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1. Introduction

In semigroup theory as in other algebraic theories a significant part of the total effort
is appropriately applied to the study of certain standard examples occurring, as it were,
"in nature". The most obvious such semigroup is the full transformation semigroup
2T(X) (see [3]) and about this semigroup a great deal is known in both the finite and
infinite cases.

Inverse semigroups (see [3, Chapter V]) are of interest not only as a naturally
occurring special case of semigroups but also for their role in describing partial
symmetries. Mathematically this property is expressed by the Vagner-Preston Theorem
[3, Theorem V.I.10], by which every (finite) inverse semigroup is embedded in an
appropriate (finite) symmetric inverse semigroup J(X), consisting of all partial one-to-one
maps, or subpermutations (to use an attractive term from Cameron and Deza [1]) of X.

Since the theory of inverse semigroups is now extensive enough to have been the
subject of a substantial book by Petrich [7], it is perhaps rather surprising that very
little has been written on the symmetric inverse semigroup. Certainly the Green
equivalences are well understood. (See [3, Example V.2].) A notable contribution was
made by Liber [5], whose description of the congruences on J(X) is analogous to
Mal'cev's work [6, see also 2, Section 10.8] on full transformation semigroups. Much
more recently Howie and Marques-Smith [4] investigated certain properties of nilpotent
elements in J(X) in the case where X is infinite. This paper is to some extent motivated
by that work.

Let Z=(l, . . . ,n), let /n(=./(Z)) be the symmetric inverse semigroup on Z, let Sn be
the symmetric group on Z and let SPn = In\Sn, the inverse semigroup of all proper
subpermutations of Z.

The inverse semigroup SPn has n /-classes (or ©-classes, since f = @) J0,...,Jn-u

where Jr (r = 0,...,n — 1) consists of all subpermutations of height r, i.e. all a in SPn for
which

|doma| = |ima| = r.

Notice that Jo consists solely of 0, the unique subpermutation with empty domain, and
that
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In particular \jn_l\ = n2(n — 1)! The ^-class Jn_t contains n ^-classes Rt (corresponding
to the n different possible domains Z\{i} of cardinality n — 1) and n if-classes L,
(corresponding to the n different possible images Z\{j}). Each of the n2 ^-classes
Hij=RinLJ contains (n — 1)! elements.

Let N be the set of nilpotent elements in SPn and let Nl = NnJa-1. For a given
subset A of SPn we write </4> for the inverse subsemigroup of SPn generated by A. The
main result (Theorem 3.18) of Section 3 is that if n is even then

By contrast, if n is odd we still have <N> = <iV1>, but <N> is now a proper inverse
subsemigroup SPn\K of SPn, where K consists of exactly half of the elements of Jn_j.
Theorem 3.18 also specifies precisely which half of Jn_i lies in

Since SPn is finite, the ascent

must stabilize at some k, the least integer for which

It is shown in Section 4 that lc = 2 or 3 according as n is odd or even. By contrast, if / is
the least integer for which

we find that / = n.

2. Nilpotents in a finite symmetric inverse semigroup

For notation and for basic properties of symmetric inverse semigroups, see [3, Section
V.I].

An element a of /„ is called nilpotent if a* = 0 for some fe^ 1. The index (of nilpotency)
i(a) of a(=^0) is the unique k for which a* = 0, a*"1 ^=0.

It is evident that all nilpotents in /„ lie in SPn. The first step in our investigation is to
give a set-theoretic characterization of nilpotent elements.

Lemma 2.1. Let a. e Jr, with r<n. Then a is nilpotent if and only if there exists no non-
empty subset A o/doma such that A<x = A.

Proof. If a = 0 (the empty map) the result is trivial. We may therefore confine
ourselves to elements a for which doma=f 0 . Certainly if there exists A±0 inside
dom a for which Act. = A we have

and so a is not nilpotent.

https://doi.org/10.1017/S0013091500026778 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026778


NILPOTENTS IN FINITE SYMMETRIC INVERSE SEMIGROUPS 385

Conversely, suppose that no such A exists. Then

im a = (dom a)a =f dom a

and so dom a2 c dom a (properly). We now show that for k = 2,3, ...

dom a* ± 0 =>dom a*+' <=• dom a*.

For suppose by way of contradiction that

doma*+1=doma*=£0

for some k^2. Then

dom a* = dom (a • a*)=(im a n dom a*)a ~ i. (2.2)

Thus |imandoma''| = |doma'I| and so, since the sets are finite,

imandoma* = doma\ (2.3)

Fom (2.2) and (2.3) it now follows that

(dom a*)a=dom a*,

contrary to hypothesis. We thus have a strict descent

dom a 3 dom a2 = • • •

and hence there exists m ̂  1 such that dom a"1 = 0 , i.e. such that a"1 = 0.

Recall that if a e Jr we say that a is of height r; let us alternatively write h(a) = r. It is
clear that for all a, /? in /„

(2-4)

On the other hand /i(a/?) cannot be too small:

Lemma 2.5. If a, fie/„ then
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Proof. Suppose that dom a = A, im a = B, dom /} = C, im /J=D, dom aj? = E=(B n C)a
im a/? = F = (B n C)0. Then

Z\dom a/J = Z\£=(Z\X) u (A\E).

Thus

= |Z\i4| + |B\(BnC)| (since a is one-one)

Hence n-h(<xfi)^n-h{a) + n-h(P) and the result then follows.

As a consequence,

Lemma 2.5 also has consequences for indices of nilpotency:

Corollary 2.6. If a. is a nilpotent of height r in SPn then i(ot) ^ n/(n — r).

Proof. From the lemma it is easy to show inductively that for fc= 1,2,.

In particular, if i(a) = p then

and the result then follows by rearrangement.

Specializing still further we have

Corollary 2.7. If a is a nilpotent of height n—\ in SPn then i(a)^/i.
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Let re{l,...,n— 1} and let au...,ar + 1 be distinct elements of Z = {1, . . . ,«}. The
element

a2 . . . a,

: <*3 a r + l

(mapping a, to a i + 1 ( i= l , . . . , r ) ) is clearly nilpotent of index r + 1. Let us write it as
| | a 1 a 2 . . . a r + 1 | | and call it a primitive nilpotent in SPn.

Theorem 2.8. Every non-zero nilpotent a in SPn is a disjoint union ^ U ' - u ^ of
primitive nilpotents. Moreover, k^n — h(<x) and

i(a) = max{/(«!),..., !(«*)}•

Proof. Certainly doma =£(doma)<x = ima by Lemma 2.1. Let fl,€doma\ima and
consider the sequence

al,a2 = ala., a3=a2u,....

The sequence terminates when we reach an ar+l=ara such that a r + 1 ^doma . There can
be no repetitions in the sequence: if ai = ai+J = ai<xJ (J>0) then the non-empty set
{flI-,...,fl,-+J-_1} is invariant under a, which is impossible by Lemma 2.1. Hence the
sequence must terminate in the way described.

If r = h(a) then a is the primitive nilpotent | | a 1a2 . . .a r + 1 | | . Otherwise a is a disjoint
union

Since

for m = l , 2 , . . . it follows that /? is nilpotent. But h(P)<h(<x) and so we may suppose
inductively that ft is a disjoint union of primitive nilpotents. Hence we may express a as
a ,u• • •ua* as required.

Since each a, is of the form | | a 1 a 2 . . . a r + 1 | | where a r + 1 ^ d o m a it follows that there are
at least k elements not in dom a; thus

The final assertion of the theorem follows from the fact that

for m= 1,2,....
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Corollary 2.9. Every nilpotent of height n — 1 in SPn is primitive and hence of index n.

Proof. If a is nilpotent of height n— 1 then k^n—(n — 1) by Theorem 2.8. Hence a is
primitive.

In the introduction the structure of the top /-class JB_t in SPn was described. It can
now be seen that each ^"-class Htj (i^j) contains (n — 1)! elements of which exactly
(n —2)! are (primitive) nilpotents of the form

\\ja2 --an-1'1|

with a2,...,an^1eZ\{i,j}. Since there are n(n — 1) .Jf-classes containing nilpotents, the
total number of nilpotents in Jn_x is n!.

We end this section with a result on conjugates of nilpotents

Theorem 2.10. If fl is a nilpotent in SPn and <xeSPn then a-1/?a is a nilpotent.

Proof. Suppose that /?* = (). Then by elementary properties of the order ±£ in an
inverse semigroup (see [3, Section V.2])

hence(a"1^a)lt=0.

3. The inverse semigroup generated by /V,

For each a in Hui (c j n _ 1 ) there exists a unique completion a. in Sn (the symmetric
group o n Z = {l n}) defined by

The completion of the nilpotent ||a1a2... an\\ in Ja_1 is the cycle ( a ^ • • • an) m Sn.
From Lemma 2.5 we can see that

H f , , / / M £ j n _ 2 (3.1)

Also

If aeHtj and fleHj k, then their product lies in Jn-lt and
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For these reasons the question of whether an element of Jn_1 is expressible as a product
of elements of Nj is closely bound up with the expression of elements of Sn as products
of cycles of length n (what we shall call n-cycles for brevity). There follow some results
concerning Sa; these may well be known but we have been unable to find them in print.

An element a of Sn partitions Z = {1 , . . . , n} into two disjoint sets

shift a = {x:xoc^x}, fix <x = {x:xa = x}.

When we refer to two permutations as disjoint we shall mean as usual that their shifts
are disjoint.

We shall eventually prove that every even permutation a is expressible as a product
of two cycles of length n. (These are not disjoint cycles, naturally.) It is convenient t o
prove something a little more precise: if fix a = {xl,...,xp} we shall prove-that a = £1£2,
where the n-cycle ^l=(...xlx2...xp) ends with the elements of fix a in some order and
the n-cycle £2 = (. -XpXp-i -Xi) ends with the elements of fix a in the reverse order. We
refer to such a product as a tidy product of two n-cycles.

Lemma 3.2. Every cycle of odd length l^n in Sn is a tidy product of two n-cycles.

Proof. Let a = (a1a2. . .a,), where / is odd, and write fix a = {x1 , . . . ,xn_ (} . Then

It is not possible here to drop the restriction that / be odd, for a product of two
cycles of length n is necessarily an even permutation, while a cycle of even length is an
odd permutation. However, we do have

Lemma 33. / / E,u £2 ore disjoint cycles of even length then £,^2
 IS expressible as a

tidy product nln2 of two n-cycles.

Proof. Write E,l=(axa2...a2k), £2=(b1b2...b2i). We may assume without loss of
generality that k^l. Let

fix £i£2 = X\({at,...,a2k}u{&„...,b2l}) = {x, , . . . ,x p } ,

where p = n-2k-2l^0. Let

"i =(b2lb2l-!...b2k+xaxbxa2b2...a2kb2kxlx2...xp),

I2=(b2k+1^2*+3 • • • b2i-ibia2b2...a2kb2kalb2k+2b2k+A... b2lxpxp-1...xj;

then it is not hard to verify that the tidy product nln2 coincides with i,^2.

Lemma 3.4. Let a, x be disjoint permutations in Sn and suppose that each of a, T IS a
tidy product of two n-cycles. Then ax is a tidy product C1C2 of two n-cycles.

E.M.S.—C
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Proof. Suppose that shift u = {a1, . . .,ak}, shift x = {cu...,c,}, fix ax = {x1,...,xp}.
Then

fix o = {clt...,c,,xl, ...,xp}, fix T = {a1,...,ak,xl,...,xp}.

We may assume that we have tidy products as follows:

ff = (fli... a*Ci • • • c ,xx . . . xp)(bt... bkxp... xtc,... c j (3.5)

x=(c1...c,al...akx1...xp)(d1...dlxp...xlak...a1); (3.6)

here (ft,,...,fet), (d1(...,d,) are permutations respectively of (au...,ak), (cu...,c,). Then

ax=(c,... c,aj... akxt... x^b^... bkdl... d,xp... xj, (3.7)

a tidy product of two n-cycles. The verification of this is for the most part routine and
we shall confine ourselves to noting some crucial points. If for brevity we write (3.5) as
<j = <̂ 1̂ 2 and (3.6) as x = r\^t]1, notice that

K = xP%2 i = xpcr&1 (since xp e fix a)

= xp£1=a1;

similarly dx = cv Also

and similarly clx = dl. Then for example we may consider a, (l^igfc—1). Using (3.5)
and (3.6) we see that

aj-tcij+i =br (say), where r^k since bk — al

+as+1 (provided ŝ =fe; if s = fc then as->Xj)

On the other hand, using (3.7) we see that

The other verifications are no harder than this.

As a consequence of the three lemmas proved above, we have
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Theorem 3.8. Every even permutation of Sn is a product of at most two n-cycles.

Proof. Let <x be an even permutation. We consider the standard decomposition of a
into a product of disjoint cycles. If a is an n-cycle (which can happen if n is odd) then
no further argument is necessary; otherwise the decomposition of a must involve an
even number of cycles of even length. The result now follows from Lemmas 3.2, 3.3 and
3.4, and we may even conclude that the product a = £,l£,2 is tidy-

Theorem 3.9. Let n be even. Then every permutation in Sn can be expressed as a
product of at most three n-cycles.

Proof. In view of the last theorem we need only consider an odd permutation n.
Then

=(12... nK,

where n'=(134...n)~l(l2)n, being even x odd x odd, is even. The result now follows by
Theorem 3.8.

It is obvious that "three" is best possible in this result, provided n^4. For a product
of two n-cycles must be an even permutation, and clearly not every odd permutation is
an n-cycle.

We now apply these group-theoretical results to the problem of finding <Nj>. First,
we have

Lemma 3.10. Let n be odd and let oieJ,.,. Then ae^N^y if and only if its completion
d is an even permutation of {1,. . . , n}.

Proof. Suppose first that a is even, and let aef/,,;. Then a is either an n-cycle or a
product of two n-cycles. In the former case oieAf, £ <NX>. Otherwise d=t,r\. If we write
i£ = p then we must have pn=j, since ia=j. Let yeHitP, 5eHpj be such that y = £,, S=n.
Then y,deNl and <x = y& as required.

Conversely, suppose tha t <x = y 1 . . . y k for some y i , . . . , y » in Nv Since a.eJn.l we must
have

7ieHUPl, y2eHPitP2,...,ykeHPk_iJ

for some i,pu...,pk-uj in Z. Hence d=y1...yk, a product of n-cycles. Since n is odd
these n-cycles are even and so a is even.

From the first part of this proof we have

Corollary 3.11. If n is odd then
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For a given Hiti the set {«:c.eHtj} consists of all the permutations in Sa sending i to
j . Exactly half of the elements in each Hiyj are in (Nt}, and so

If n is even we have a different answer.

Lemma 3.12. If n is even then Jn-X cz^N^.

Proof. Let aeW(yjci Jn_t . Then a, by Theorem 3.9, is a product of one, two or three
n-cycles. Arguing as in the first part of the proof of Lemma 3.10, we deduce that a is a
product of one, two or three elements of Nt.

By analogy with Corollary 3.11 we have

Corollary 3.13. Ifn is even then

From (3.1) it is clear that <Nt> contains elements of height less than n—\. The
following lemma is helpful.

Lemma 3.14. Let aeSPn, with h{a)^n-2. Then there exists £, in Nt and P in SPn

such that h(P) = h(ot)+l and a = j?£.

Proof. Write /i(a) = h and

JOl a2...ah\
Kb, b2...bj

Let xeXXjaj,...,ah} and let

where n — h^2 by assumption. Define

P U b3...bh
a2...ah-1 ah x _

then h(P) = h+l, £eNu and a = H-

Next, we have

Lemma 3.15. Jn-2^ N\.
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Proof. Let a eJn_ 2. Suppose in fact that

with p±q, r±s. We can still "complete" a to make a permutation, but there are now
two possible completions tiu <x2, where

Since a2 = a1(rs), exactly one of au a2 is an even permutation: let a be the unique even
completion of a. By Theorem 3.9 we have n-cycles (, T such that <X = (T. This applies even
if a is itself an n-cycle, for that can happen if n is odd, and Lemma 3.2 makes it clear
that a cycle of odd length n can be expressed as a product of two n-cycles. Now let

be such that y = £, $=T. Then a = ySeNj as required.

Remark 3.16. In the next section we shall require a slightly modified version of this
result. In the above proof we took

y = C|(Z\{p}), 8 = x\(Z\{qQ).

If instead we take

y' = (\(Z\{p,q}), <5' = T| (Z\{P

we again obtain a = y'8', but y',5' are now in NnJtt_2- Thus

From Lemmas 3.14 and 3.15 we have

Corollary 3.17. / / h(ot) = n-r then aeN\.

Our main result is now clear:

Theorem 3.18. For n ̂  3 let SPn be the inverse semigroup of all proper subpermutations
of {1,.. . , n}, and let Nt be the set of all nilpotents of height n—\ in SPn.

(i) If n is even then

(ii) / / n is odd then
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where Wn_l consists of those elements of height n—\ whose completions in Sn are odd
permutations.

Remark 3.19. Because of Lemma 2.5 the result of Corollary 3.17 is best possible in
the sense that /i(a) = n — r implies that a^N'^1. Hence the result of Theorem 3.18 is also
best possible. That is

4. The inverse subsemigroup generated by all nilpotent elements

From (2.4) it is clear that no product of elements (nilpotent or otherwise) in
J 0 U " ' u J , _ 2 c a n n e m Jn-i- Since (N^ contains J o u - u J n _ 2 we thus have
(N} = (N ty and so in one sense we gain nothing by using the whole of N as a set of
generators rather than Nl = Nr\Jn_l. If we define A«Af» to be the unique k such that

<JV) = iVuJV 2 u-uN k ,

then from Theorem 3.18 we deduce that

We shall see that this is in fact a very poor bound.
First, we have

Lemma 4.1. Let r e { 2 , . . . , n - l } . / / Jrc(NnJr)
k then Jr-l^(NnJr_1)

k.

Proof. Suppose that Jr^(Nr\Jr)
k, and let aeJr-v Let peZ\doma, qeZ\im<x and

define a* e Jr by

xa* = xa (xe dom a), pa* = q.

By hypothesis, a* = y*... yjf, a product of k nilpotents of height r. Write

then tkyt = py*... yJ = pa* = q. Define

yi =yf |(domy*\{p}), yI. = y1*|(domyI*\{t1.})

(i = 2, . . . ,k) . Then yl 5 . . . ,y* are nilpotents in J r _ t and u = yl...ykas required.

If n is even then by Corollary 3.13
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and from the remark following the proof of Theorem 3.9 it is clear that 3 is best
possible. If n is odd then Corollary 3.11 gives

From the Remark 3.16 we know that for all n

Hence from Lemma 4.1 we may now deduce

Theorem 4.2. For n ̂  3 let SPn be the inverse semigroup of all proper subpermutations
of {l,...,n}, and let N be the set of all nilpotents in SPn. Let A « N » be the unique k such
that

Then A«A?» = 2 or 3 according as n is odd or even.
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