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EXTREMAL PROPERTIES OF CONSTRAINED 
TCHEBYCHEV POLYNOMIALS 

R. PIERRE 

1. Introduction. In the sequel, irn will denote the class of real 
polynomials of degree at most n and \\f{x) IL the L^-norm of a function 
o n [ - l , -hi]. 

In a series of recent papers, Saff and Varga studied the properties of the 
so-called incomplete polynomials; that is to say polynomials of the form 

(1 - ;c)5l(l + xf2q(x) 

where sl and s2 are fixed integers and q e iin. 
In there, they define the constrained Tchebychev polynomial as being, 

up to a multiplicative constant, the solution of the following minimization 
problem 

min{ \\p{x) IL \p(x) = (1 - x)5l(l + x)siq(x% q GE TT„, 

q monic}. 

These polynomials, which they denote by 7̂  n(x) exhibit extremal 
properties very similar to those of the classical Tchebychev polynomials. 
Indeed, we have the following (see [3], Theorem 3.3): 

THEOREM A. Let p Œ irn and satisfy 

|| (1 - x)\\ 4- xY*p(x) IL ^ 1, 

then, for each integer k and real x £ [— 1, +1], 

(1) 
dk 

-j{ (1 - x)*'(I + xppix) } 
dx 

In the light of this result and in view of the importance of these 
polynomials in the work of Saff and Varga, it is natural to investigate the 
growth of the derivatives of incomplete polynomials in the open interval 
(—1, 4-1). A first attempt in this direction was made by Lachance [2] 
who obtained asymptotically best possible results in the symmetric case 
(sY = s2). 

In this paper, we study the problem for the class corresponding to 
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s] = X/2, s2 = /A/2 where X and \x are either 0, 1 or 2. Doing this, we will 
be able to extend results of I. Schur and to precise certain inequalities 
obtained by Lachance in the aforementioned article. 

The outline is as follows. In the next section we state the main results 
and discuss their sharpness. Section 3 contains the necessary lemmas and 
we conclude with the proof of the theorems in Section 4. 

2. The main theorems. The case sx = s2 = 0 has been extensively 
studied. The polynomial T0Qn(x) is the classical Tchebychev polynomial 

(2) Tn(x) = cos(n arcos x). 

If we define the related functions Sn(x) and Mk (x) by 

(3) Sn(x) = sin(n arcos x) 

(4) Mkn(x) = \T(
n

k\x) + i±[k\x) | k = 0, 1, 2, . . . , /i, 

the extremal properties of Tn(x) are best summarized, at least in our 
context, by the next theorem due to Duffin and Schaeffer (see [1] ). 

THEOREM B. For each integer k, let ak denote the right-most zero of 
S^\x) in (.—1, +1). If p Œ TTn and satisfies \\p{x) H^ ë 1, then, for 
k = 1, 2 , . . . , « , 

(5) \p«\x) | =S | 7 f >(*) \for each x «È \-ak, ak\ 

(6) \p(£\x) | ^ Mkn(x)for each x e ( - 1, + 1) 

(7) \\pV(.x)\\00^\\T^\x)\\00=\T^\\)\. 

The inequalities (5) and (7) go back to W. Markov who obtained them 
as a product of the study of a more general problem; they are obviously 
best possible. Inequality (6), known, for k = 1, as Bernstein inequality, 
is best possible only at the (n + 1 — k) zeros of S^ \x)9 but asymptoti­
cally best possible at each point. 

One very important remark is that Mk n(x) is an increasing function on 
(0, 1) (see [1], Lemma 2). 

Since (1) already extends (5) in the case where sx and s2 are arbitrary 
integers we concentrate our attention on (6) and (7). 

Our first theorem gives the correct improvement of Theorem B for 
polynomials having at least one simple zero at the end points. 

THEOREM 1. Let p e <nn be such that \\p(x) H^ = 1. 
a) Ifp(\) = 0, then, for k = 1, 2, . . . , n, 

(8) \/k\x) | ^ (cos f )2kMk(x cos2 f - sin2 f ) 
\ 4ft/ ' V An 4n' 
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for each 

^ e - 1 ' ( 1 + s i n 2 i ) /( c o s 2 i ) 
while 

(9) \\p«\x) IL =ê (cos J l ) 2 V „ * > ( - 1)1 = l l ^ t U * ) 

b) Ifp(-l) = p(+ 1) = 0, /««i,/or * = 1 , 2 , . . . , » , 

(10) |/><*>(x)| ë ( c o s ^ - ) V « ( c o s j ) 

, e ( - l / ( c o s ^ ) , l / ( c o s ^ ) ) , 

w/zz'/e 

(il) u / ^ i L ë (coS|l)*|rw(cos^) |3" (U>) 

For k = 1, this theorem was proven by I. Schur [7]. The inequalities (9) 
and (11) are best possible as shown by the extremals 

. and 
An 4«> 

XCOS Tn~Sm Tn) 

T\,\,n(X) = r «( - X C O S 7" j -2n> 

On the other hand, for (8) and (10), the equality will be valid, for the same 
polynomials, only at the interior zeros of 

5 f » ( x c o s 2 - - s i n 2 - ) and S<„*>(* c o s - ) 

respectively. 
Let us now define the class TJ\ by 

"AJMI = {P G ^1 HO - ^)X/2(1 + xf2p(x) IL S l} . 

In his paper [7], I. Schur considered and solved the problem of estimating 
Halloo for p e 7720„ and p e mlln, while, in [2], Lachance was able 
to get estimates for \\p^{x) H^ when p e fl\\,„, which, although not 
exact, give the right order of n. 
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The next three theorems provide exact results in certain cases. Their 
statements require definitions which we group in a table. 

TABLE 1 

(A, JU) tKw ^\,f(,rt 

(1,0) , ( / 1 + M T (ll+X) 
^ + 1W 2 / T2n + l\] 2 j 

Vl - x Vi - x 

(1, 1) Sg + iW 

VT^V 
(2,0) / 2 m -2 

cos — sin 
4(« + 1) 4(w 

77 

) s» + i ( * 
2 77 . 2 77 \ 

cos — sin 1 
4(« + 1) 4(« + 1) ' 

(2,2) 
(1 - x) 

T ( « \ 

(1 - x ) 
/ 77 \ 

Jn+2\x C O S / 
V 2{n + 2 ) ' ^+2VACOS2(, + 2)/ 

(1 ~ x2) (1 - x1) 

The cases (0, 1) and (0, 2) were not included since they are readily 
obtained from the case (1,0) and (2, 0) by changing x to —x. 

We first consider the problem of obtaining pointwise bounds. 

THEOREM 2. Let p e ^ where (X, ju) takes the values (1, 0), (1, 1), 
(2, 0) and (2, 2). For e#c/z k = 0, 1, 2, . . . , n and for each x e (— 1, + 1), we 
have 

(12) \pik\x)\ ^ l O i ) + 4 > ) | . 
The sharpness of (12) is subject to the same limitations as that of (8) and 

(10), but its use will lead to sharp global bounds. 
In the case (X, ju) = (1, 1), we were able to use (12) to its full power to 

obtain: 

THEOREM 3. Let p e TTX Xn, then for k = 1, 2, . . . , n we have 

(13) ||/^)IL si ll/ft» IL = I'fr̂ +OI-
The study of the class 7rlsl^ goes back to Bernstein for the case k = 0. 

The case k = 1 was more recently considered by Pierre and Rahman 
in [4]. 

An immediate consequence of Theorem 3 is the following corollary 
which, in view of the Bernstein inequality, is a nice improvement of the 
W. Markov inequality (7). 

COROLLARY 1. Let p ^ mn and satisfy \p'{x) | ^ « / V l - x2, for 
1 < x < + 1 , then for k = 2, 3, . . . , n, 

Wp^ix)^^ \T[k\l)l 
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For the remaining cases (A, /x) = (1, 0), (2, 0) and (2, 1), we have the 
following Theorem which, in the last two cases, generalizes results of 
I. Schur (see [7], Sections 3 and 4). 

THEOREM 4. Let (A, /i) be equal to (1, 0), (2, 0) or (2, 1). If p e 7rx , 

(i4) ii//oon«> îkw*)iioo-
3. Lemmas. We now prove or simply quote certain results which we 

shall need later. 
First we recall that the polynomial Tn(x) and the function Sn(x) are 

linearly independent solutions of the equation 

(15) (1 - x2)y" - xy' + n2y = 0. 

Using (15) and the relations between tx , sXfJLn and the classical 
functions, it is easy to verify that the former are linearly independent 
solutions of an equation of the form 

(16) pk{x)y" + />*_, (*) / + pk-2(x)y = 0 

where ph pk-\, Pk-i a r e r e a l polynomials of degree k, k — 1, k — 2 
respectively. Moreover,pk(x) ¥^ 0 on (—1, -hi). As a matter of fact this 
verification will show that k = 2 if (A, fi) = (1, 0) or (1, 1) while k = 3 if 
(A, ^ = (2, 0) and k = 4 if (A, /i) - (2, 2). 

This remark leads us to the first two lemmas. 

LEMMA 1. Let p(x) = xn + an_xx
n~x + . . . + a0 be a solution of the 

differential equation 

(17) (JC2 + bx 4- c)y" + (<fcc + £?)/ + .# = 0, 

where x + bx + c ¥= 0 for x e (—1, +1). T̂ jy w awy solution of (17), 
//ie/i, either y{n + x\x) = 0 on ( - 1 , +1) or / + 1)(JC) ^ 0 / o r every 
x <= ( - 1 , +1). 

Proof If we differentiate both sides of (17) « times with respect to x, we 
obtain 

(18) (x2 + bx + c)y{n+2) + { {In + */)* + /ife + e} J(A2 + 1) 

+ {«(« - 1) + nd + f}yw = 0. 

Setting^ = p(x) in (18) we get 

w(/î - 1) + nd + / = 0 

which shows that (18) reduces to 

(19) (x2 + bx + c)y{n+2) + { (2/i + J)JC + «Z> + e} j ( w + 1) = 0. 

Now, let _y be any solution of (17) and x0 be a point in (—1, -hi). 
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If yw \x) =£ 0, there exist an integer k and a function z(x) analytic in 
(— 1, 4-1) for which 

yw + l )(*) = (x - x0)
kz(X), 

where z(x0) ^ 0. Substituting in (19) and dividing throughout by 
(x — x0) , we find 

(.x2 4 bx 4 c)(A:z(x) 4 (x — x0)z r(x)) 4 z(x)(x — x0) 

X {(In 4- J)JC 4- wft 4- e) = 0. 

Setting x = x0 and remembering that x0 4 Z?x0 4 c ^ 0, we get k = 0 
which is the desired conclusion. 

LEMMA 2. Le/ ^„(x) and sn(x) be two linearly independent solutions of the 
equation 

(20) p(x)y" + q(x)y' + y = 0, 

where p(x) and q(x) are analytic in (—1, 4 1 ) <2«d /K*) ^ 0 /or 
x e (— 1, +1). Let us suppose moreover that 

(i) tn e 77„ 
(ii) ^„(x)possesses (n 4- 1) simple roots in[—\, +1], 

(iii) lim |^ (x ) | = 4 co, 

( i v ) ^ + 1)(x) ^ 0 / o r x G ( - 1 , +1). 
7/y e 77̂  aw J satisfies 

(21) | / ' ( * ) | ^ |fw(*) + is'n(x)\,forx e ( - 1 , +1), 

then, for every real a, the first n derivatives of 

cos atn(x) 4- sin asn(.x) — / ( x ) 

have only simple zeros in (— 1, 41) . 

Proof Let us differentiate both sides of (20) with respect to JC. We 
get, 

(22) p(x)y'" 4 (<?(*) 4- p\x))y» 4 (?'(*) 4- 1 ) / = 0. 

If we apply the Sturm separation Theorem to the solutions tn and sn of 
(20), we deduce from (ii) that tn possesses n distinct zeros in (— 1, 4-1). In 
view of Rolle's Theorem and of the Sturm separation Theorem applied to 
the solutions t'n and s'n of (22), we see that there exist (n — 1) points yu 

y2, . . . ,yn-\ and n points xx,. . . , xn for which 

nx\ [Uyd = ° i = 1,2,...,(« - l), 
1 ; U(xz) = 0 i = 1, . . . ,*, 

and 

(24) - 1 < xx < yx < x2 < . . . < xn < 1. 
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Let us now distinguish two cases. 
Case 1. a = 0. From (23), (24) and (21), we see that the inequality 

!/'(*,•) I < K(xt) | 

is valid for / = 1, 2 , . . . , n, while 

sgn(/;(x,)) = -sgn(/;(jc / + 1)) 

for / = 1, 2, . . . , « — 1. This implies that the difference t'n(x) — f'(x) has 
at least (n — 1) distinct roots in (—1, -hi) which, in view of Rolle's 
Theorem, implies that t^\x) — f^k\x) has at least (n — k) distinct roots 
in (— 1, 4-1) for k = 1, 2 , . . . , n. Since this difference is in nn_k, it can 
have no other root and they are all simple. 

Case 2. a ¥= 0. Set 

Ra(x) = cos octn(x) + sin asn(x). 

In order to adapt the preceding reasoning, we first try to show that there 
exist (n + 1) points z0, z1? . . . , zn in (— 1, +1), for which 

sgn(i^(zz) ) = -sgn(tf;(z / + 1) ) when i = 0, 1, . . . , * - 1, 

while 

|/ '(z,.) | < \R'a(zl)\ fori = 0, 1 ,2 , . . . , * . 

Let us remark that, if Qa(x) = Ra+w/2(x\ tnen> a t every zero z of Qf
a(x), 

we have 

(«;(z))2 = (t'n(z)f + (s'n(z)f 
and thus 

(/ ' (z) )2 < (/Ç,(z) )2. 

We first restrict our attention to the case a e (0, IT/2). The case 
a e (77/2,77) can be dealt with similarly. There are two possibilities, either 
t'n(x) and s'n(x) are of opposite sign in a neighbourhood of — 1, or they are 
of the same sign. We treat the first case, the other one being obtained 
mutatis mutandis. Let e > 0 be small enough and, without loss of 
generality, 

s g n ( a - l + €)) = - 1 = - s g n « ( - l + c)). 

Going back to (23) and (24), we see that, for k = 1, 2, . . . , n the 
relations 

s g n ( a ^ ) ) = ( -1 )* = s g n ( ^ ( x , ) ) = - s g n ( e ^ ) ) , 

s g n « ( ^ ) ) = ( - 1 ) * = sgp(R'a(yk)) = s g n ( ô ^ ) ) , 

are valid. On the other hand, using (iii), we get 
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s g n « , ( - l + £ ) ) = + 1 = s g n ( ^ ( - l + £ ) ) 

= s g n ( & ( - l + £ ) ) 

and 

s g n « ( l - e)) = ( - 1 ) " = sgn(*;(l - £)) = sgn(ô;(l - c) ). 

From this, we readily deduce that Qa has n roots z]9 z2,...,zn 

satisfying 

zt e (xi9 yt) for i = 1, 2, . . . , « - 1 and zn e (X„, 1), 

whereas R'a has « roots £l9 £2> • • • > £w satisfying 

5/+i G U ^ i + i ) , i = l , . . . , / i - l and J j G ( - l , x , ) . 

Since, in view of (iii), the inequality \f'(x) \ < \R'a(x) | is always valid in a 
neighbourhood of — 1 and 4-1, we can choose z0 e (— 1, £j) sufficiently 
near — 1, thereby obtaining the desired set of points {^}Q. 

In the case a = 77/2, we simply choose z0 near —\,zi = yti = 1, . . . , 
n — 1 and zn near + 1 . This completes the first step. 

To conclude we observe that the conditions imposed on the points {zz-} 
imply that the function R'a(x) — f\x) has at least n distinct zeros in 
(—1, +1). This, in turn, implies that for p = 1, 2, . . . , n the function 
^f\x) ~ f^P\x) n a s a t l e a s t n — p + 1 distinct roots there. If any of 
these was not simple, the function 

R(: + l)(x) -fn + l\x) = sin«4"+ 1>(x) 

would be left with one root in (— 1, +1) which contradicts (iv). 

We will see that Lemma 2 is the principal ingredient in the proof of 
Theorem 2. The only problem in using it is to verify conditions (iii). 
Although we suspect that it should follow from the previous ones, we were 
unable to check its validity in a general context. This forced us to use a 
more "ad hoc" reasoning. 

LEMMA 3. Let sn(x) = sXfJLn(x)for (X, JU) equal to (1, 0), (1, 1), (2, 0) or 
(2, 2). Then 

s{^x\x) ¥= 0 forx e ( - 1 , +1). 

Proof. We have already noticed that, when (À, /A) is equal to (1, 0) or 
(1, 1), the function sn(x) satisfies a differential equation of the form (17). 
Therefore, in those cases Lemma 3 follows from Lemma 1 since sn(x) is 
never a polynomial. 

For (À, fi) = (2, 0) we consider the case n = 2k while for (À, /x) = (2, 2) 
we consider the case n = (2k — 1). The two other cases are obtained 
through obvious modifications. Let us put 

z(x) = s2k + \(ax + b) 
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where a and b are such that [b — a, a + b] Q [ — 1, + 1]. Using (15), we see 
that z(x) is a solution of the equation 

(25) l \ - Ix + - J )z"(x) - Ix + - W ) + (2it + l)2z(x) = 0. 

Since S2k + \(x) is even, we look for a solution of (25) of the form 

£ / b\2j 

Z(x) = 2a d\x + - I 
o v a> 

where the development is valid on 

/ (b + 1) (1 - 6 ) \ 

Substituting in (25) we obtain the following relationship for the 
coefficients 

-a"dj{{2k+ l ) z - 4 / ] . 
4 + i = ~- . , ^ y = 0, 1 , . . . 

i2dj[(2k + l)2 - -1-'2 

(2/ + 2X2/ + 1) 

from which we deduce that, for s = 1 , 2 , . . . , 

(26) sgn(^ + J ) = sgn(^ + 1) = ( - l)* + 1sgn(4>) = - 1 . 

We now distinguish the two cases, 
a) (\, /A) = (2, 0). In that case 

s2k(x) = z(x)/(l ~ x), 

with 

a = COS2(T7/4(2£ + i ) ) and b = -sm2(iT/4(2k + 1)). 

Since 

we can write, for x e (— 1, -hi) 

^a + /?/ w=o v a' 

where 

\<2 + b' i=o ^ a ' 

Using the fact that 
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z(l) = % + 1 (COS(T7/2(2A: + 1) ) ) > 0 

we infer from (26) that, for u ê 2k + 1, 

V i = [n/2] + l V « / / Vfl + * / 

Hence 5 ^ + 1)(x) is strictly positive for .x > — è/0. On the other hand, 
differentiating both sides of the relation 

(1 - x)s2k(x) = z(x\ 

(2k + 2) times with respect to x, we get 

(1 - x)sgk+2\x) - (2k + 2)sgk+\x) = ^k+2\x). 

Multiplying both sides by (1 — x) we can write the last relation as 

- [ ( 1 - x)2k + 2sgk + i\x)] = z^k+2\x)(l - x)2k + \ 
dx 

Now using (26) again, we see that 

z{2k+2)(x) < 0 for x e ( - 1 , +1), 

hence that (1 — x)2k^2s2^
2k + x\x) is strictly decreasing there. Since it is 

strictly positive in ( — b/a, -hi), it is strictly positive everywhere, and 
the same is true for s2k (x). 

b) (A, JU) = (2, 2). This time 

s(x) = z(x)/(l - x \ 

with 

a = cos(7r/2(n + 2) ), b = 0. 

Repeating the above reasoning, we will obtain that, for x e (— 1, -hi), 

S2k-\(X) — 2J CUX , 
0 

where 

u 

cu = 2 dt for u = 0, 1, 2, . . . . 
0 

Using (26) and the fact that z(l) > 0, we deduce in the same way as in a) 
that cu > 0 for u ^ k which imply that 

https://doi.org/10.4153/CJM-1986-044-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-044-1


CONSTRAINED TCHEBYCHEV POLYNOMIALS 917 

4 * * - i ( * ) > ° forjc G ( - 1 , +1). 

The last lemma is a refined version of a theorem of Levin. Its proof can 
be found in [5]. 

LEMMA 4. Let 

T„(Z) = 2 < / / * , 
— « 

vv/7/z d„ ¥= 0, be a trigonometric polynomial having all its zeros in Im z ^ 0. 

/ / 

Sn{z) = £ c /^ 
— « 

w <? trigonometric polynomial of degree n such that \Sn{6)\ = | (T„(0) \for all 
6 G R 0ftJ / / #, Z?, c are real numbers satisfying 

nb2 + n(2n - \)a2 - 2ac(2n - 1) g 0, 

|a SW) + bS'n(0) + cSn(6) | ^ | < ( 0 ) + K ( ^ ) + cr„(0) |. 

4. Proofs of the theorems. 

Proof of Theorem 1. We first consider case a). Up G 7TW and satisfies the 
hypotheses, then, according to Theorem A, 

\p(x)\ ^ \Tl0n(x)\ for* £ [ - 1 , +1], 

But 

\T]0n(x)\^\ forx G k s e c 2 - ^ + tg2^-\ 
L 4« 4« J 

thus, the same is true for^(jc). Let us put 

/<J0 = ^ s e c ^ + / g 4 ^ / 

According to the last remark, 11 p(y) W^ ^ 1, whence applying Theo­
rem B, 

\^k\y)\^\Tik\y) + iS^(y)\ 

for 

y e ( - 1 , +1) and ||£(*>O0 IL ^ l ^ - l ) ! . 
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Going back to x via the change of variable 

/ 2
 m \ • 2 m 

y = I cos — )x — sin —, 
V An ' An 

we obtain the desired inequalities. 
The proof of case b) goes along the same lines. Using Theorem A and 

the change of variable 

P(y) =pyy/cos^f, 

we will again obtain 

|^*>00l ^ \T<£\y) + iSik\y)\ tory e ( - 1 , +1). 

Clearly the right-hand side of this last inequality is even. As remarked 
previously it is also increasing on (0, 1), thus, if we denote by ak the 
right-most zero of S^\y) in (— 1, +1), we get 

(27) \pM(y) | ^ \T[k\ak) | for y e (~ah ak). 

Now, using the fact that S[ \x) and T^ \x) are linearly independent 
solutions of a differential equation of the form (17) and the fact the 
rightmost zero of S'n(x) is equal to cos(7r/2n), we may argue as in the first 
part of the proof of Lemma 2 to deduce that 

ak ^ cos(7772«) 

and that \T^n \y) | is increasing on [ak, 1]. Thus, using (5), we have 

(28) \p{k\y) | ^ \T«\y) \ ^ | 7 f }(cos m I In) | if y e (ak, œs(7r/2n) ). 

Combining (27) and (28) and setting y = cos(7r/2n)xy we obtain the 
second inequality in b). 

Proof of Theorem 2. We first consider the case k = 1. Let the function 
f(0) be defined, for 0 e R, by 

f(0) = 

c o s 2 / ? if(A,ju) = (1,0) 
™e ,_2/ . if(A,M) = ( l , l ) 

cos^ + sin2 if(X,ji) = (2,0) 
/ V A(n + IV 

cos-
A(n 4- 1)/ V 4(H + 1)> 

cos 
^ 2(n + 2) 

) ' cos^ if(X,/x) = (2,2) 
+ 2)/ 

and let 

g(6) = (1 -f(8))\l +f(6)T. 

If/? G 77̂ , the function g(O)p(f(0) ) will be a trigonometric polynomial of 
order m = 2n + 1 if (A, ju) = (1, 0), of order m = (n + 1) if (A, /x) = (1, 1) 
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or (2, 0) and of order m = n + 2 if (À, //,) = (2, 2). Moreover, using table 1, 
we can easily check that, in those cases, 

(29) g(6)(tKM(f(6) ) + is^ififf) ) ) = e'me for all 0 e R. 

Now, using Theorem A as in the proof of Theorem 1, we see that the 
inequality 

|(1 - x)\l + xfp(x)\ ^ 1 

is valid on the interval [— 1, +1] if (X, /x) = (1, 0) or (1, 1); it is valid on 
the interval 

- l , ( c o s — ^ - ) " 2 ( l + s m 2 - ^ — ) 1 
V 2(/i + 1)/ V 2 0 + 1) /J 

if (À, jit) — (2, 0) and on the interval 

— I cos J , I cos I 
L V 2(n + 2 ) / V 2(/i + 2) / J 

if (À, JU) = (2, 2). This, together with (29), implies that, for p e TTX ^ n the 
inequality 

\g(fi)p{f(B))\ ê \g{6){tx^n(f{0)) + isx^n(f(6)))\ 

is valid for all 6. On the other hand, using (29) again we see that the 
hypotheses of Lemma 4 are satisfied for any a and b if c = 0. Let 
x = f(00) be fixed. Applying Lemma 4 with a = —g(00), b = g'(0o) and 
c = 0, we get, for 0 = 0O, 

\g*WWo)P'(f(0o))\ ^ \t?(6o)fWx,vAf(eo)) 

+ 'W/(0o) ) ) I-
Since 

g2(00)f'(60) * 0 for x G ( - 1 , +1), 

this inequality is equivalent to (12) when k = 1. 
To proceed to the general case, we verify that Lemma 2 applies here. 

Indeed, as already noticed, the functions tx (x) and sx(x) are linearly 
independent solutions of a differential equation of the form (20). The 
verification of conditions (i) to (hi) can readily be made with the help of 
table 1 whereas Lemma 3 states that condition (iv) is also fulfilled. Finally 
we just proved that (21) is true for any/? e TTX 

Let us now suppose that k > 1 is fixed. If, for any real a we set 

Ra(x) = cos atx^n(x) + sin asX4in(x), 

we have 
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(30) \Rik\x) | ^ \t[kl„(x) + is[kl,t(x) | for x e ( - 1 , + 1). 

Suppose that, for a given/? <E 7rx and a fixed x0 G (—1, +1), the 
inequality 

|/><*>(x0) I > |/£U*o) + *£U*o) I 
is true. In view of (30) we can choose y G [0, 1) such that 

(31) R[k\x0) + yp{k)(x0) = 0. 

We now choose a such that x0 is a local maximum of 

\R<£\x)/p<kXx) | 
i.e., such that 

(32) R{k + ])(x0)p
(k\x0) - R[k)(x0)p

(k + %0) = 0. 

This is always possible since the last equation is of the form 

a cos a + b sin a = 0. 

Using (31), (32) then becomes 

/> ( *W[*r 'W + y/>(*+1)(*o)] = o 
which implies that x0 is a double zero of R{k\x) + yp(k\x). Since 
y/?<= fl-^x,/*» this contradicts the conclusion of Lemma 2, hence (12) is 
satisfied for any k. 

Proof of Theorem 3. The functions tXXn and sXXn satisfy the conditions 
(i) and (ii) of Lemma 2 as well as the equation 

(33) (1 - x2)y" - 3x/ + n(n + 2)y = 0. 

Differentiating both sides of (33), k times with respect to x, we get 

(34) (1 - x2)y{k+2) - (2k 4- 3)xy(/c + 1) 

+ (n - k)(n + k + 2)y{k) = 0. 

In view of Rolle's Theorem, t^k\n{x) has exactly (A — k) roots in 
(— 1, -hi) while s\k}n(x) has at least (n — k + 1) roots there. Using the 
Sturm separation Theorem, we see that the latter has, in fact, precisely 
(n — k +1) roots in (— 1, +1) which separate those of t\ \n. Let us de­
note them by al9 . . . , an_k + v 

Let/7 e 77"! ! „, using (12) we see that 

!/><*>(*,.) | ^ k ^ , ^ ) I for i = 1, . . . , n - k -f 1 

whereas 

s g n ^ ^ û , . ) ) - - s g n O ( ^ > z + 1 ) ) , / = 1 /i — AT. 
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Hence, according to Theorem 1 of [6], 

(35) \p(k\x)\^\t\kl,(x)\ for* £ [ax,an_k + x\. 

Set 
OO 

»kW = (tfU*))2 + (suUx))2 = 2 «kJx
2j\ 

0 

where the development is valid in (—1, +1). We use induction to show 
that, for each fixed k, ak • i? 0 for each j . 

Using (2), (3) and table 1 we get 

(n + l)2 x2 

1 (1 - x2)2 (1 - x2)3 

which implies that a, ^ 0 for y ^ 0. Let us suppose that the same is true 
for a fixed k > 1. Going back to (34), we obtain the following relation 

^-{Nk + ](x)(l - x2) + (» - k)(n + k + 2)Nk(x)} 
ax 

= 4(k + l)xNk+l(x) 

from which we deduce that, for each positive j , 

2(7 + l ) K + u + i + (» ~ *X« + * + 2)aA.,/ + 1] 

= [4(/c + 1 ) + 2C/+ l ) K + 1,y, 

Thus, as soon as «A: + 1 > 0 for some j , the same is true for 0Lk + \j if / = j . 
On the other hand 

lim Nk + X{x) = +oo 
JC->1 

and TV̂  + 1(A:) is always positive. This implies that there exist arbitrarily 
large values of y for which ak + \ ,• > 0; whence this is true for ally. This 
completes the induction. 

Now, if x e [ÛJ, an_k + x], we infer from (12) and the last paragraph, 
that the inequality 

(36) \ik\x) |2 ^ Nk(x) ^ Nk(ax) = Nk(a„_k + X\ 

is valid. Since 

^*(fl/) = ( ï (u )>1-))2 , 

(36) together with (35), lead to the estimate 

\p(k\x)\ ^ ||/(^,„(x) IU for x e [ - 1 , +1], 

which is the desired result. 
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Proof of Theorem 4. The functions tx (x) and sx^n(x) satisfy the 
hypotheses of Lemma 2. If we repeat the reasoning of the first paragraph 
of the proof of that lemma, we will obtain that sx (x) has n roots in 
(—1, -f 1) which separate those of tf

XvLn(x). Let us denote them by 
au...,a„. 

Let p G irx , using (12) and Theorem 1 of [6] as in the proof of 
Theorem 3, we get 

(37) | / ( x ) | =i \t'KllJx)\ for* € [ax,an]. 

Set 

N(x) = (^ ,„ (* ) ) 2 + (s'K^n(x))2. 

In view of (12) and (37), it is enough, to complete the proof, to show 
that 

max N(x) = m2ix{N(al), N(an) }. 

We consider the three cases separately, 
a) (X, ju) = (2, 2). Using table 1, we get 

1 ((n + if a 

^7? 1(1 - a V 
2~2 4x2 

N(X)~ (1 - x 2 ) 2 l ( l - a V ) + (1 - x 2 ) 2 J 

where a = cos(7r/2(n -f 2) ). That function is clearly even and increasing 
on (0, 1), hence 

max N(x) = N{an) = N(ax). 

b) (À, /x) = (1, 0). The function N can be expressed as 

N(x) = l- ~ 
4(1 - xf 

(In + l)2
 + 1 

(1 + x) (1 - x) 

If we differentiate, we will be lead to N'(x) = R(x)/S(x), where S(x) > 0 
for x G (— 1, +1) while R(x) is a polynomial of degree 2. This shows that 
N(x) has at most two local extrema in (—1, +1)- But N(x) is always 
positive and 

lim N(x) = +oo, 

hence the only possibility is that N(x) has one local minimum. It follows 
from there that 

max N(x) = m a x ^ ^ ) , N(an) }. 

c) (X, n) = (2, 0). Setting 
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A = sec + ta 
2(« + 1 ) 2(n + 1) 

the function N(x) can be expressed as 

N(x) = + 
(n + \f 

(1 - xf (1 + JC)(1 - x ) V - x) 

Differentiating we get 

N'(x) = 

X 

4(1 + xf(A - xf - (w + 1)2(1 - xf 

(1 - x)5(l + xf 

[4x2 - (3A - \)x - (A + 1)] 

(A ~ xf ' 

Using the reasoning of part b) we see that the proof will be complete if we 
show that N\x) has exactly one root in (— 1, +1). For this set 

/ , (*) = 4(1 + x)\A - x)\ 

f2(x) = (n + 1)2(1 - x)2(4x2 - (3A - \)x - (A + 1)). 

Using the relat ions/2(-1) = 0 , / î ( - l ) = 0 , / ^ ) = 0, f\(A) = 0 and 
the relations 

/ 2 ( - l ) = 8(n + if (A + l) , /2(0) = - ( « + 1)2(.4 + 1), 

/ 2 ( + l ) = 0 , / 2 ( + l ) = 0, 

MA) = (n+ 1)2(1 - ^)2(^12 + 1), 

we can, by properly locating the zeros of fx(x), f\(x),f1(x),f'2{x), plot the 
graphs of these functions as below: 

Figure 2 
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Figure 2' 

This shows that the equation N'(x) = 0 has exactly one root in 
( - 1 , + i ) . 
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