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Summary

Human gene expression profiles have emerged as an effective model system for the dissection of
quantitative genetic traits. Peripheral blood and transformed lymphoblasts are particularly attractive
for their ready availability and repeatability, respectively, and the advent of relatively inexpensive
genotyping and microarray analysis technologies has facilitated genome-wide association for
transcript abundance in numerous settings. Thousands of genes have been shown to harbour
regulatory polymorphisms that have large local effects on transcription, explaining 20 % or more of
the variance in many cases, but the focus on such results obscures the reality that the vast majority
of the genetic component of transcriptional variance remains to be ascertained. This mini-review
surveys the inferences derived from genome-wide association studies (GWAS) for gene expression to
date, and discusses some of the issues we face in finding the remainder of the heritability and
understanding how environmental and genetic regulatory factors orchestrate the highly structured

architecture of transcriptional variation.

1. Scope

Genome-wide association studies of gene expression
(GWAS-GE) serve a variety of purposes. On the one
hand, they are a window on the genetics of disease,
serving as a potential bridge between statistical as-
sociation and functional mechanisms of the influence
of polymorphisms on phenotypic variation. On the
other hand, they provide fundamental insight into
the genetic architecture of complex traits, namely the
abundance measures of tens of thousands of tran-
scripts. This mini-review will focus on the latter ap-
plication. It aims to briefly survey the basic insights
that have been gained from almost a decade of re-
search into the genetics of transcriptional variation, to
highlight major gaps in our understanding and sug-
gest areas that are now ripe for investigation.

We focus on four main conclusions and insights.
First, how much of the heritability of transcription
is explained by genome-wide associations, and is the
missing heritability problem of the same magnitude as
that observed for disease liability and visible vari-
ation? Second, how additive is the genetic regulation
of transcription and is there evidence for epistasis
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and/or genotype-by-environment interactions? Third,
what do GWAS-GE have to say about pleiotropy,
and can results obtained in the study of one tissue be
used to make inference about genetic regulation in
other tissues? Fourth, how do we proceed to dissect
the mechanisms by which hundreds and sometimes
thousands of genes are co-regulated?

2. Brief survey of progress

The initial studies of the genetics of human tran-
scription measured the heritability of transcript
abundance, measured as relative fluorescence inten-
sity on DNA microarrays, in transformed lympho-
blast cell lines (LCL) from the Centre d’Etude du
Polymorphisme Humain (CEPH) collection (Cheung
et al., 2003 ; Monks et al., 2004 ; Morley et al., 2004).
Environmental variation is minimized in such studies,
and so the genetic contribution to transcriptional
variation is likely to be enhanced relative to gene ex-
pression in living people; yet, the basic insight that the
majority of transcripts display significant heritability,
often with over 50% of the variance explained by
familial relatedness, laid the foundation for the field.
The result was quickly confirmed in peripheral blood
samples from the extensive cross-sectional cohort
study of Icelanders (Schadt et al., 2003). In this case,


https://doi.org/10.1017/S001667231000056X

J. Kim and G. Gibson

conclusions must be tempered by the realization that
the peripheral blood is a complex mixture of cell
types, heritable variation in the abundance of which
may contribute to observed correlations among rela-
tives. However, it is now broadly accepted that tran-
scription is strongly affected by segregating genetic
variation (Gilad et al., 2008; Skelly et al., 2009) and
that heritability estimates are not noticeably different
from estimates of visible phenotypes, a conclusion
that was not a priori obvious.

Subsequent efforts have illuminated the extent of
environmental contributions, and begun to dissect the
genetic ones. Regarding the environmental compo-
nent, a large number of studies point to influences
across transient and life-long timescales (Gibson,
2008). The stress of taking exams, for example, alters
student peripheral blood profiles, suggesting that im-
mediate changes in cytokine activity associated with
hypothalamic activation are mirrored in genome-wide
transcriptional changes (Kawai et al., 2007). Dietary
intervention also quickly modifies transcription pro-
files (Camargo et al., 2010), and there is much interest
in determining whether anti-oxidant diets or other
interventions can reduce the pro-inflammatory ac-
tivity of the immune system in chronically stressed
contemporary adult populations. People living in
different villages or environments display different
transcriptome profiles (Idaghdour et al., 2008), with
geographic factors apparently having a greater influ-
ence than genetic divergence, and certainly more than
gender differences (although these results need to be
confirmed with tissues other than blood). Further-
more, early life exposure, including low socio-econ-
omic status, appears to have a lasting effect on gene
expression (Miller et al., 2009), again influencing pro-
inflammatory responsiveness, possibly involving epi-
genetic modification of the chromatin.

Genetic contributions have been dissected both by
linkage and association studies. Studies of LCL ex-
pression in the CEPH pedigrees quickly established
that for a large number of transcripts, major quanti-
tative trait loci (QTL) map to the chromosomal
vicinity of the gene itself (Cheung et al., 2005;
Stranger et al., 2005). This gave rise to the concept of
local eQTL, namely expression quantitative trait loci
that map to the location of the target gene (Rockman
& Kruglyak, 2006). Subsequent research has con-
firmed that local effects typically map not just within
the several cM of a QTL peak, but actually within
100 kb or less of the transcript’s promoter (Veyrieras
et al., 2008). Statistical power to detect linkage is a
function of sample size, and so it is not particularly
meaningful to estimate what fraction of genes have
local eQTL effects since no published eQTL studies
have yet exceeded much more than a thousand in-
dividuals, but it is noteworthy that the initial studies
detected genome-wide significant linkages with fewer
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than 100 samples. The reason is that many of the ef-
fects explained 20 % or more of the transcript abun-
dance. More controversial is the question of the
prevalence of distant linkages, and whether these fall
into so-called hotspots where one locus regulates the
expression of dozens or hundreds of targets (de
Koning & Haley, 2005; Hubner et al., 2005). A few
groups have observed an excess of distant eQTL lin-
kages in the CEPH families (Cheung et al., 2005;
Duan et al., 2008) and these increased in number after
exposure of the LCL to radiation, accounting for
over 90 % of the eQTL effects (Smirnov ez al., 2009).
However, with the transition to association mapping,
the consistent observation of many groups has been
that local eQTL effects are far more numerous and
only a handful of robust and repeatable distant eQTL
have been described.

The most recent advances have been in the appli-
cation of GWAS to gene expression, first in LCL
(Cheung et al., 2005; Stranger et al., 2005; Dixon
et al.,2007; Cookson et al., 2009), but subsequently in
a diversity of tissues from various peripheral blood
samples (Goring et al., 2007; Emilsson et al., 2008;
Heap et al., 2009; Idaghdour et al., 2010) to adipose
biopsies (Goring et al., 2007), and liver (Schadt et al.,
2008) and brain (Myers et al., 2007; Webster et al.,
2009) samples from cadavers. A typical study involv-
ing 200 samples will detect several hundreds of inde-
pendent local eSNP associations at the genome-wide
significance threshold of 10~% most supported by
multiple associations in the linkage disequilibrium
(LD) block. The term eSNP replaces eQTL to denote
that the effect is an association between a single
nucleotide polymorphism (SNP) in a population of un-
related individuals, rather than a linkage signal among
relatives. There are no systematic surveys of how many
of the eSNPs are likely to be causal, and while most
presumably simply tag the functional SNP, careful
follow-up has established that some disrupt binding
sites for transcription factors and influence transcrip-
tion directly (e.g. Musunuru et al., 2010). eSNPs are
also notably enriched within several kilobases of anno-
tated promoters (Veyrieras et al., 2008), although it is
also clear that they can sometimes exert their influence
over hundreds of kilobases and across intervening
genes (Kleinjan & van Heyningen, 2005).

3. Magnitude and distribution of eSNP effects

Lost in the astonishing conclusion that eSNPs can be
detected efficiently in samples as small as 200 or fewer
participants is the recognition that most of these
cases represent the exception rather than the rule. As
shown in Fig. 1, for 450 independent genome-wide
significant associations (P<10~%) in our Moroccan
data (Idaghdour et al., 2010), effect sizes range from
0-5 to over 2 standard deviation units (median 0-85),
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Fig. 1. Allelic contributions to gene expression variation. (a) The allelic effect, estimated as the absolute value of the slope
of the regression of genotype against transcript abundance, divided by the standard deviation of transcript abundance.
Data are for the 450 most significant eSNPs in a study of healthy adults in Morocco described in Idaghdour et al. (2010).
(b) The proportion of variance explained (R-squared) for the same eSNP effects.

while the proportion of variation explained by the
associations range from 15% to just under 70%
(median 20%). These values are likely inflated by
Winner’s Curse, but clearly are far larger than the
typical effects of disease or visible trait associations.
Presumably effect sizes covering the full range from
less than 1% to 15% will be detected as sample sizes
increase to tens of thousands, and the majority of
genes will likely eventually be shown to harbour rare
and/or common variants that influence transcript
abundance. For now, though, we only have estimates
for the upper fifth percentile of effects.

One evolutionary study (Kudaravalli ez al., 2008)
has suggested that these cases may represent genes
that have experienced recent positive selection asso-
ciated with the migration of modern humans across
the globe, although formal significant proof of this
was only provided for a handful of loci. What is clear
is that eSNP frequencies do vary substantially among
human populations, which would imply that GWAS-
GE surveys in different ethnic groups may detect dif-
ferent associations (Rosenberg et al., 2010), also pro-
viding a window on the genetic basis for differences in
disease susceptibility among populations. Here too,
though, it is important to recognize that only 15 % of
the variation in LCL expression is partitioned among
African American, Asian and Europeans (Storey
et al., 2007), and that the majority of eSNPs detected
so far show similar magnitudes of effect across groups
(Spielman et al., 2007 ; Stranger et al., 2007).

As mentioned, far fewer distant eSNP effects have
been described in the GWAS-GE literature. This
partly reflects a statistical power issue, since in a
GWAS-GE, three orders of magnitude more tests of
association are performed for trans than cis associa-
tions, and the formal genome-wide significance
threshold rests lies close to 10 ™. The fact that several
replicated associations have been observed at this
level in samples of a few hundred individuals is re-
markable, particularly since many diseases produce
no such associations in samples of several thousands,
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again highlighting the fact that genetic effects on
transcription are often much larger than genetic in-
fluences on disease liability. On the other hand, when
false discovery rate criteria are applied, GWAS-GE
continue to demonstrate an excess, somewhere in the
range of 20 to 1, of local over distant effects (Skelly
et al., 2009; Idaghdour et al., 2010). It is not difficult
to explain this difference as a consequence of the very
close molecular relationship between regulatory
variants in a promoter (or intron) and transcript in-
itiation, relative to the biochemical separation be-
tween distant acting regulatory factors and target
genes. Yet, it also seems highly likely that common
polymorphisms influencing the expression and/or ac-
tivity of key regulatory proteins and microRNAs
(miRNAs) exert a strong influence on the abundance
of multiple targets. As larger studies are published
and methods that borrow power from analysis of
the co-regulation of multiple targets are employed,
we expect that weaker distant effects will come into
focus.

For now, though, the inescapable conclusion from
GWAS-GE is that the regulation of gene expression
for the most part suffers from the same ‘missing
heritability problem’ that plagues the genetic dissec-
tion of visible phenotypes, including disease suscepti-
bility (Manolio et al., 2009; Eichler et al., 2010). That
is to say, there is a considerable gap between the
proportion of variance expected to be attributable to
genetic polymorphism on the basis of heritability es-
timates, and the proportion actually detected in
GWAS scans. Even in those cases where a major
eSNP is detected, the majority of the genetic variance
for the abundance of that transcript is unexplained, as
it is quite rare for a single transcript to be associated
with two or more high-confidence eSNPs. Since the
vast majority of transcripts are not associated with
eSNPs that explain more than 10% of their variance,
the bulk of the genetic variance for individual tran-
scripts remains unexplained. Even in situations where
gene expression is bimodal, the genetic regulation can
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be inferred to be complex (Hsieh et al., 2007). Rare
polymorphisms that impact expression in a small
number of individuals are likely to occur, and may be
enriched in certain disease situations, but there is little
evidence that gene expression is generally regulated by
common polymorphisms of moderate effect. For the
most part, we expect that hundreds of variants of
small effect will turn out to contribute to the genetic
variance of most transcripts, just as they influence
variation for such traits as height (Yang et al., 2010)
and blood lipids (Teslovich et al., 2010).

4. Additivity of gene expression

A second strong conclusion to be taken from GWAS-
GE to date is that the detected eSNP effects tend to be
additive. Individual cases where heterozygotes for
local eSNPs have transcript abundance measures that
are greater or less than either homozygote class may
be missed in genome-wide scans that typically employ
allele trend tests, but they seem to be rarities. In fact,
there is also not much evidence for dominance at the
level of transcription, at least not for local regulatory
effects. Genotype-based tests of association that
make no assumptions about heterozygotes relative to
homozygotes, and rather test for difference in abun-
dance among the three genotype classes, do not pro-
duce more significant associations than trend tests
that assume additivity. More impressively, when sig-
nificant eSNP associations are examined in detail, it is
the norm for heterozygotes to have transcript abun-
dance intermediate between the homozygote classes,
as expected of additive effects.

Furthermore, one study that directly tested for
genotype—environment interactions demonstrated
that these are also not a major influence on tran-
scription (Idaghdour et al., 2010). Despite highly
significant differences between a rural village and
an urban sample in Morocco, allelic effects were ob-
served to be constant across the sub-populations for
each of almost 400 cis eSNPs, and there were no
more significant G x E interaction effects in a statisti-
cal model testing for these, than expected by chance.
If generalized to other tissues and other populations,
this result would imply that environmental effects are
largely additive with respect to locally acting regu-
lation of individual transcripts. Note that this does
not exclude the possibility of G x E interactions at
the phenotype level, and in fact suggests a plausible
mechanism whereby the combination of strong gen-
etic effects and strong environmental ones, although
additive, could see the extreme genotype in a par-
ticular environment having transcription above or
below a threshold that is disease promoting. Ad-
ditional studies of this nature seem warranted.

Genotype-by-genotype (namely ‘epistatic’) in-
teractions have also not been shown to make a
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substantive contribution to gene expression variation
in humans. This may be largely a power issue, because
the number of possible interactions is so large that
achieving genome-wide significance with relatively
small sample sizes would require very large inter-
action effects that are relatively insensitive to the
diverse environments and genetic backgrounds en-
countered in human samples. The strong covariance
of gene expression also complicates efforts to docu-
ment specific instances of genotype-by-genotype in-
teraction, but possibly the best place to look for
epistasis is modification of the magnitude of effect of
locally acting polymorphisms. Even if this cannot be
attributed to individual interactions between SNP
pairs, heterogeneity of allelic effects among in-
dividuals is a distinct possibility.

The two recently published RNASeq-based GWAS-
GE studies (Montgomery et al., 2010; Pickrell et al.,
2010) suggest a plausible mechanism for the additivity
of eSNP effects. Both groups observed a correlation be-
tween eSNP type and allele-specific expression levels.
Since RNASeq provides the sequence of polymorph-
isms that lie within transcripts, it is straightforward to
estimate the relative contribution of each chromosome
to transcript abundance in each individual. Given the
known LD between an observed eSNP and the tran-
script haplotype, it is possible to estimate whether
the variation among individuals can be attributed to
eSNPs regulating the transcription of expression solely
from the same chromosome. The general result is that
it can be, and while this does not exclude the possibility
that regulation also influences transcription from the
paired chromosome on occasion, the direct conclusion
is that regulatory effects tend not only to be local
but also exert their effect on the same DNA molecule.
The term cis-eQTL should, strictly speaking, be re-
served for such chromosome-specific interactions
(Rockman & Kruglyak, 2006; Skelly et al., 2009), and
these provide a simple explanation for the observed
additivity of local effects: were regulatory variants to
confer their effects on the paired homologue, domi-
nance would be more common.

5. Pleiotropy and tissue specificity

One of the major questions in the field currently is
whether eSNPs commonly exert their influence across
multiple tissues. The question is directly relevant to
the issue of whether GWAS-GE is a reliable tool for
identifying which genes mediate disease SNP effects.
It is for example not uncommon for disease SNPs to
fall in either a gene desert or a locus with multiple
transcripts, and it has been proposed that the dem-
onstration that the SNP is also associated with tran-
scription of one or more of the genes in the vicinity
provides evidence that those genes are causal in the
condition. Such a conclusion must be treated with
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caution — for example, the often observed association
in the SUOX locus with Type 1 diabetes and RPS26
transcription may suggest the wrong gene, partly be-
cause transcript abundance does not correlate with
disease (Heinzen et al., 2008). In several instances,
GWAS-GE papers have reported a specific example
of an eSNP effect that mirrors a disease association
in the public database (Emilsson et al., 2008 ; Schadt
et al., 2008; Cookson et al., 2009; Idaghdour et al.,
2010), but the expression profiling was performed in a
very different tissue — say, peripheral blood expression
suggesting an influence on expression of a gene in-
volved in heart failure. It is thus important to know
how often eSNPs operate across tissues.

The superficial answer is that transitivity across
tissues of eSNP effects is not common, with perhaps
not more than 30 % of associations in one tissue also
being detected in another (Petretto ez al., 2006; Dimas
et al., 2009). This is a difficult estimate to make be-
cause it depends on which thresholds of significance
are adopted. There are also trivial reasons why it is
often the case that SNP effects fail to replicate across
tissues, most notably where the gene is not actually
expressed in the second tissue. However, regulatory
enhancers are typically tissue specific, and if an eSNP
influences enhancer activity, as opposed to basal
promoter activity, then there is no reason to expect
transitivity. That is to say, it may be common for
different regulatory SNPs to influence expression of
the same transcript in different tissues — and in general
there is no reason to expect that the same tagging SNP
would capture both effects. The other major expla-
nation for failure to detect eSNP effects in two or
more tissues is statistical power: in fact, the overlap in
eSNP detection across studies of the same tissue is
also only in the vicinity of 10-20% (Heap et al., 2009;
Idaghdour et al., 2010). This is in accordance with the
power to detect association at the stringent GWAS
threshold for variants, but if criteria are relaxed to
control the false discovery rate, or even simply to use a
nominal significance threshold of P<0-05 for redis-
covery, the proportion of replicated associations in-
creases markedly. The authors of the RNASeq
GWAS studies, for example, reported very significant
overlap, with over 90 % of nominal associations also
being consistent with effects on transcription in the
same direction (Montgomery et al., 2010; Pickrell
et al., 2010). Given the diversity of statistical and ex-
perimental methods adopted in GWAS, including
genotyping and expression profiling platforms and
methods of tissue growth or sampling, it is difficult to
accurately measure repeatability within, let alone be-
tween tissues. It is however safe to conclude that
GWAS-GE in one tissue will very often miss eSNP
effects on other tissues, and conversely that an effect
observed in peripheral blood, for example, does not
guarantee one in liver or brain.
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A different approach to this problem has been to
ask whether there is enrichment for eSNP associations
in the database of Genotypes and Phenotypes (at
www.ncbi.nlm.nih.gov/gap) (dbGaP) database of dis-
ease associations. The clear answer is that there does
seem to be one, and hence it can be concluded that
regulatory variants make a significant contribution to
disease, quite likely accounting for more associations
than coding variants that disrupt protein structure
and function (Nica et al., 2010; Nicolae et al., 2010).
The latter are, a priori, more likely to have pleiotropic
effects across tissues and hence to explain the associ-
ation of individual genes with multiple diseases that
involve expression in different organs. Heterogeneity
in regulatory eSNP effects might contribute to loss of
genetic correlation between diseases, yet allow the
same gene to contribute, for example, to age-related
macular degeneration and susceptibility to meningo-
coccal septicemia (Davila et al., 2010; complement
factor H in this case). Unfortunately, access to dis-
eased tissues in large population samples, certainly
from living donors, is often not possible, slowing
progress in relating the genetics of expression vari-
ation to disease. However, the GEN-EX consortium
will soon provide data on eSNP effects measured in
multiple tissues from the same donors, and studies of
differentiated pluripotent stem cells may also be in-
formative in the near future.

6. Distant effects and the co-regulation
of gene expression

Arguably the most pressing challenge for those
specifically focused on the quantitative genetics of
gene expression is identifying the genetic mediators of
co-regulation. There are multiple challenges. First of
these is overcoming the statistical power issues that
plague detection of what are expected to be relatively
small influences of trans eSNPs (each explaining
<1% of the variance), although ongoing studies of
cohorts of 10 000 or more may resolve this.

Just as pressing is the issue of dealing with the
complex covariance structure of gene expression, in-
cluding the pervasive influence of technical factors.
Authors are starting to normalize gene expression
data by measuring the residuals (or ranks) after fitting
the most significant principal components to the data,
on the assumption that if these do not correlate with
any known biological factors then they are likely
to represent technical confounders (batch effects,
hybridization or RNA amplification artefacts and
transient biological noise) that should be removed
(Leek & Storey, 2007; Pickrell et al., 2010). If this
improves the ability to detect associations with tran-
script abundance, or with known biological factors, it
may be well warranted, albeit with unknown conse-
quences. Other authors prefer to perform aggressive
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quantile normalization that forces distributions to be
similar, but almost certainly throws out a meaningful
biological signal where thousands of genes are affec-
ted by biological factors, as is common (Dabney &
Storey, 2007). Mecham et al. (2010) have recently in-
troduced a supervised normalization approach that
jointly fits biological and technical sources of variance
prior to testing of individual transcripts, likely in-
dicating an optimal approach to appropriately defin-
ing the covariance structure in population-scale gene
expression data sets.

Even given appropriate normalization and suf-
ficient power to detect distant effects, there remains
the problem that important regulatory factors may
themselves be monomorphic (hence will never con-
tribute to the genetic variance, yet be responsible for
mediating environmental responses), or the allelic ef-
fects will be too small to detect. If regulation of tran-
script abundance is as complex as that of serum lipids,
where a GWAS in excess of 100000 people only
uncovered 30% of the genetic (and <15% of the
phenotypic) variance (Teslovich et al., 2010), there is
little prospect for ever describing the major sources of
distantly acting regulatory variance for any, let alone
the majority, of transcripts. On the other hand, it may
be possible to perform joint analyses on multiple
transcripts to increase power. The possibility that
non-genetic factors also account for covariance (for
example, variation in cell-type abundance in tissues)
will have to be accounted for. Other promising
approaches include focused analyses of sub-networks
of genes that are known to be regulated by com-
mon transcription factors, and these may include
procedures that adjust analyses for binding site en-
richment for such regulatory molecules, and/or
structured equation modelling that attempts to pre-
dict causal pathways. Certainly novel approaches that
go beyond straightforward association testing are
called for.

7. Concluding remarks

GWAS-GE studies have attracted much attention in
the context of systems biology, as they promise to
open the black box between genotype and phenotype
(de Koning & Haley, 2005; Gilad et al., 2008 ; Skelly
et al., 2009). Ultimately the heritability of visible
phenotypes must be understood in terms of the gen-
etic influence of polymorphisms on gene activity,
which includes a substantial component of transcript
abundance. A minor component of the transcriptome
displays eSNP effects that are an order of magnitude
greater than most observed phenotype associations,
accounting for as much as half of the variance of the
transcript. We do not yet know whether such asso-
ciations make a disproportionate contribution to dis-
ease. Studies that directly consider GWAS in the
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context of disease are just beginning to appear, with
obesity (Emilsson er al., 2008) and celiac disease
(Heap et al., 2009) notable examples, and many more
are needed.

Technology continues to drive advances. RNASeq
holds great promise since it can discern allele-specific
effects, and is well suited for detecting alternate tran-
script abundance. Several studies have reported spli-
cing SNPs that influence alternate splicing (Heinzen
et al., 2008 ; Zhang et al., 2009), with effects as large as
eSNPs, but it remains to be seen whether the depth of
coverage of RNASeq is sufficient to make this ap-
proach practical for all but the major splice variants.
New third-generation sequencing technologies will
facilitate even deeper sequence coverage, providing
digital readouts of transcript abundance, instead
of the relative measures that are obtained with
hybridization-based methods. Another issue that we
have not discussed is epigenetic regulation (Serre et al.,
2008): studies of the genetic regulation of methylation
are starting to appear (Zhang et al., 2010), and should
be very powerful when combined with the genetics of
gene expression. Similarly, GWAS for metabolites
measured with high-throughput mass spectrometry
are now feasible (Illig et al., 2010), and systems
analyses jointly of the transcriptome and metabolome
will be an exciting new development.

At the same time, we would emphasize the need for
targeted analyses that supplement the genome-wide
view across populations with pathway-based profiles
of genetics at the level of families. The really inter-
esting and important aspect of the population struc-
ture of gene activity is that it may contribute to the
observation that diseases tend to be enriched in par-
ticular pedigrees. Family studies have fallen out of
favour in the GWAS era because linkage prevents
resolution to the individual gene, but research that
bridges the gap between epidemiological genomics
and individual risk will require efforts targeting the
traditional units of inheritance.
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