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Genetic linkage analysis for complex diseases offers a major
challenge to geneticists. In these complex diseases multi-
ple genetic loci are responsible for the disease and they may
vary in the size of their contribution; the effect of any single
one of them is likely to be small. In many situations, like in
extensive twin registries, trait values have been recorded for a
large number of individuals, and preliminary studies have
revealed summary measures for those traits, like mean, vari-
ance and components of variance, including heritability. Given
the small effect size, a random sample of twins will require a
prohibitively large sample size. It is well known that selective
sampling is far more efficient in terms of genotyping effort. In
this paper we derive easy expressions for the information con-
tributed by sib pairs for the detection of linkage to a
quantitative trait locus (QTL). We consider random samples as
well as samples of sib pairs selected on the basis of their trait
values. These expressions can be rapidly computed and do not
involve simulation. We extend our results for quantitative traits
to dichotomous traits using the concept of a liability threshold
model. We present tables with required sample sizes for
height, insulin levels and migraine, three of the traits studied in
the GenomEUtwin project.

I ——
Genetic linkage analysis (gene mapping) has proved to be a
powerful tool for the identification of genes responsible for
monogenic inherited diseases such as Huntington disease
and cystic fibrosis. The diseases for which the genetic basis
has not yet been unraveled do not display a one-to-one cor-
respondence between a single gene and disease status. In
these complex diseases, multiple genetic loci are responsible
for the disease and these genetic loci may vary in the size of
their contribution, they may interact with each other and
with external, environmental factors. The effect of any
single one of these genes is likely to be small (Risch, 2000).

The GenomEUtwin project comprises a very large
source of twins, through the union of a number of large
twin registries in different countries in Europe. For the
majority of these twins, data on a number of traits of inter-
est have already been recorded. Examples include
quantitative traits like height, BMI, risk factors for cardio-
vascular disease and qualitative traits like migraine,
diabetes. Some of these traits are recorded repeatedly over
time and require methods for longitudinal data, others can
be thought of as having an age of onset and can be treated
like survival data.

The first step in unraveling the genetic basis of a disease
is to undertake a heritability study. Twin studies are ideally
equipped for this purpose, because of the inherent match-
ing for age and other environmental factors, and because of

the differential degree of shared genetic variance between
monozygotic (MZ) and dizygotic (DZ) twins (Boomsma et
al., 2002). For many quantitative traits of interest, twin
studies (or similar studies) have given information on the
distribution of the trait in the target population, in particu-
lar their mean and variance, and on the heritability.

In the planning phase of a linkage study, one of the
important issues is the choice of sib pairs to be included in
a genome-wide scan. The good news is that for large twin
registries, the number of phenotypes is in principle adequate
even to detect very small genetic effects. Unfortunately,
given the anticipated small genetic effect at any one disease
locus, a random sample to achieve 80% power is most prob-
ably prohibitively large in terms of genotyping effort, even
with the current high throughput genotyping technologies.
Eaves and Meyer (1994) and Risch and Zhang (1995)
showed that similar power to large random samples can be
obtained by selecting only a small subset of extreme
discordant pairs. Many studies have later refined these reco-
mmendations, giving, under an assumed model, optimal
selection strategies for linkage studies. The drawback of
these studies is that they typically require simulation
and fail to give quick, easy and insightful assessments of the
amount of information that a given sib pair is expected to
contribute. In this paper, it is our aim to outline easily com-
putable information content numbers for twins in the
context of linkage twin studies for complex diseases.
We start in Section 2 by considering quantitative traits, with
given heritability, mean and variance, assuming that the
effect of the quantitative trait locus is small. We replace
much of the simulation employed in the above papers
by explicit calculation, resulting in particularly easy expres-
sions for the information content for DZ sib pairs. The
result is an easy expression closely related to optimal
Haseman-Elston regression (Sham & Purcell, 2001) and the
score function for the QTL variance in a variance compo-
nents model (Putter et al., 2002). We then show in Section
3 how the concept of a latent underlying quantitative trait
can be used to extend these results to dichotomous traits.
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Section 4 discusses issues like extended pedigrees and domi-
nance variance.

Selection Strategies for Quantitative Traits
Random Sampling

Starting point of our selection procedure for quantitative
traits is the variance components model (Amos, 1994;
Schork, 1993). We assume that the traits have been stan-
dardized so as to have zero mean and unit variance. For a
DZ twin sharing 7 alleles identical by descent (IBD) at a
particular marker locus, the distribution of their phenotype
x = (x,, x,) is assumed to follow a bivariate normal distribu-
tion with mean vector 0 and covariance matrix

1 P i—1
2

4 1

Y

Here p and ¥ represent the proportion of this variance that
can be attributed to shared components and the quantitative
trait locus respectively. The parameter p is half of the heri-
tability (/) plus the proportion of common environment
variance (%). In what follows we consider DZ twins, since
MZ twins are not informative for linkage. We shall refer to
DZ twins as sib pairs in the sequel; for our purposes there is
no distinction between sib pairs and DZ twins.

The amount of information 7 at ¥ = 0 contributed by
one sib pair is given by
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This formula has been derived by Williams & Blangero
(1999) and is a special case of our equation (5). The factor
1/8 represents the variance of 7 for sib pairs for a fully
informative marker (Rijsdijk et al., 2001). This implies that
an estimate of ¥ based on a random sample of sib pairs will

have a standard error of
1

VI

in the absence of nuisance parameters. This fact can be
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used to determine the number of sib pairs required to
achieve power 1- 3 to detect linkage with a QTL effect size
%, using a significance level .,
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Here z, denotes the 1 — o percentile of the standard normal
distribution. For a power of 80% and a significance level of
0.0001, corresponding to a lod-score of 3, this leads to

208
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Graphs for different values of p are shown in Figure 1.

For a quantitative trait like height, with an estimated
heritability of 0.80 and an estimated common environment
variance ¢*= 0.1, and hence a value of p = 0.5 we need to
genotype approximately 7500 sib pairs or 15000 individu-
als to detect linkage with a moderate QTL effect of y = 0.1.
Clearly, this is not feasible, even with the current high-
throughput genotyping technology.

0.0 0.05

QTL effect (gammay)

Figure 1

Number of sib pairs needed in a random sample to detect linkage to a quantitative trait for different values of p and y. Power is 80%; significance
level o = .0001, corresponding to a lod-score of 3. For 50%, 60% and 70% power respectively, required sample sizes decrease by a factor of 1.50,

1.32 and 1.16 respectively.
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Selective Sampling

Risch and Zhang (1995) suggested selecting sib pairs for
genotyping on the basis of their trait values and showed
that considerably higher efficiency can be obtained by
selecting extreme discordant sib pairs. Later, these recom-
mendations have been refined, most of the papers
employing simulation to calculate the information content
of a sib pair (Cherny et al., 1999; Dolan & Boomsma,
1998). A noteworthy exception is the paper by Purcell et al.
(2001) where the information content is obtained through
an exact calculation that considers all possible genotypes at
the quantitative trait locus. We show below a simple
approach that can also be used to obtain explicit expres-
sions for the information content for a number of common
designs without the need to do simulations.

The variance components model specifies the condi-
tional distribution of the phenotypes, given the genotypes
(IBD-sharing). When dealing with selected samples, it is
more natural to invert the reasoning and to think of the
phenotypes as given (Sham et al., 2000). This approach is
common for the analysis of dichotomous traits. Let z
denote the number of alleles shared IBD by the twins at the
marker locus, and 7 the proportion of alleles shared IBD.
Since it is anticipated that the effect of any single gene is
small, we use a linear expansion in ¥ along with Bayes’
theorem to obtain, neglecting terms of smaller order than ¥,

I
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is the “optimal Haseman-Elston” function (Sham &
Purcell, 2001), which was shown to be the score function
for the parameter ¥ in the variance components model
(Puctter et al., 2002). Values of C(x, p) range from negative
to positive. Details of the derivation and extension to
general pedigrees can be found in Lebrec et al. (2003).

This observation suggests using a regression method
like the Haseman-Elston regression method, as already pro-
posed by Sham et al.(2002), for the analysis of selected
samples. The regression for sib pairs amounts to the inverse
of the optimal Haseman-Elston regression, namely regress-
ing 7 on C(x, p). A test for linkage in this setting is a
one-sided test for a positive slope in this regression. Indeed,
for the case of sib pairs, our results coincide with those
found in Sham et al. (2002).

Selection Strategies for Linkage Studies Using Twins

In the context of regression, simple rules are available
for selecting samples on the basis of the explanatory vari-
ables: since the square of the standard error of the slope of a
regression of y on x is inversely proportional to Y, (x, —x)2,
values of x should be chosen as widely spaced as possible.
This means that sib pairs with extreme values of C(x, p)
should be selected for genotyping.

More formally, the optimal Haseman-Elston function
C(x, p) determines the information of a sib pair with trait
values x, and x,. It is given by

165, p) = C¥(x,p) @

and was obtained by Sham & Purcell (2001). This informa-
tion number is exact (at ¥ = 0), in contrast to the
approximations used in the conditional distribution of
IBD-sharing above. Figure 2 shows the distribution of
information in a hypothetical population of standardized
bivariate normal trait values with p = 0.5. Pairs are classi-
fied according to whether their information content is
ranked in the top 5%, between 5% and 10% or in the
remainder (i.e., not belonging to the 10% most informa-
tive). It clearly shows that both the extreme discordant and
the extreme concordant pairs are most informative. The
majority of the most informative pairs is discordant; in the
top 5%, only about 17% is concordant, in the 5% to 10%
category, about 44% is concordant.

For sib pairs chosen such that their trait values lie
within a sampling region R, the average information can be
computed by integrating over that region, weighted by the
probability of the trait values:

IR p) = [ I(x, p)@,(x, p)dx / [ p,(x, p)dx  (5)

Here ¢, (x, p) denotes the bivariate normal density with
mean 0, variance 1 and covariance p. Random sampling is
a special case of this formula, since it is straightforward to
show that when R is the full two-dimensional space,

1 1+p?

8 (1-p?)? '

In order to select e.g. the 5% most informative sib pairs, R
is the region of (x,, x,)-pairs with | Clx, x, | = C,, where
C, is chosen in such a way that this probability equals 5%
under the null hypothesis.

Sampling over a region of sib pair trait values R, the
number of sib pairs required to achieve power 1 — 3 to
detect linkage with a QTL effect size ¥, using significance
level, a then equals

n= ( Zat % ) /IR, p) ©)
Y

I(R! P) =

Table 1 shows the impact of these results on the number of
sib pairs required for height and insulin levels, two quanti-
tative traits studied in the GenomEUtwin project. For
instance, for height, with a QTL variance proportion y =
0.10, with a selection percentage of 1%, only 276 sib pairs
need to be genotyped, but the trait values of 27,600 sib
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6

Trait-value sib 2

Trait-value sib 1

Figure 2

Scatterplot of trait values (n = 20000, p = 0.5). Pairs are classified according to whether their information content is ranked in the top 5% (black
dots), between 5% and 10% (gray dots) or in the remainder (not belonging to the 10% most informative; light gray points).

Table 1

The Number of Sib Pairs Needed to achieve 80% Power to detect Linkage to a Variance Components with a Significance Level o = .0001,
for Different Values of y(Proportion of the Variance explained by the Quantitative Trait Locus)

Height (p =0.50) h2=10.80, c2=10.10

QTL variance Selection %

Insulin levels (p =0.35) h2=0.40, ¢2=0.15
Selection %

proportion (y)  Random 10 5 25 1 Random 10 5 25 1

0.01 748180 105903 66537 43899 27648 1141429 165448 105502 71831 45494
0.02 187045 26476 16634 10975 6912 285357 41362 26375 17958 11373
0.05 29927 4236 2661 1756 1106 45657 6618 4220 2873 1820
0.10 7482 1059 665 439 276 11414 1654 1055 718 455

Note: Height and Insulin Levels, two Traits studied in the GenomEUtwin Project are considered.

pairs need to be available, more than 3.5 times the amount
needed for random selection. This is one reason not to go
for a too restrictive selection percentage. Another, more
compelling reason, is that with extreme selection percent-
ages, the normality of the population trait values will
become a crucial issue.

Selection Strategies For Dichotomous Traits

For dichotomous traits it is convenient to think of the
disease as being determined by an underlying latent quanti-
tative trait (liability). When the value of this quantitative
trait exceeds a threshold ¢ the individual is affected, other-
wise unaffected. The threshold # is determined by the
prevalence of disease K in the population of interest, through

t=®"' (1 — K), where @ is the distribution function of a
standard normal variable. In a heritability study using
twins, the heritability is estimated from the affection states
of the twins using the tetrachoric correlation of an underly-
ing bivariate normal variable with zero mean and unit
variance. The normal liability model is primarily a statisti-
cal convenience; if in reality there is no underlying normal
liability in risk for an ordinal or dichotomous trait, then
the model will be wrong.

The tools of Section 2 can be used to determine the
information contributed by a twin with two affected (AA),
one affected, one unaffected (AU), and two unaffected
(UU), given prevalence K, and tetrachoric correlation p
(determined by the heritability). This information is
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where R is the region of (x,, x,)-pairs with x, 2 5x, > r (AA),
x2t x, <t (AU) or x, < 1, x, < £ (UU). From equation (3)
it can be seen that the expected value of 7T, conditionally
given thatx € R equals

% . % E(Cx p) | xe R);

the expression in brackets in the above expression is pre-
cisely this conditional expectation of C (x, p) given x € R.
Power calculations for dichotomous traits are very similar
to (but not entirely the same as) quantitative traits using
the liability threshold approach; the sampling region is now
determined by affection status rather than observed trait
values and does not have optimal form as in Figure 2. Table
2 shows that for dichotomous traits with low prevalence,
AA sib pairs are most powerful, for traits with moderate to
high prevalence, AU sib pairs however may also be quite
informative.

Discussion

In this paper we have shown a simple approach to obtain
explicit expressions for the information that a twin is
expected to contribute towards detecting linkage to a quan-
titative trait. This information is based on the trait values
and known values for the variance components of the trait.
To achieve a given power to detect linkage to a quantitative
trait with a given significance level and an anticipated pro-
portion of the variance explained by the quantitative trait
locus, the required number of sib pairs is straightforward to
calculate. The expression extends to dichotomous traits
through the concept of a liability, a latent underlying quan-
titative trait.

Earlier work uses simulation to calculate the informa-
tion content of a sib pair and the number of sib pairs
needed to achieve a given power (Cherny et al., 1999;
Dolan & Boomsma, 1998; Purcell et al., 2001). For sib
pairs, simulation can be replaced by calculation, as outlined
above. These calculations are well known for random
samples (Rijsdijk & Sham, 2000; Rijsdijk et al., 2001;
Williams & Blangero, 1999) and have been pioneered for
selected samples for the case of sib pairs (Sham & Purcell,
2001) and more implicitly for general pedigrees in Sham

Selection Strategies for Linkage Studies Using Twins

et al. (2002). They have been implemented in Merlin
(Abecasis et al., 2002) through the command merlin-
regress. The way they have been derived, by considering the
conditional distribution of the IBD-sharing, given the phe-
notypes (Sham et al., 2000, 2002), also suggests methods
for analysing selected samples. This is the subject of
ongoing research in our group.

All expressions in Sections 2 and 3 are valid for DZ
twins (sib pairs) only. It is well known however that for
random samples sibships of larger sizes can achieve consid-
erably more power than sib pairs (Dolan et al., 1999). In a
sense, a larger sibship constitutes a collection of sib pairs,
and indeed the amount of information is roughly propor-
tional to the number of sib pairs (Dolan et al., 1999;
Williams & Blangero, 1999) in the sibship. Also for selec-
tive sampling, sib pairs could still be collected, even though
they belong to a larger sibship. The direction taken in
Section 2 does not readily extend to larger sibships or
general pedigrees. However, the resulting expressions can be
generalized more formally using efficient score functions.
This approach is followed in Lebrec et al. (2003).

The score approach will also yield information content
numbers for general pedigrees. These information content
numbers can be computed in principle, but in practice the
size of the pedigree may limit the calculations. Including
parental information may result in a modest increase in
power (Williams & Blangero, 1999); arguably more
important is the use of parental genotypes in other stages;
it will increase precision of IBD-information, it can be
used in quality control, and it may increase power in asso-
ciation studies.

The presence of dominance variance in the varjance
components model adds a parameter § specifying the pro-
portion of variance due to dominance variance of the QTL.
The standardized traits of a sib pair sharing alleles IBD will

have covariance matrix
i—1
! p+ Y+ (l{l:z}_—l )6

2
i—1 1 1 S
D 7+ ( {i:Z]_T) 1

P+

For complex diseases, both 7 and & will be small, and
similar calculations as in Sections 2 and 3 can be made in
this case as well. The number of sib pairs needed to achieve
a given power to detect linkage to a quantitative trait with a

Table 2

The Number of Sib Pairs needed to achieve 80% Power to detect Linkage to a Dichotomous Trait with a Significance Level o= .0001,
for Different Values of y (Proportion of the Variance explained by the Latent Quantitative Trait Locus)

Trait | Trait 1l
latent QTL variance K=5%,p=05 K=20%,p=05
proportion (y) AA AU uu AA AU uu
0.01 270122 Fxx Hxrx 962936 Fxx Fxx
0.02 67531 649982 il 240734 403089  ***
0.05 10805 103997 Hxx 38517 64494 277326
0.10 2701 25999 *xx 9629 16124 69331

Note: The prevalence K and heritability approximately match that of migraine in men and women respectively. AA, AU and UU denote sib pairs with two affected, one affected and
one unaffected, and two unaffected sibs respectively. *** denotes more than one million sib pairs needed.
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given significance level ot now depends on both ¥ and 3
through the functions C(x, p). In the case of a rare recessive
allele, selection based on C(x, p) may no longer be fully
informative (Purcell et al., 2001). Otherwise, dominance
variance will not have a strong influence on selection, but it
can influence the power.

The approach to power calculations that we took in this
paper (calculating the Fisher information in an inverted
variance components model, where the distribution of IBD
sharing given the trait values is considered) is intimately
tied to the method of analysis to be used later. As men-
tioned earlier, this is the subject of ongoing research in our
group, but restricting the discussion to sib pairs, we note
the following. It is assumed that trait values are normally
distributed and have been standardized to have zero mean
and unit variance. This standardization entails subtracting
the mean and dividing by the standard deviation, in the
absence of covariates. Covariates can also be incorporated
into both the power calculations and the analysis. Then in
the standardization the covariate values and the estimated
regression coefficients (in the population!) are used instead
of a common mean. Covariates can also be incorporated
into the analysis of dichotomous traits; in this case not all
affected sib pairs for instance will have the same C value,
but this value will now depend on the covariate values of
the sib pair. When data are not initially normally distrib-
uted, a transformation can be used in the population data
to obtain approximate normality. Even in populations
where the trait values are reasonably normally distributed,
we think it is wise to robustify the analysis anyway, by
giving sib pairs with extremely high C(x, p) values a lower
weight in the inverse regression.
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