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On the maximal normal prime=nilpotent

subgroup of a prime-solvable group

Terence M. Gagen and Mark P. Hale, Jr

A characterization of the maximal normal p-nilpotent subgroup
of a finite p-solvable group is obtained for primes
p#2 or 3.

1. Introduction

A result of Baer provides a characterization of the largest normal

p-subgroup, OP(G) , of a finite group G where p is a prime: an
element x Ybelongs to Op(G) if and only if the subgroup <(z, z') is a
p-group for all conjugates x' of x in G [Z, Theorem 3.8.2].

The purpose of this note is to provide a similar description of the

largest normal p-nilpotent subgroup Op, p(G) of a finite p-solvable

t]
group. A finite group G is p-nilpotent if there is a normal subgroup G

complementing a Sylow p-subgroup.

The following example complicates our conclusion. Let Qd(3) denote
the natural semi-direct product of a 2-dimensional vector space V over
GF(3) with SL(2, 3) , the group of all linear transformations on V of
determinant 1 . A counting argument, a generalization of which appears in
step (7) below, shows that Qd(3) is generated by a class K of
3-elements such that any two elements in K generate a 3-nilpotent group,
but Qd(3) is not 3-nilpotent.

THEOREM 1. Let G be a finite p-solvable group, where p 1is an

odd prime. If for some element x of G, f(x, ') is p-nilpotent for
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all conjugates z'

divides

Theorem 1 will be derived from the following two results.
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group is
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of x in G, then x € Op',p(G)
(? : g €6 imvolves Qa(3) .

The first result includes the Theorem of Baer for

1. Let G be a finite

@, ')

the set of primes not in m .

T-separable group.

or p=3, 3

Let
A finite

T-separable if each composition factor is a T-group or a

T-separable

Let x be

i8 a TW-group for all x'

conjugate to x . Then x € On(G)'

THEOREM 2. Let G be a finite p-solvable group, p an odd prime.
Let x be a p-element in G such that f{x, z') ie p-nilpotent for all
x' conjugate to x . Then x € Op' p(G) unless p =3 and

3
(29 : g € @ imolves Qd(3) .

REMARK. The following example shows that Theorem 1 is false if
p=2. For any odd ¢q eand any n =1 , let G be the group generated
by x, Y, Ty .y xq , subjJject to the relations:

n+l n
2 2 .
x = yq =z = Exi, zj] =1 forall 2, g ,

x_

y_

xx =

A
where

o =
and

B =

Q0

Wiz, @ ... (252, 2

(1, 2, ..., q) .

A counting argument similar to that used in (7) below shows that any two

conjugates of & generate a 2-nilpotent group, but <z ¢ 02, 2(6) .
1]

The reader is referred to [2] or [4] for terminology and notations,
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which are standard.

2. Proofs
Proof of Proposition 1. Let ( be a minimal counter-example. Then
0,(6) = 1, for otherwise =0 _(G) € oﬂ(c/on(c)) =0.(6) . By
T-separability, On'(G) #1 . Let ¢ be a prime in 7' ; there is an

x-invariant Sylow g-subgroup & of Oﬂ,(G) s by [Z, Theorem 6.2.2]. For

any y €9, lx,yl-= x_lxy € (x, #/y n @ . Since (x, &y is a T—group
and ¢ 1is a ﬂ'-group, [z, y] =1 and thus «x centralizes ¢ . It

follows that x centralizes Oﬂ,(G) . By [2, Theorem 6.3.2],

CG(OH'(G)} < On'(G) , a contradiction.

Proof of Theorem 2. Let G Dbe a minimal counter-example. We may
assume that G 1is generated by the conjugates of x in G , for if the
conjugates of x generate a proper subgroup M , M either involves

Qd(3) or x € Op' p(M) . Since M 2 G , in the latter case
3

€0 G
@ €0y (0

As G 1is a counter—example, no section of & involves @Q4(3) if

p = 3 , a fact used implicitly in each induction step below.

For otherwise, let G = G/Op,(G) . Then <(z, x') is p-nilpotent for

all conjugates x' of =z . Thus T € OP, p(E) and we are done.

Let P = Op(G) . By p-solvability of G , P #1 .
(2. P s elementary abelian and CG(P) =P,

Let G = G/&P) . By [2, Theorem 6.3.4], 00(53 = P . Then again

(;, ') is p-nilpotent for all conjugates x' of « . Thus if

Py £1, x € op',p(E) . Since Op,(E) centralizes P , Op,(E) =1.

Thus z € 0 (G) , and hence zx € Op(G) , a contradiction. We therefore

have &®(P) =1 .
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(3). P contains a unique minimal normal subgroup of G .

Otherwise, if Pl and P2 are disjoint normal subgroups of G
contained in P , G/E% is p-nilpotent. Therefore G = G/PinFé is
p-nilpotent.

For some conjugate «' of & , (x, ') is not a p-group, since

otherwise x € OP(G) by Proposition 1. Thus &« normalizes some

non-trivial p'-subgroup. If z centralizes every p'-subgroup it

normalizes, then x centralizes 0p,((x, x')) and therefore lies in
Op((x, x')) . It follows that <(x, ') is a p-group, for all =z'
conjugate to x .

Among all p'-subgroups of G , normalized but not centralized by « ,
choose € of minimal order. By a standard Hall-Higman reduction, given in
[3, p. 51, & 1is a g¢-group for some prime ¢q # p and x acts
irreducibly on §/@' . Furthermore, § is either elementary abelian, or

Q' = z(q) = ¢(q) = CQ(x) and @' 1is elementary abelian. In particular,

if g eg\g , (x, D) =<z, @ .

i

(4). G =pPglx) , P is a faithful irreducible Q(x)-module,

(xY nP=1, and oF =1 .

5

If H = PQ{x) # G , then x € Op' p(H) . Since CG(P) =P,

0p,(H) =1 . Thus x € OP(H) ,and [z, g] = Op(H) nNg=1, a

contradiction. Therefore G = P@{x)

Let P* be the unique minimal normal subgroup of G contained in
P . If P*# P, then G/P* is p-nilpotent, by induction. Thus &
centralizes P/P* . The subgroup (x) n P 1is central in & , and since
{(x) n P has order at most p , (x> nP = P* ., Therefore L = P*@{x) is

a proper subgroup of G and x € OP, p(L) . Since § 1is generated by
@-conjugates of « , @ = Op' p(L) and therefore [Q, P*] =1 . Thus &

9
centralizes P/P* and P* ; by [2, Theorem 5.3.2], @ centralizes P , a
contradiction. Thus P* = P , and since CG(P) =P, P is faithful and

irreducible when viewed as a @(x)-module.
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Since (x) NP is central in G, (x) NP =1, If £ #1 s

PtaP) is a proper normal subgroup of (G , and (xp, z'Py is a

p-nilpotent group for all x' conjugate to x . By induction,

oF ¢ 0, p(PQ<xp)) SG. Thus o ¢ 0, p(G) = P and therefore af =1 .

(5). Let C=Cplz). Then || = |P| .

If not, then for any conjugate x' of x , D = CP(x) n Cp(x’) #1 .

Thus for x and x' generating @Q¢x) , D is a @(x)-invariant subgroup
of P . It follows that D =P . Since @x) centralizes ( , we have

a contradiction.

(6). CG(x) = CCQ(x)(x)

By modularity, CG(x) =(x) xC,_(x) . Since x acts irreducibly on

QP
Q/Q" , CQP(x) < @'P . By modularity again,

CPQ(x) = Q'Cplz) = CQ(x)CP(x)

2
(7). lel®=|p| .
We count the G-conjugates of x in two ways. First, by (6), =« has

ie : CG(x)I =|p:cl|e: CQ(x)| conjugates.

For any x' conjugate to x , let L = (x, ') . Suppose L is not
a p-group. Then LP/P = @{z) . Since L 1is p-nilpotent, L # G , and
therefore L n P =1 , by the irreducibility of @&{x)> on P . Thus
L = L/InP = @(x) . Since @(x) = NG(Q) s L 1is either a p-group or

conjugate to NG(Q)

Since (x, P) 1is the unique Sylow P-subgroup of (G containing x ,

(x, ©') is p-group only if z' € (x, P) . There are [P : C||@ : CQ(x)l
conjugates of x in G and |Q : CQ(x)I Sylow p-subgroups in G .
Hence each Sylow p-subgroup contains

(17 : clle = co=))/(le = cyi]) = |2 : ¢l

conjugates of x .
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If x and x' normalize ¢ , (x) and (x') are §-conjugate, and

since NG((x)) = CG(x) , x and x' are @-conjugate. Therefore ()
contains |q : CQ(x)I - 1 conjugates of x apart from x . Now if =z

-1 . -1
normalizes ¢ and Qy , then 2 normalizes & , and xt = oY for

some t € @ . Thus xty = x and Qty = Qy 5 that is, the conjugates of
@ normalized by x are conjugate under CG(x) . Thus there are
(e = cytz)l-1) [cgt@) = cy(x) nwgt@)] = (1@ : cyta)l-1)[c]
conjugates x' of x which with <« generate a group isomorphic to
@{(x) . This completes the second count of the conjugates of x .
Comparing, we have

2 :c| +|cl(|e : CQ(x)!-l} =]p:cllg: cQ(x)] R

from which we have
0= {|@: CQ(x)l-l}(lP : cl-lcl) .
Since CQ(x) # @ , the conclusion follows.
Let X be a finite splitting field for @(x) . Viewing P as a

GF(p) = F module for @(x) , we consider the KQ(x)-module V = K @% P.

By [4, Satz Vv, 13.3], V is a direct sum of absolutely irreducible

KQ{x)-modules, V V . It is routine to check that

10 s Uy,
aimy, € (z) = dimp Cplz) = 3 dim, P and Cp(x) = ) CVi(x) . For the
argument below, let K denote any one of the submodules {Vi} . Since the
representations of @{(x) on the modules {Vi} are algebraically
conjugate, the representation on WV is faithful.

(8). @ is not abelian.

Suppose @ is abelian. By the remarks preceeding step (k) above, ¢
is elementary abelian and x acts irreducibly on @ . Thus @{x) 1is a
Frobenius group with cyclic complement. By Clifford's Theorem [2, Theorem

3.4.1]1, W 1is a direct sum of @-submodules {Wi} , each of which is a
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direct sum of isomorphic irreducible @-submodules. Further, (x)

permutes the homogeneous components {Wi} transitively. By Theorem 3.4.3
of [2], the number of homogeneous components {Wi} is the order of (x) ,

in our present case. Thus (x) permutes the components regularly and

therefore ICW(x)[ = IWll . Hence dimK Cw(x) = (1/p) dimK W and so

dimy, CV(x) = (1/p) dim, ¥ . Since p > 2, this contradicts (7).

(9). G does not exist.

By (8) and the remarks above (4), we are left with the case that @
is special. We argue that # 1is an irreducible @-module. Again, by
Clifford's Theorem, K is a sum of e homogeneous §&-components. If

e #1 , choose E to be an irreducible @-submodule of the first
component. Then z Ext is a @(x)-submodule of W . Thus W = z Exi and

each component is irreducible. Since (x) acts transitively on the set of
components and x has order p , (x) acts regularly. As in (8), the
centralizer of x in W 1is too small. Thus e =1 and W 1is a sum of
isomorphic irreducible @-modules. By a theorem of Green [2, Theorem
3.5.6], the number of distinect irreducible @-submodules of‘ W is
congruent to 1 modulo p and so (x) fixes a @-submodule of W . Thus

W 1is irreducible as a g-module.

Since the representation on W is faithful and absolutely
irreducible, 2(Q) is cyclic, that is, @ is extra-special. The
computations of Section 8 of [3] show that W , viewed as an (x)-module,
is a sum of ¢ copies of the regular representation and one copy of the
indecomposable representation of degree p - 1 . Thus ¥ has K-dimension

tp +p -1 and CW(x) has K-dimension t + 1 . By (7),

2(t+1l)u = (tp*+p-1l)u , forcing p =2+ 1/(¢+1) . Thus ¢t =0 and p =3 .
Hence W 1is a 2-dimensional K-space and @(x) 1is isomorphic to a
subgroup of SL(2, X) . A 3-nilpotent subgroup of 'SL(2, X) which is not
a 3-group is isomorphic to SL(2, 3) , as follows from [4, Hauptsatz II,
8.27]. We now see that (G 1is a semi-direct product of P with

SL(2, 3) , the latter being represented faithfully and irreducibly on P .
By [1], SL(2, 3) has only one faithful irreducible representation over

GF(3) , the natural representation of dimension 2 . Hence G = Qd(3) , a
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final contradiction.

Proof of Theorem 1. The element & can be written uniquely in the

form x =Yz =3y , where y and =2 are powers of x , and y 1is a
p'-element and z is a p-element. For any g € G , (x, 29) is
p-nilpotent, and so y € Op,((x, xg)) . Thus (y, yg) is a p'-group for
all g € G . By Proposition 1, y € op,(a) . Similarly, <z, 29) is

p-nilpotent for all g € G . Applying Theorem 2, 2 € Op' p(G) unless

k]

p =3 and (27 1 g € Gy involves Qd(3) . Thus &« = yz € Op' p(G)

unless p = 3 and @7 g € G)= &7 g € G) involves Qd(3) .
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