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ABSTRACT

In this study, we propose a nonlinear Bayesian extension of the Lee–Carter
(LC) model using a single-stage procedure with a dimensionality reduction
neural network (NN). LC is originally estimated using a two-stage procedure:
dimensionality reduction of data by singular value decomposition followed
by a time series model fitting. To address the limitations of LC, which are
attributed to the two-stage estimation and insufficient model fitness to data,
single-stage procedures using the Bayesian state-space (BSS) approaches and
extensions of flexibility in modeling by NNs have been proposed. As a fusion
of these two approaches, we propose a NN extension of LC with a variational
autoencoder that performs the variational Bayesian estimation of a state-space
model and dimensionality reduction by autoencoding. Despite being a NN
model that performs single-stage estimation of parameters, our model has
excellent interpretability and the ability to forecast with confidence intervals,
as with the BSS models, without using Markov chain Monte Carlo methods.

KEYWORDS

Lee–Carter model, state-space model, variational autoencoder, variational
Bayesian inference.

1. INTRODUCTION

Longevity risk management and economic valuation of insurance and pension
liabilities, which have recently received considerable attention, require statisti-
cal mortality models that provide stable long-term predictions even for single
populations with limited data. The Lee–Carter (LC) model (Lee-Carter, 1992)
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is a basic statistical mortality model with desirable properties, wherein the log
mortality is determined by the sum of a fixed age impact and a product of time
index and age sensitivity.

The model fitting procedure of LC originally comprises two stages: sin-
gular value decomposition (SVD)-based dimensionality reduction of the
log-mortality data and fitting of a time series model to the obtained time com-
ponents. Various extensions of LC have been proposed in the literature, for
example, a Poisson regression version of LC by Brouhns et al. (2002), a cohort
extension of LC by Renshaw and Haberman (2006), and a two-factor period
effect model by Cairns et al. (2006). Cairns et al. (2009) provides a quantitative
comparison of eight stochastic mortality models including LC.

Although LC achieves good interpretability and ease of estimation using
SVD and drifted random walk (RW), it has a limitation in its accuracy pri-
marily because of two issues: incoherency between parameters because of the
two-stage estimation and insufficient fitting to the nonlinearity of data.

To address the first issue, various single-stage estimations of LC in Bayesian
settings, which are implemented by Markov chain Monte Carlo (MCMC)
methods, have been proposed. Czado et al. (2005) considers a single-stage
Bayesian estimation of LC in a Poisson regression form and that in the state-
space form was considered by Pedroza (2006), Kogure and Kurachi (2010),
Cairns et al. (2011), and Fung et al. (2017). Notable extensions of the Bayesian
LC model are proposed by Kogure and Kurachi (2010) in a risk-neutral form
and Cairns et al. (2011) in a multi-population form. Moreover, Fung et al.
(2017) introduces a general Bayesian state-space (BSS) modeling framework
of the extensions of LC, which allows stochastic volatility in the period effect.

To address the second issue, many nonlinear extensions of LC using neu-
ral network (NN) methods have been proposed. NNs are typically defined by
a network structure comprising multiple layers of neurons and an activation
function that outputs a transformation of the weighted input to each neuron.
As Cybenko (1989) demonstrates that any compactly supported continuous
function can be uniformly approximated by a two-layer NN with a continuous
sigmoidal activation function, NNs have a universal approximation capability
for any function in a broad function class. The most basic NNs are feedfor-
ward NNs (FNNs) that have no cyclic connections, whereas NNs that have
cyclic connections are called recurrent NNs (RNNs). NNs are also classified
in supervised and unsupervised. Furthermore, convolutional NN (CNN), a
sparse connected FNN to learn the neighborhood effect of the data, and RNN
are often used for learning sequential data.

Richman and Wüthrich (2021) proposes a NN-based generalization of LC
using a fully connected network (FCN) with multiple hidden layers, which is
called deep FCN. Perla et al. (2021) considers many supervised NN exten-
sions of LC and shows the superiority of one-dimensional (1D) CNNover deep
FCN and long short-term memory (LSTM), a RNN suitable for learning long
sequential data. Wang et al. (2021) proposes mortality forecasts using two-
dimensional (2D) CNN to capture the neighborhood effect of the mortality
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data. Schnürch and Korn (2021) also considers 2D CNN and achieves mor-
tality forecasts with confidence intervals. These NN approaches calibrate their
models with huge training data such as the data of all countries of the Human
Mortality Database (HMD; http://www.mortality.org). The huge training data
will contribute to the stability and accuracy of predictions as a countermeasure
to the seed robustness and overlearning problems common in NN approaches.
While these NN approaches achieve single-stage estimation with relatively
high prediction accuracy, they lose interpretability of the model and are not
necessarily suitable for relatively small training data (e.g., single population
data).

On the other hand, Hainaut (2018) proposes a replacement of SVD with
an unsupervised NN for dimensionality reduction, NN-analyzer which is
more commonly known as an autoencoder (AE), and Nigri et al. (2019) pro-
poses an application of LSTM to time components obtained from SVD, both
of which have the interpretability of the model, but with the limitation of
two-stage estimation. Thus, the existing NN approaches for the mortality pre-
diction are subject to the problem of either a two-stage estimation or loss of
interpretability.

To achieve a single-stage estimation of the parameters without losing inter-
pretability, we introduce a variational AE (VAE) proposed by Kingma and
Welling (2013) to the mortality prediction; our method implies a fusion of NN
and Bayesian approach. VAE, one of the representative generative NNs (i.e.,
NNs for generating new data by learning features of training data), performs
the variational Bayesian estimation of the state-space model and the AE-based
dimensionality reduction simultaneously.

The rest of this study is organized as follows. Section 2 discusses how
the existing approaches extend the original LC model and the limitations.
Section 3 presents an overview of the VAE approach. We propose a model
in a generalized state-space form in Section 4 and discuss how to apply
the VAE algorithm to the inference of the proposed model in Section 5. In
Section 6, we apply our model to the data from the HMD and present numer-
ical results including the calibration procedure of the model, performance
comparison with LC, parameter comparison with LC to show the inter-
pretability of the model, forecasts with confidence intervals, and remarks on
the effects of changing the number of neurons in the model. Finally, Section 7
concludes this study.

2. EXTENSIONS OF LC

LC defines the log-mortality rate at age x in calendar year t as follows:

logmx,t = αx + βxκt, (2.1)

where αx is the average log mortality at age x measured over the observa-
tion period, and the bilinear term βxκt can be interpreted as the product of
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age-specific sensitivity factor and year-specific mortality improvement factor.
The age-specific factor βx and the year-specific factor κt are obtained by the
SVD of the log-mortality data net of the age-specific averages {αx}, where the
following model identification constraints are required:⎧⎨⎩

∑
x

βx = 1∑
t

κt = 0.
(2.2)

The prediction of future mortality in LC can be performed via a two-stage
procedure: obtaining {κt} by SVD and then fitting a time series model to {κt}.
It is common to apply a drifted RW model determined by:

κt = κt−1 + μ + εt, (2.3)

where εt follows an iid (i.e., independent and identically distributed) standard
normal distribution.

The interpretability of LC has given rise to various extensions, for example,
Renshaw and Haberman (2006) (RH) makes a cohort extension by adding a
new term β ′

xκ
′
t−x on the right-hand side of Equation (2.1).

However, LC is known to have limitations in estimation accuracy, primarily
because of incoherency among variables caused by the two-stage estimation
and the limitation of nonlinear representation capability of the bilinear form.

For the first issue, single-stage estimations of LC in Bayesian settings have
been proposed. A direct translation of LC into a state-space form in Pedroza
(2006) is given by:

Observation equation: xt = α + κtβ + εt, εt ~ iid N
(
0, σ 2

ε I
)
,

State equation: κt = κt−1 + μ + εt, εt ~ iid N
(
0, σ 2

ε

)
, (2.4)

where xt =
(
logmt,0, logmt,1, . . . , logmt,n

)T ; α = (α0, α1, . . . , αn)T ; β = (β0,
β1, . . . , βn)T ; n denotes the maximum age observed. Here, MCMC is required
to obtain posterior joint distributions for the parameters α, β, σε, μ, and σε .
Because theMCMC is computationally intensive, the number of age categories
to be estimated is often limited in many previous studies. Although many
Bayesian extensions of LC have been proposed, they follow the bilinear form
as in LC or RH, which results in limited nonlinear representation capabilities.

For the second issue, the extension of the nonlinear representation capabili-
ties, NN approaches have been recently proposed; our study is in this context.
The reason behind the application of NNs to the nonlinear extension of mod-
els is the universal approximation capability of NNs that is demonstrated by
Cybenko (1989). NNs generally comprise an input layer, hidden layers, an out-
put layer, neurons in each layer, links between the neurons in different layers,
and activation functions. In an FNN, the di+1-dimensional vector yi+1 repre-
senting the output value of neurons in the i+1-th layer is determined by the
di-dimensional output vector yi in the previous layer, the activation function
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φ, the weightsWi ∈Rdi+1×di , and the bias bi ∈Rd i+1 as follows:

yi+1 = φ
(
Wiyi + bi

)
. (2.5)

NNs are trained to obtain weights Wi that minimize loss functions under a
given network structure and activation function, typically using a gradient
descent method (GDM).

Nigri et al. (2019) proposes a two-stage NN extension of LC in which the
LSTMwas applied to the extrapolation of time series components obtained by
SVD. Perla et al. (2021) considers NN extensions of LC, which could perform
single-stage estimations and demonstrates that 1D CNN outperformed FCN
proposed by Richman and Wüthrich (2021) and LSTM. CNN, proposed by
LeCun et al. (1990), is generally known as an effective method for 2D images
and 3D spatial data; however, it has been recently used for 1D time series data.
CNN replaces the product term Wiyi in Equation (2.5) with the convolution,
as described below; it is often performed in three stages. In the first stage, the
convolution with shared weights is performed; in the second stage, the value
obtained by the convolution is nonlinearly transformed by an activation func-
tion; finally, a pooling function is used to output the value. The 1D CNN uses
the convolution filter Wi,j ∈Rd×m(j= 1, . . . , J) instead of the weight Wi in
Equation (2.5), where m ∈N denotes the kernel size of the filter and J denotes
the number of filters. Then, the output data of layer i, yi ∈Rd×T , is transformed
as follows:

yi+1
j,k = φ

(
m∑
s=1

d∑
l=1

Wi,j
l,sy

i
l,k+s−1 + bi,j

)
;

k= 1, . . . ,T + 1−m; yi+1 ∈RJ×(T+1−m). (2.6)

After the above transformation, the pooling function is employed. Generally,
the pooling function returns the maximum, minimum, or average value within
each window region of the input data. For an h-dimensional CNN input,
yi ∈Rd×T and yi+1 ∈RJ×(T+1−m) are changed to yi ∈Rh×d×T and yi+1 ∈
Rh×J×(T+1−m). Wang et al. (2021) proposes mortality forecasts using two-
dimensional (2D) CNN to capture the neighborhood effect of the mortality
data. Schnürch and Korn (2021) also considers 2D CNN and achieves mortal-
ity forecasts with confidence intervals. The confidence intervals are not based
on the endogenous randomness as in the BSS models, but on the exogenous
randomness driven by the random seed for the NN, which corresponds to the
model uncertainty.

Hainaut (2018) proposes a two-stage estimation of LC with a NN-based
dimensionality reduction as an alternative to SVD. The NN algorithm called
NN-analyzer in Hainaut (2018) can be classified as AE. Generally, AE is a
NN that uses a low-dimensional hidden layer and learns such that the input
data are close to the output of the AE reconstructed via the hidden layer and
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can extract nonlinear features and characterize multidimensional data in low-
dimensional components. The first part of AE, which outputs low-dimensional
features from the original data, is called an encoder f enc, and the second part,
which reconstructs data from low-dimensional features, is called a decoder
f dec.

For the input data X(t) at time t given by a vector of age-specific log-
mortality rates net of the age-specific averages, the reconstructed data X̂(t)

by f dec and the d-dimensional latent factor κnnt =
(
κ
nn,1
t , . . . , κnn,dt

)
, the NN-

analyzer is described as follows:{
κnnt := f enc(X(t));

X̂(t) := f dec
(
κnnt
)
.

(2.7)

The loss function is given by the squared error between X̂(t) and X(t), and the
parameters of f enc and f dec are estimated using a GDM to minimize the loss
function.

Moreover, the NN analyzer has the following features:

• It has a symmetric network structure with three hidden layers using
hyperbolic tangent sigmoidal and identity function as activation func-
tions for both f enc and f dec.

• The input and output data are evenly divided in subgroups, and each
subgroup is exclusively connected to a specific neuron in the input and
output layers, resulting in a sparsely connected AE (SAE), which is
expected to prevent overlearning.

• A genetic algorithm is used to identify appropriate initial values for the
GDM.

Finally, using the latent factors, the mortality model is expressed as follows:

logmt = α + f dec
(
κnnt
)
, (2.8)

where mt and the average mortality rate α are vectors of values for each age.
The decoder term in Equation (2.8) gives a nonlinear generalization of the
bilinear term of LC; however, the prediction requires extrapolating the latent
factor κnnt by a time series model, resulting in a two-stage estimation. We intro-
duce VAE to perform the single-stage estimation of the AE-based extension of
LC. For more theoretical background on NNs and AEs, we refer to Wüthrich
and Merz (2022).

3. VARIATIONAL AUTOENCODER (VAE)

VAE, proposed by Kingma and Welling (2013), is a type of deep gen-
erative model with an AE structure that performs unsupervised learning
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with dimensionality reduction to a latent space. VAE assumes a proba-
bility distribution for the latent space, unlike the conventional AE, and
can be implemented without using MCMC techniques. The aim of VAE
is to identify pθ (x) that denotes the generative distribution of the data
xwith generative parameter θ ; in the process, it can acquire the dimensionally
reduced latent representation of data as a probability distribution. Assume
that, for T∈N, there exists a set of latent variables Z= {zt}Tt=1 that generates
a sample dataset X = {xt}Tt=1 with probability pθ (xt|zt) for each t, and zt fol-
lows the prior distribution pθ (zt) , where pθ (zt) and pθ (xt| zt) follow probability
distributions differentiable with respect to the parameters to be identified.

Because it is generally difficult to directly estimate themultidimensional pos-
terior distribution pθ (Z|X) , a variational approximation with the parameter
ϕ, qϕ(Z|X) , is used; the approximation is often implemented in the form of a
mean field approximation via a factor decomposable distribution as follows:

qϕ(Z|X) =
T∏
t=1

qϕ(zt|xt) . (3.1)

From the AE perspective, the approximate distribution qϕ(zt|xt) and gener-
ative distribution pθ (xt| zt) are considered probabilistic encoder and decoder,
respectively. The generative parameter θ and variational parameter ϕ are
learned as network parameters in VAE to maximize the evidence lower bound
(ELBO) given by Equation (3.2). The meanings of the ELBO become clear
by rewriting Equation (3.2) with the Kullback–Leibler (KL) divergence repre-
sented by DKL[||] , which gives asymmetric distances between distributions, as
shown in Equations (3.3) and (3.4). We also refer to Section 11.6.3 ofWüthrich
and Merz (2022) for more details:

ELBO=
∫
qϕ(Z|X )log

pθ (Z,X )
qϕ(Z|X) dZ. (3.2)

ELBO= log pθ (X) −DKL
[
qϕ(Z|X)||pθ (Z |X)

]
,

whereDKL
[
qϕ(Z|X)||pθ (Z |X)

]= ∫
qϕ(Z|X) log

qϕ(Z|X)

pθ (Z|X)
dZ. (3.3)

ELBO=
∫
qϕ(Z|X) log pθ (X |Z) dZ−DKL

[
qϕ(Z|X)||pθ (Z)

]
,

whereDKL
[
qϕ(Z|X)||pθ (Z)

]= ∫
qϕ(Z|X )log

qϕ(Z|X )
pθ (Z)

dZ. (3.4)

Equation (3.3) shows that the ELBO maximization implies maximizing the
log-likelihood of the data with penalizing the approximation error given by
DKL

[
qϕ(Z|X)| |pθ (Z|X)

]
. From the perspective of AE, Equation (3.4) shows

that the integral term of the ELBO indicates an expected value of the negative
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reconstruction error of the data by the decoder pθ (X |Z) because log pθ (X |Z)

is closer to 0 for higher reconstruction probability and takes a greater neg-
ative value for lower reconstruction probability; the second (KL) term of the
ELBO acts as a regularizer that penalizes the KL distance between the approxi-
mate posterior distribution qϕ(Z|X) and the prior distribution pθ (Z). Thus, the
ELBO maximization simultaneously performs the data reconstruction error
minimization, which is essential for AEs, and regularization. While the dis-
tributions are usually selected such that the KL term of Equation (3.4) can
be analytically calculated, the first term is difficult to analytically calculate.
Thus, a sampling approximation by zt following qϕ(zt|xt) and a reparame-
terization technique (called reparameterization trick) for zt are required to
optimize parameters using the GDM. The reparameterization is determined by
a differentiable bivariate function of the data point xt and an auxiliary noise
variable εt as follows:

zt = gϕ(xt, εt) . (3.5)

In particular, assuming that the iid noise εt follows standard normal
distribution, gϕ(xt, εt) can be expressed as follows:

gϕ(xt, εt) = μt + σtεt;

(μt, σt) = f encϕ (xt) , (3.6)

where the parameters are given by a vector-valued function f encϕ (xt) in the
encoder.

For L ∈N denoting the number of samples from gϕ(xt, εt), the sampling
approximation of the first term is given by:∫

qϕ(zt|xt)log pθ (xt| zt) dzt ≈ 1
L

L∑
l=1

log pθ

(
xt|zl,t

)
. (3.7)

4. THE MODEL

We propose a nonlinear extension of LC, written as a state-space model with
a latent variable that follows a drifted RW process. For the data {xt}Tt=1 com-
prising vectors of age-specific log-mortality rates for each observation year t
and latent variables {zt}Tt=1 for all observation years, their joint probability
and graphical representation (Figure 1) are as follows:

pθ , ξ (x1, x2, . . . , xT , z1, z2, . . . , zT ) =
T∏
t=1

pθ (xt|zt)
T−1∏
t=1

pξ (zt+1|zt) pξ (z1) .

(4.1)

Although a drifted RW is assumed for pξ (zt+1|zt) as in the original LC
model, we propose a generalization by replacing α + κtβ in Equation (2.4)
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FIGURE 1. Graphical model representation of state-space LC.

with a nonlinear vector-valued function denoted by fθ (zt) , where the function
belongs to a broad nonlinear function class that can be obtained by a NN.

Using xt = logmt =
(
logmt,0, logmt,1, . . . , logmt,n

)
, our model is given by:

logmt = fθ (z) + εt,

zt = μξ + zt−1 + σξηt, t> 1

z1 = z0 + σξη1 (4.2)

where εt and ηt are iid noises that εt ~N
(
0,
∑

θ

)
;
∑

θ = diag(σθ
2
0, σθ

2
1, . . . ,

σθ
2
n); ηt ~N(0, 1).
Note that

(
σθ

2
0, σθ

2
1, . . . , σθ

2
n
)
, (μξ ,σξ ) and the initial value z0 can be

obtained as learning parameters of a NN.
Assuming that pξ (z1) follows a normal distribution, the log-likelihood of

the generative distribution to be maximized is given as follows:

log pθ (xt|zt) = −log

√
(2π)n+1

∣∣∣∑
θ

∣∣∣− 1
2
(xt − fθ (zt))T

∑
θ

−1
(xt − fθ (zt)) ,

(4.3)
where

∣∣∑
θ

∣∣= σθ
2
0σθ

2
1 . . . σθ

2
n.

5. VAE FOR THE MODEL

In this section, a VAE is used to estimate the parameters of the state-space
model, and the state-space model specification chosen will determine the
expression for the loss function used when fitting the VAE to data.

5.1. The loss function

To apply the GDM for the variational inference, it is necessary to derive the
loss function given by the sign-reversed ELBO of themodel. The joint posterior
distribution pθ (z1, z2, . . . , zT |x1, x2, . . . , xT ) with the generative parameter θ is
approximated by qϕ(z1, z2, . . . , zT |x1, x2, . . . , xT ) with variational parameter
ϕ where the approximation distribution qϕ is assumed to be factorizable as
expressed in Equation (3.1). The structure of the VAE used for the variational
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FIGURE 2. Graphical model representation of VAE for state-space LC (dotted line: approximation).

inference of the proposed model is represented in a graphical model (Figure 2)
where the vertical network at each time t has an AE structure with encoder
qϕ(zt|xt) and decoder pθ (xt| zt).

The ELBO to be maximized for the proposed model is given by:

ELBO=
∫

. . .

∫
qϕ(z1, . . . , zT |x1, . . . , xT )

log
pθ , ξ (x1, x2, . . . , xT , z1, z2, . . . , zT )

qϕ(z1, . . . , zT |x1, . . . , xT )
dz1 . . . dzT

=
T∑
t=1

∫
qϕ(zt|xt) log pθ (xt|zt) dzt

−DkL
[
qϕ(z1|x1)|| pξ (z1)

]
−

T−1∑
t=1

∫
qϕ(zt|xt)DkL

[
qϕ(zt+1|xt+1) || pξ (zt+1|zt)

]
dzt, (5.1)

where the KL terms can be calculated analytically from the assumptions, given
by Equation (3.6) and (4.2), as follows:

DKL
[
qϕ(z1|x1)||pξ (z1)

]= (μ1 − z0)2

2σ 2
ξ

+ σ 2
1

2σ 2
ξ

− log
σ1

σξ

− 1
2
,

DKL
[
qϕ(zt+ 1|xt+ 1) ||pξ (zt+ 1|zt)

]= (
μt+ 1 − (

μξ + zt
))2

2σ 2
ξ

+ σ 2
t+ 1

2σ 2
ξ

− log
σt

σξ

− 1
2
, t≥ 1.
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Replacing zt in Equation (5.1) with the sampling approximations {zl,t} that
follows the reparametrized distribution gϕ(xt, εt) given by Equation (3.6), the
ELBO is approximated by:

ELBO≈ 1
L

L∑
l = 1

(
T∑

t= 1

log pθ

(
xt|zl,t

)−DkL
[
qϕ(z1|x1) ||pξ (z1)

]

−
T−1∑
t= 1

DKL
[
qϕ

(
zl,t+ 1|xt+ 1

)||pξ

(
zl,t+ 1|zl,t

)])
. (5.2)

Finally, the loss function (i.e., sign-reversed ELBO) is given by:

− 1
L

L∑
l = 1

(
T∑

t= 1

(
log pθ

(
xt|zl,t

)−
(
μt −

(
μξ + zl,t−1

))2
2σ 2

ξ

− σ 2
t

2σ 2
ξ

+ log
σt

σξ

+ 1
2

))
,

(5.3)
where zl,0 = z0 − μξ , and log pθ

(
xt|zl,t

)
is obtained by replacing zt in Equation

(4.3) with zl,t. Note that
(
σθ

2
0, σθ

2
1, . . . , σθ

2
n
)
, (μξ ,σξ ), z0 and (μt, σt) given by

Equation (3.6) are learning parameters in the VAE network. Details of the
derivation of the loss function are given in Appendix.

The mortality predictions can be obtained by decoding the projected state
random variable zt, in the form of mean values or confidence intervals.

5.2. The network configuration

The proposed VAE has an FCN architecture comprising three hidden layers
between the input and output layers; it has the following specifications:

• Although the numbers of neurons in the first and third hidden layers are
variable, the number of neurons in the latent layer (second hidden layer)
is fixed at 1 to be consistent with the dimension of the state random
variable zt.

• Both the encoder and decoder use hyperbolic tangent sigmoidal func-
tion and identity function as activation functions.

• The encoder (first hidden layer) includes the reparameterization unit
given in Equation (3.6).

• A fixed age-impact vector corresponding to α in Equation (2.4) is used
as a learning parameter that is deducted before encoding and added
after decoding, whose initial value is given by a vector of the age-specific
averages of the observed log-mortality rates.

The architecture is illustrated in Figure 3. The model is coded from scratch
in Python without using optimization packages, and the codes for the most
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FIGURE 3. Network architecture of VAE.

characteristic part of the model are presented in the online Supplementary
Material.

6. NUMERICAL APPLICATION

This section shows the results of applying the proposed model to the data
from the HMD. The HMD data used here are the central mortality rates for
ages 0–99 years, mixed gender, from 1961 to 2018. In this study, the observa-
tion period begins in 1961 to coincide with the introduction of the universal
health insurance in Japan. For the accuracy evaluation, the data are divided
into training data from 1961 to 2000 and test data from 2001 to 2018.

6.1. Calibration procedures

The hyperparameters to be determined for our model are the learning rate, the
number of learning epochs, and the number of neurons in the first and third
hidden layers. The number of neurons in the second hidden layer is fixed at
1 to be consistent with the dimension of the state variable of the model. The
hyperparameters are selected to minimize the median of 10 minimum squared
errors (MSEs), which correspond to 10 random seeds, over the validation data
that consist of the latter 5 years (i.e., from 1996 to 2000) of the original training
data; the selection universe of the hyperparameters contains the numbers of
epochs from 5000 to 50,000 and the numbers of neurons in the three hidden
layers from 10–1–10 to 50–1–50, where the configurations are limited to the
symmetric type (i.e., the same number of neurons in the first and third hidden
layers) common in AEs. Note that cross-validations are not available for time
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TABLE 1

VALIDATED HYPERPARAMETERS FOR SIX COUNTRIES.

Japan US Spain Swiss Canada Denmark

Neurons 20-1-20 50-1-50 50-1-50 50-1-50 50-1-50 50-1-50
Epochs 25,000 10,000 45,000 30,000 15,000 45,000
Learning rate 0.00001 0.00001 0.00002 0.00003 0.00001 0.00002

TABLE 2

MSE COMPARISON BETWEEN VAE AND LC OVER TEST DATA FOR SIX COUNTRIES.

Japan US Spain Swiss Canada Denmark

LC 3.2695555 1.437645 11.57248 13.82407 2.050331 15.04826
VAE 1.4990569 1.380066 9.330155 9.814298 1.894726 14.39155

series models including our model. Since a larger number of epochs reduces
the effect of the number of samples for the Monte Carlo integration of the
loss function, the number L in Equation (5.3) is fixed at 10. The validated
hyperparameters for six countries, including Japan and the United States (US),
are given as follows.

The model, which is coded from scratch in Python without using opti-
mization packages, requires a relatively large number of epochs as shown in
Table 1, but the total run-time per country is about 10 min in the Google
Colaboratory (https://colab.research.google.com) due to its shallow network
structure. Although not used in this study, normalizing the input data to being
centered with unit variance can reduce the number of epochs.

6.2. Performance comparison with LC

Using the hyperparameters given in Table 1, prediction performances are esti-
mated in the same way over the test data. Table 2 summarizes the comparison
of the prediction accuracy between LC (SVD+RW) and the VAE over the test
data for six countries, where the accuracy measure is the same MSE as for the
validation of the hyperparameters.

The observation period for the training data begins in 1961, when the
universal health insurance was introduced in Japan, but longer observation
periods are likely to improve forecasting accuracy in other countries. This
model fits both in the context of the literature on BSS mortality models, where
prediction accuracy is not often discussed, and in the context of the literature
on NNmodels for mortality prediction, where prediction accuracy is the focus.
As a NN model, this model focuses more on achieving features not found in
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FIGURE 4. VAE’s μt and LC’s κt over training data for Japan (left) and US (right).

previous NN models than on prediction accuracy, as shown in the follow-
ing sections. In the following sections, we will focus our analysis on Japan
and US.

6.3. Interpretability of the model

In this section, the interpretability, one of the key features of the model,
is demonstrated by the comparison of the components of the model with
all parameters of LC over the training data for Japan and US, using the
hyperparameters given in Table 1.

Figure 4 gives the comparison of LC’s year-specific factor κt with μt, denot-
ing the mean of the latent factor of the VAE generated by one random seed,
over the training data for Japan and US. The descending curves of μt can be
interpreted as indicating medical progress as well as the LC’s year-specific fac-
tor κt. The slope ofμt is more gradual than that of κt, for both Japan and US,
indicating that excessive mortality reductions in the long-term predictions are
less likely to occur than in LC.

Figure 5 compares LC’s age sensitivity factor β and the decoder’s sensitiv-
ity to μt, given by d

dμt
fθ (μt) for one random seed, for all ages in 1970, 1980,

1990, and 2000, over the training data for Japan and US. The number of
humps in the decoder’s sensitivity curves is roughly similar to that of LC’s
age sensitivity factor β, for both Japan and US, capturing country-specific
characteristics.

Figure 6 shows that the learning parameter α of the VAE, generated by
one random seed, is consistent with the fixed age factor α of LC, given by the
averaged mortality, over the training data for Japan and US.
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FIGURE 5. Decoder’s sensitivity to μt and LC’s β over training data for Japan (left) and US (right).
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FIGURE 6. VAE’s α and LC’s α over training data for Japan (left) and US (right).

FIGURE 7. Forecasts with confidence intervals for latent factor zt over test data for Japan (left) and US
(right).

6.4. Forecasts with confidence intervals

Existing NN models for the mortality forecasts with confidence intervals are
solely based on the exogenously given randomness such as random seed for
NNs or added randomness for the time series models in two-stage estimations.
In this section, we show that our model has an ability to forecast mortality
with confidence intervals based on the endogenous randomness, as with BSS
formulations, using the hyperparameters given in Table 1.

Figure 7 shows the forecasts with 97.5% confidence intervals for the latent
factor zt over the test data for Japan and US, appending μt over the train-
ing data. The natural connection between the mean μt of the latent variable
encoded over the training data and the mean of the state model zt estimated
over the test data shows the effect of the variational approximation.

https://doi.org/10.1017/asb.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.15


EXTENDING THE LEE–CARTERMODELWITH VARIATIONAL AUTOENCODER 805

FIGURE 8. Forecasts with confidence intervals for mortality by age (from 30 to 80 years) over test data for
Japan (left) and US (right).
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FIGURE 8. Continued.

Figure 8 gives mortality forecasts with 97.5% confidence intervals at ages
30, 40, 50, 60, 70, and 80 years over the test data for Japan and US, appending
the actual mortality and the reconstructed mortality over the training data.

6.5. Remarks on changing number of neurons

The prediction accuracy of the VAEmodel is generally improved by increasing
the number of neurons in the first and third hidden layers. Table 3 summarizes
the comparison of the prediction accuracy by MSE of LC and VAE models
(from 10–1–10 to 50–1–50) over the test data for Japan and US, using a fixed
number of epochs per country. The results demonstrate that the number of
neurons in a VAE that can outperform LC varies among countries and that
if the number of neurons is extremely large, the prediction accuracy decreases
because of overlearning.

We also consider the smoothness of mortality curves in ultralong-term pre-
dictions desirable in the economic valuation of insurance/pension liabilities
and longevity risk management.

Figure 9 shows the 50-year predictions of Japanese mortality by VAE (from
10–1–10 to 50–1–50), where the dark-colored curves are the predictions. For
the 50-year projection in Japan, all data (i.e., from 1961 to 2018) are used for
the training data.
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TABLE 3

MSE COMPARISON OF LC AND VAE (FROM 10-1-10 TO 50-1-50)
OVER TEST DATA FOR JAPAN AND US.

Model Japan US

SVD+RW(LC) 3.2695555 1.4376452
VAE(10-1-10) 2.5506942 1.7537529
VAE(20-1-20) 1.4990569 1.4427476
VAE(30-1-30) 1.3890170 1.3534000
VAE(40-1-40) 1.3699607 1.3851189
VAE(50-1-50) 1.4554506 1.4325700

FIGURE 9. Fifty-year predictions by VAE (from 10–1–10 to 50–1–50), Japan.

Improving the prediction accuracy of VAE trades-off with the smoothness
of the prediction curves, but introducing an asymmetric configuration into the
hidden layers of VAE can improve the smoothness of prediction while main-
taining high prediction accuracy. It is effective to increase and decrease the
numbers of neurons in the first and third hidden layers, respectively.

For example, VAE (50–1–3) yields relatively smooth prediction curves as
shown in Figure 10, and the prediction accuracy (MSE:3.0416) remains better
than LC (MSE:3.2696) on the same data as for Table 3.
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FIGURE 10. Fifty-year prediction by VAE(50-1-3), Japan.

7. CONCLUSIONS

This paper proposes a NN-based generalization of LC using VAE that per-
forms mortality forecasts with confidence intervals based on the endogenous
randomness (i.e., not by seed randomness for NNs), as with the BSS mod-
els, in a single-stage procedure without losing interpretability of the model.
Our model fills a gap in the literature of NN extensions of LC, since previ-
ous NN models either enable single-step estimation of parameters but lose
interpretability of the model, or retain interpretability but estimate parame-
ters in two steps. The model also can yield relatively smooth mortality curves
in long-term predictions due to the dimensionality reduction capability of the
VAE.

However, our model has the limitations that it employs a 1D RW with iid
residuals for the latent state model, and thus the number of neurons in the
second hidden layer is limited to one; the limitations are intended to avoid sam-
pling approximations of multiple integrals that reduce estimation efficiency
and often require MCMC. Dimensional extensions of the latent state model
(i.e., multiple neurons in the second hidden layer) and the introduction of the
non-iid residuals to the latent state model are future work; they can improve
representation capabilities of the model and may allow its extension to cohort
and multiple population models. However, if one has multiple neurons in the
second hidden layer and may have to deal with an identifiability issue, see
Example 7.28 in Wüthrich and Merz (2022).
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APPENDIX

Derivation of the loss function
The joint distribution pθ , ξ (x1, x2, . . . , xT , z1, z2, . . . , zT ) following

Equation (4.2) satisfies

log pθ ,ξ (x1, x2, . . . , xT , z1, z2, . . . , zT ) =
T∑

t= 1

log pθ (xt|zt)

+
T−1∑
t= 1

log pξ (zt+ 1|zt) + log pξ (z1) .

Using the above equation and the mean field approximation given by
Equation (3.1), the ELBO of the model can be rewritten as follows:

ELBO=
∫

. . .

∫
qϕ(z1, . . . , zT |x1, . . . , xT )

log
pθ ,ξ (x1, x2, . . . , xT , z1, z2, . . . , zT )

qϕ(z1, . . . , zT |x1, . . . , xT )
dz1 . . . dzT

=
∫

. . .

∫
qϕ(z1|x1) . . . qϕ(zT |xT )

(
T∑

t= 1

log pθ (xt|zt)

+
T−1∑
t= 1

log pξ (zt+ 1|zt) + log pξ (z1) −
T∑

t= 1

log qϕ(zt|xt)
)
dz1 . . . dzT

=
∫

. . .

∫
qϕ(z1|x1) . . . qϕ(zT |xT )

(
T∑

t= 1

log pθ (xt|zt)

− log
qϕ(z1|x1)
pξ (z1)

−
T−1∑
t= 1

log
qϕ(zt+ 1|xt+ 1)

pξ (zt+ 1|zt)

)
dz1 . . . dzT
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=
T∑

t= 1

∫
qϕ(zt|xt) log pθ (xt|zt) dzt −DKL

[
qϕ(z1|x1)||pξ (z1)

]

−
T−1∑
t= 1

∫
qϕ(zt|xt)DKL

[
qϕ(zt+ 1|xt+ 1)||pξ (zt+ 1|zt)

]
dzt, (A1)

where, from the assumptions given by Equation (3.6) and (4.2), the compo-
nents of the KL terms follow the normal distributions as follows:

qϕ(z1|x1) = 1√
2πσ1

e
− (z1−μ1)

2

2σ1
2 ,

pξ (z1) = 1√
2πσξ

e
− (z1−z0)2

2σ2
ξ ,

qϕ(zt+ 1|xt+ 1) = 1√
2πσt+ 1

e
− (zt+ 1−μt+ 1)

2

2σt+ 1
2 ,

pξ (zt+ 1|zt) = 1√
2πσξ

e
− (zt+ 1−(μξ +zt))2

2σξ
2 , t≥ 1.

Then the KL terms in Equation (A1) can be calculated analytically as
follows:

DKL
[
qϕ(z1|x1)||pξ (z1)

]= ∫
qϕ(z1|x1) log qϕ(z1|x1)

pξ (z1)
dzt

= (μ1 − z0)2

2σ 2
ξ

+ σ 2
1

2σ 2
ξ

− log
σ1

σξ

− 1
2
, (A2)

DKL
[
qϕ(zt+ 1|xt+ 1)||pξ (zt+ 1|zt)

]
=
∫

qϕ(zt+ 1|xt+ 1) log
qϕ(zt+ 1|xt+ 1)

pξ (zt+ 1|zt) dzt+ 1

=
(
μt+ 1 − (

μξ + zt
))2

2σ 2
ξ

+ σ 2
t+ 1

2σ 2
ξ

− log
σt

σξ

− 1
2
, t≥ 1. (A3)
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Substituting (A2) and (A3) into Equation (A1) gives

ELBO=
T∑

t= 2

∫
qϕ(zt|xt)

(
log pθ (xt|zt) −

(
μt −

(
μξ + zt−1

))2
2σ 2

ξ

− σ 2
t

2σ 2
ξ

+ log
σt

σξ

+ 1
2

)
dzt

+
∫
qϕ(z1|x1)

(
log pθ (x1|z1) − (μ1 − z0)2

2σ 2
ξ

− σ 2
1

2σ 2
ξ

+ log
σ1

σξ

+ 1
2

)
dz1.

Using the sampling values {zl,t} from gϕ(xt, εt), the sampling approximation
of the ELBO is given by:

ELBO≈ 1
L

L∑
l=1

(
T∑
t=1

(
log pθ

(
xt|zl,t

) −
(
μt −

(
μξ + zl,t−1

))2
2σ 2

ξ

− σ 2
t

2σ 2
ξ

+ log
σt

σξ

+ 1
2

))
,

where zl,0 = z0 − μξ .
Finally, the loss function of the model is given by the sign reversal of the

approximation of the ELBO.
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