the logarithm of
Dy,. This is encouraging since the forecasting process
should mirror a probabilistic risk analysis with order-
of-magnitude changes between danger levels.

The analysis in this paper applies only to danger-level
warnings for back-country applications, not facilities or
villages.
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