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SMALL SUBHARMONIC FUNCTIONS

P.C. FENTON

Some time ago Barry LProo. London Math. Soo. 12 (l°62),

established the right connection between the smallest and largest

values of small subharmonic functions on certain circles about

the origin. The behaviour of functions extremal for this

connection is investigated.

1. Introduction and results

1.1. Suppose that u(s) is subharmonic in the plane and that

B(r, u) (or simply B{r) ) denotes the maximum of u(z) on |s| = r ,

while A{r, u) (or A(r) } denotes the infimum of u(z) on \z\ = r . Of

the results that relate A(r) and B{r) , one of the most appealing is

KjelI berg's [6] elegant formulation of the cos irX theorem:

given any X satisfying 0 < X < 1 either

A(r) > cos TrXS(r)

for certain arbitrarily large values of r or, if this is false,

then

exists and is positive or +°° .

When X = 0 the result is true (setting aside the case of constant u )
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68 P.C. Fenton

but vacuously so, which is somewhat unsatisfying. Of course Kjellberg's

resul t is a sharpening of the classical cos up theorem, which asserts

that i f u{z) has order p , 0 5 p < 1 , then

(1.1) A(r) > (cos up + o(l))s(r)

on a sequence of r -+• °° ; and when p = 0 ( l . l ) does not admit a

sharpening simply by dispensing with the o(l) term. One is led to ask

whether a refinement of ( l . l ) is possible when p = 0 and, if so, whether

th i s refinement can be sharpened to produce a result like Kjellberg's. The

f i r s t question has been answered in detail by Barry and the second forms

the subject of this note. Among other results Barry proves the following

theorem, though his statement of i t is a l i t t l e different (see also, Fenton

[4]) .

THEOREM A (Barry [1 , pp. 1*70, 1*92]). If u[z) is a non-constant

subharmonic function and satisfies

(1.2) lim K—L— 5 a < <=°

for some p > 1 then, for certain arbitrarily large values of r ,

(1.3) A{r) > B(r) - (o+o(l))* tr) ,

where

(1.1*) V (r) = Re{(log r)P-(log r + iiff} .

We shall prove

THEOREM 1. Suppose that u(z) is subharmonic and let a and p be

positive numbers, with 1 < p .5 3 . Then either

(1.5) Air) > B{r) - oV (r)

for certain arbitrarily large values of r or, if this is false, then

(1.6) a = lim

exists and is +°° or finite.

I t will be seen la ter that any value of a > -00 is possible in (1.6).

Should a be finite then u i s certainly of order 0 and we may
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introduce the usual auxi l iary function

r
(1.7) uAz) = log

r
" l ( s ) " Jo

-I
jtere U*(t) = p( | s | < *) > u being the Riesz mass of u . (implicit in
this is the assumption, which may be made without loss of generality, that
u is harmonic at 0 .) Concerning u we have

THEOREM 2. If a is finite in (1.6) then

u (r
lim = a .

The case p = 2 of Theorems 1 and 2 was proved by the author

elsewhere [3] by different methods.

When p > 3 the result is less precise.

THEOREM 3. Suppose that u is subharmonic and let a and p be
positive numbers, with p > 3 . Then either (1.5) holds for certain
arbitrarily large values of r or, if this is false, then

(1.8) lim W-° ( log ) P > .
r-x» (logrr

The constant on the right hand side of (1.8) can be improved slightly

but cannot be replaced by any number greater than -J^T op(p-l) - actually

any value of the lower limit greater than -injT op(p-l) is possible. More

interesting is that when p > 3 the extremal functions are not merely not

regular, in fact there is no restriction on their upper growth: later we

shall describe a construction which produces, when p > 3 , a subharmonic

function for which (1.5) fails for all large r and for which the lower

limit in (1.8) is negative, while B{r) grows at any prescribed rate on a

sequence of r •*•<*>. This makes a surprising counterpoint to the heuristic

"regularity principle".

1.2. To prove Theorem 1 we suppose that (1.5) fails for all large

r , also that

(1.9) a = lim (s(r)-o(log r)P)/log r < <=° ,
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and aim to establish the existence of the limit (1.6). The proof is

incidentally complicated by the fact that the function occurring indirectly

in (l.3)5 namely Re(Log z) , is not in general subharmonic in the plane.

In order not to obscure the simplicity of the proof, which rests on the

methods developed by Hellsten, Kjellberg and Norstad [5], we shall consider

a related case from which Theorem 1 follows with slight changes. First let

us recall a certain representation formula. If u(z) is subharmonic in

\z\ < R , harmonic off the negative axis and such that u(z) = u(z) then

,R
= Q(r,

J0
(1.10) n(r) = Q(r, t)u{-t)dt + | T(r, <t>)M(Re

for 0 < r < R . Q(r, t) and T{r, <j>) are non-negative functions which

need not be specified here, though i t will be convenient to know that

}0
(1.11) Q(r, t)dt < 1 for 0 < r < R .

}0

Details may be found in the paper by Hel I sten et at [5], Another formula

is also useful. Suppose that v(z) is subharmonic in \z\ < R ,

continuous on |s| = R from within \z\ Si? , and such that V (Re ) is

symmetric in 6 and decreasing on [0, IT] . By rotating the Riesz mass of

v onto the negative real axis we shall produce a function u{z)

satisfying the conditions sufficient for (1.10) to hold. Moreover u has

the same boundary values as v and u(-r) < A(r, v) £ B(r, v) < u{r) , for

0 5 r « R . By (1.10) therefore,

rR fir . ,
(1.12) B(v, v) < Q(r, t)A(t, v)dt + I T(r, <t>)v(Re 9)d<|> ,

J0 J-TT

for 0 < r < R .

2. A preliminary result

2 .1 . Let w(s) be a non-constant subharmonic function of order 0

which is harmonic off the negative real axis and harmonic at 0 , locally

bounded below, and satisf ies u(0) = 0 and

(2.1) w(r) - w(-r) = (C+o{l)) log r as r -*•«>,

which C i s a non-negative constant. We shall prove
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LEMMA 1. Suppose that u{z) is subharmonic and satisfies

(2.2) A[r, u) < B{r, u) - o{w{r)-w(-r))

for all large r . Then a = lim(s(r, w)-ou(r))/log r exists and is +°°

or finite. If a < +°° then a = lim(w (r)-ow(i»))/log r , where u is

given by (1.7).

The proof is quite long. Suppose that

(2.3) a = lim (5(r, w)-ow(r)) /log r < °° ,

for otherwise there is nothing to prove. We assume throughout that

w(0) = 0 , which entails no loss of generality.

The case when w(r) = 0(log r) can be set aside since then (2.3)

implies B{r, u) = 0(log r) also and Lemma 1 follows.

The remainder of the proof concerns the case u(z") # 0(log r) and we

begin with the observation that B(r, u) t 0(log r) . For, from Fenton

[3],

(2. f [u(x)-uA-x)) 4lL = f u*(s)log
Jo •"• x x Jo

t+s
t-s

ds

where \i* is the radial mass distribution for u , and so (2.2) has the

consequence

•r t+s
t-s s " JA

t+s

where £* is the radial mass distribution for W . But this is impossible

if u* is bounded and C* is not. (TO see this the formula

(2.5) ^ = log s+1
s-1

which is needed la te r , may be helpful.)

Given a ' > a define

fo , l a l £ 1 ,
U(z) =

[max{0, w(z)-a' log|3|-B(l,

which is subharmonic. Since u{z) has lower order 0 and

u(z) t 0(log|3|) it follows from the cos nX theorem that there are
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circles \z\ - p of arbi t rar i ly large radius on which U(z) > 0 . Select

one such p sufficiently large that (2.2) holds for r > p and define

(u(z) , \z\ < p ,
(2.6) 7(2) = \

[u(.z) - a' log|z | - S( l , u) - 1 , | s | > p ,

which is also subharmonic. Choose a" satisfying a < a" < a' , le t R

be any large number such that

(2.7) B(R, u) < ou(i?) + a" log R

and define

a , J?)-K, ow(s)} ( | s | < R) .7

Here ^ ' ' (s , i?) is the auxiliary function associated with V in \z\ < R

introduced by He I I sten et al [5 , where i t appears as V*(z) ] , and

K= [max i4(t, 7) - min ou(- t ) ]+ .

The salient properties of V*{z, R) are: V*(z, R) is subharmonic in

| s | < R , harmonic off the negative axis and has constant boundary values

B{R, V) on i\z\ = i?}\(-i?> ; also

V*{-r, R) < A(r, V) 5 B(r, V) < V*(r, R)

for 0 — P < R . As the reader will easily verify

V*(-r) < V*(r) - a(u(r)-u(-r)) for 0 < r < R ;

and it follows from (2.1) and (2.7) that when R is large V*(z) = ou(s)

on \z\ = R , provided only that a' - a" > C . On subtracting (1.10)

applied to w(z) from (1.12) applied to V*{z) we obtain

H

Q(r, t) [^*(t)-(3u(t)]+dt

for 0 < r < i? . Taking account of ( l . l l ) we deduce that [y*(r)-ou(r)] +

attains i t s largest value either at 0 or at R , at both of which i t is

0 . Thus Vt{r) 5 0W(r) for 0 < r < i? and therefore

(2.8) B(r, M) - a ' log r - S ( l , u) - l - K < K*(r, i?) - X < ow(r) ,

for p < r 5 S . The outer inequality is independent of R .
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Allowing a' to approach a + C then
r

(2.9) lim [B(r, w)-ow(r))/log r < a + C .

A little more ia needed to get the limit when C ? 0 (and this is deferred

for a moment) tut we can form uAz) given by (1.7); and it is easy to

show that

lim V*(r, R) = V Ar) = uAr) - a' log r + 0(l) ,

where V is obtained from V as w is obtained from u , by rotating

its mass onto the negative real axis. Combined with (2.8) this leads to

(2.10) lim [u (r)-ou(r))/log r < a + C .

The proof of Lemma 1 when C = 0 is thus complete once it is shown that

a = -00 is impossible. This is contained in

LEMMA 2. Let u. and w be functions subharmonic in the plane,

harmonic away from the negative axis and harmonic at 0 , and of order 0

Suppose that uA-r) S uAr) - o(w(r)-w(-r)) for r > r . Then

(2.11) L{r) = f° log g j ~ f («1(x)-ou(x))log s+x
s-x

dx

dt + 0(1) ,

where v(t) is increasing for r > r . If in addition (2.10) holds then

h
< A = lim v(r) < iir (a+C) .(2.12)

We shall prove Lemma 2 now and later return to the case C f 0 of

Lemma 1. We make the harmless assumption that uAO) = 0 = u(0) .

On integrating (2.U) and reversing the order of integration we obtain

r+s
r-s

ds

Moreover from the formula on page 2 of Boas' book [2], for s > 0 ,
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(2.U0

= "% I {"-, («)+«, (-x)}log S+X

s-x
dx ,

and on substituting this into (2.13) we obtain

it

{„ * Jo W'-W-'i S
s+x
s-x

dx

There is a similar equation for w and on subtracting the two and taking

account of the hypotheses of Lemma 2 we deduce that the left-hand side of

(2.11) is at least

* dt + x+s

after noting (2.5), where

(2.15)

v(t) is evidently increasing for t > r .

For the second part of Lemma 2 choose a'" > ex arbitrarily and let

K' > 0 be such that

(2.16)

'^(x) - ou(x) £ X' , for 0 5 x < 1 ,

uAx) - ow(x) < (a"'+C) log x + K' , for x > 1 .

I t follows from (2.5) that

L(r) 5 ix'ir* + (o"'+C) logj log g j -̂ f

= (a '"+o r
Jo

{log s + log rjlog

1/8

s + l

{log s + log x}log x-t-l
x-1

dx
X

8-1
ds_ r
8 Ul/rs

l o g x+l
x-1

dx
x

= iiT1*(af"+CI+o(l)) log r + 0(1) ,
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which gives (2.12) and completes the proof of Lemma 2.

2.2. It remains to improve (2.10) when C t 0 . We have

dt

Also

( , 1 8 )

- -£- v'(s)iog t+s
t-s

ds ,

where £,* is the radial mass distribution associated with w and V is

given by (2.15). For, from (2.lU),

ft , , , r»
(2.19) —t-1- ds = — M (s)log

JO S TT^ Jo X

t+s
t-s

ds

- "% [ {uAs)-u (-s)}log
•YT J 0 X X

t+s
t-s

and the first of the integrals on the right hand side of (2.19) can be

written as

f—*-
J0 »(«+<

v*(x)log s+x
s-x

in view of (1.7) and (2.1*). The same holds when w replaces u and on

combining the two equations we obtain (2.18).

Substituting (2.18) into (2.17):

M1(r) = log r - \ f r - dt f v'(s)log
TT Jo (t+r) JO

t+s
t-s

ds .

This last integral is bounded by

f |v'(s)|ds P rt - log
Jo JO f*+r.^

t + s
t -s ^ < i r iv(s

Jf)

t+s

t-s
dt
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which is finite since v1 is ultimately positive, and thus

(2.20) u (r) = ow(r) + p£ + o(l)| log r .

The regular growth of B{v, u) now follows by a standard argument. Since

v(r) is bounded, it follows from (2.1) that, given e > 0 ,

uA^-r) > uAr) - (C+e) log r

for a l l r outside a set E <=_ ( l , =>) such tha t ( log t/t)dt < °° .
>E

Hence, for a l l la rge r outside E ,

B(r, u) > A(r, u) + (C-e) log r > uA-r) + (C-e) log r

-TT -"
> uAr) - 2e log x> > ou(r) + -r- - 3e log r .

71

Given 6 > 0 , the interval I = [r log r/(6+log r) , r] must contain

(when 2* is large) at least one point, r' say, outside E , since

(log t/t)dt -*• 6 as r •* °° . Hence, for all large r ,
TR

(2.21) B{r, u) > B(r', u) > ou(r') - F r - 3e log r

= ou(r) - - r - 3^+0(6) log r

since (as is shown below), for 2r > r > r ,

(2.22) w{r2) - wfr^ = 0 (^ - l] (log rj

Combining (2.20) and (2.21) we obtain f inal ly

(kA 1
B(r, u) = ou(r) - — + o ( l ) log r ,

Mr J

which, taken with (2.20), proves Lemma 1.

To justify (2.22), observe that (2.1) combined with (2.13) applied to
W gives I (5*(x)/x)dr = 0(log x ) 3 , so §*(x) = 0(log x)2 . But from

J0
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the usual representation formula

I \ f \ ( •> ( £*(s) ,
*• 2J 1 J ' • 2 1 - ' ! [s+r ) {s+f )

(fr2 ] f° (logi^+logr) \

\y"x ' 0̂ (l+s) J

and (2.22) follows.

3. Proofs of Theorems 1 and 2

Theorem 1 i s easi ly proved once Re(Log z) i s replaced by a suitable

subharmonic function.

From the expansion

(3.1) Wp{reU) = Re (Log r e i 9 ) P = (log vf - | p (p - l )6 2 ( log r)P~2 + . . . ,

which i s valid for | 6 | 5 IT and r > e" , i t follows that W (z) i s

continuous in \z\ > e . Also, since f/ i s the rea l part of an analytic

function in \z\ > 1 cut along the negative ax i s , i t i s harmonic there and

so wil l be subharmonic for a l l large z i f i t sa t i s f i e s the submean value

property at a l l points of the negative axis suff icient ly far from 0 . Now

the right hand side of (3.1) i s harmonic for 0 < 6 < 2ir and r > e and

i s , when r i s l a rge , a decreasing function of 6 on (0 , 2TT) . I t

follows that in a neighbourhood of any point of the negative axis far from

0 , W dominates a harmonic function with which i t agrees at the point ,

and th i s implies the submean value property. Final ly , as an inspection of

(3.1) shows, J/ (z) -»• «> as | z | -• » and thus the function obtained by

replacing W in a disc A = {\z\ < p.} by the Poisson in tegra l of i t s

boundary values wi l l be subharmonic when p . i s large enough. Call t h i s

function W Az) , l e t £, . be i t s Riesz mass and l e t

S*A(*) = 5 p A { |s | < *> • Since Wp^(z) = Wp(z) for | z | > pQ i t follows

from Jensen's theorem that
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= P(log tf-1 - iTT2p(p-l)(p-2)(log t)P~3

for t > p . . Now

(3.2) VA

•c l o g 1 + x l o g

=Pn

It follows that if, given R > p , we define

w(z) = log
1 + t

1 + T >

we s h a l l have

(3-3)

and

w ( s ) = Re(Log 3 ) P -

(3.*0 u (r) - w (-r) = * (
P P P

. , ) .

where C(p , r ) i s independent of i? and sa t i s f i e s

|(?(p , r ) | < P O 5 * ( P O
+ ) • Fix i?_ > P. large enough tha t the second term

on the r igh t hand side of (3.^) i s negative. We have

P P

of. (2.1) , and Theorems 1 and 2 follow from Lemma 1, taking W = W .

4. Proof of Theorem 3

Suppose that , for some p > 3 ,

A(v, u) 2 B(v, u) - a Re{(log r)P-(iog r + iv)P]

for all large r , so that, with W as defined in the preceding section,

(h.l) A(r, u) 5 B(r, u) - o(w (r)-u (-r)}
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for a l l large r also, say for r » r . Suppose further tha t , on a

sequence R •*•<*>,

(Jt.2) fl(fin, u) < o(log i?n)P + a (log Rn

for some real number a . For each positive integer n define

Yn(z) = u*[z, Rn) + ewp_2(3) + oA(a) - u(0) ,

where e is a positive number and

•f l o g l +f ) Log
H+22»

22>

(A(s) is included because

A(-r) - A(r) < w (-r) - w (r) for 0 S r < r ,

which has the effect of extending {k.l) to r > 0 .)

From (U.2) and (3.5) we obtain

< a (log Rn)
P + (o+e+o(l)) (log Rn)

p~2

< w (-i?n) + (a+e+iir ap(p-l)+o(l)) log i?n .

Thus i f a < -|ir ap(p-l) then e > 0 can be chosen so tha t , on

\z\ = Rn , - ow (s) < 0 . From (1.10), then,

R
n

In{r) -

for 0 < r < i? , and arguing as before we deduce that Y (r) 2 ou (r) for

0 S r 5 i? . This leads to
n

B{r, u) 5 ow(r) - (E+O(1))U (r)

and in turn to

5 ou (r) -
P

U (

Up-2( r ) •
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But then lim(w.. (r)-ow (r))/log r = -°° , which contradicts the second part

of Lemma 2. This proves Theorem 3.

5. Examples

( i ) To see tha t any value of ot > -00 i s possible in Theorem 1 , take

u(z) = 2W (z) in case a = +» , where W i s given by ( 3 . 2 ) , while i f

( i i ) We now construct the example referred to following the statement

of Theorem 3.

Let W As) be the subharmonic function given by (3.2) and, given any

i? > 0 , define HR(z) to be the harmonic function in \z\ < R with

boundary values HR{Re' ) = W ̂ (R) - W A(Re^ ) on 161 £ iiT and

#. jRe ) = 0 on jtr < | 9 | < ir . Since W ̂  agrees with Re(Log z ) P for

| s | > p . we have HR{z) > 0 when R i s large and, as R •*• m ,

(5-1) HE(0) = [^2p(p-l)+o(l))(lo& R)P~2 ;

also

(5-2) m a x \H (z)-H ( 0 ) \ =
\z\^/R " "

Let e be any pos i t ive number, l e t R = R = p + 2 and, supposing

R , . . . , R defined such tha t R < R < . . . < i?n , define, for n > 1 ,

n
u ( z ) = W Az) + Ho (z) - Y # _ ( 0 ) - n

w J - 1 ,7

+ £HR (0) (log i?n)"1max|log ^ * _± , o | ,

for \z\ < Rn . Since ff^ ( r ) > fl^ ( - r ) ,
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(5.3) un(-r) - un for pQ < r

Moreover

(a) On \z\ = R - 1 :

ujz) >WpA(z) - £ fl/?_(o) -n ,

whi le i f i? i s l a r g e enough we h a v e , from ( 5 - 2 ) ,

- V ( 2 ) "
Thus if i? is large enough, "

Q—1

on I s I mBn-1

(b) On \z\ = Rn :

HR.{0)

while, again if i? is large enough,

(5.U) «

+eHR (0){loSRn+1)
V1

In view of (5.1) and the fact that p > 3 , the right hand side of (5-*0

tends to +00 as i? tends to infinity. I t is thus possible to choose

R suff ic ient ly large tha t u .-.(z) > u (z) on \z\ = R - in fact

u + 1 ( 3 ) can be made as l a r g e as we p l e a s e on \z\ = R - and wi th such an

i? + - chosen ,

m s ) , «n+1(a)} » *„ - 1 <

is subharmonic. Evidently the construction can be continued indefinitely
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giving a subharmonic function u(z) such that u(z) = u(z) in

\z\ < R - 1 , and, for any n > 1 , u(z) = u (a) for

i?M - 1 < | s | < i?n + 1 - 1 - From (5-3) i t follows tha t (1.5) f a i l s for

Ou(z) for | s | > p . Further

B(Rn-l, au) = oun[Rn-l)

so that llm[au(r)-o(log r)P)/(log r)P~2 < -^(l-e)op(p-l) . Finally, as

was mentioned above, the sequence R can be chosen so that

u[R ) = u \R J is as large as we please. This completes the analysis of

the example.
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