3
Satellite Orbits

3.1 Introduction

As discussed in Chapters 1 and 5, Interferometric synthetic aperture radar (InSAR)
can measure surface deformation to a fraction of the radar wavelength of
10-20 mm. This involves two basic measurements that are equally important and
should ideally have similar accuracy. The first is the range between the satellite
and a reflector on the surface of the Earth, which is measured from the two-way
travel time of the radar waves. The second is the position of the satellite with
respect to an Earth-fixed coordinate system. The precise trajectory of the satellite
is computed using GNSS and laser tracking systems combined with satellite orbit
dynamic calculations (e.g., Teunissen and Montenbruck (2017)). This precise orbit
is used in four areas of the InSAR processing discussed later in this chapter: proper
focus of the SAR image; projection of the reference topography from geographic
to radar coordinates (i.e., back projection); alignment of the reference and repeat
SAR images; and flattening of the interferogram. These are the four main steps of
traditional InSAR processing. A newer approach uses the orbit to directly focus the
SAR image onto a reference Earth topography, which is known as geocoded single
look complex (SLC) processing as discussed in Section 5.10. These approaches rely
on precise orbits having accuracies of a few centimeters. This orbital information
is provided with the SAR data as a state vector, which consists of the Cartesian
position x and velocity v of the satellite as a function of time. The six-element state
vectors are provided at regular intervals at sub-mm precision (Table 3.1). Later in
this chapter we describe how the discrete state vectors are interpolated in time using
a Hermite polynomial interpolator. This interpolation is at the core of any InSAR
processing system.

Before diving into the largely opaque numerical orbit calculations, it is worth
reviewing some basic orbit geometry and dynamics. As shown in Figure 3.1,
there are two basic types of satellite orbits called near polar and geostationary.

19
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20 3 Satellite Orbits

Table 3.1 Example state vectors for the Sentinel-1 satellite (* LED in GMTSAR).

year day seconds X (m) Y (m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)

2015 145 6334.00 -3254984.5766 -5923132.6241 2088724.6473 -350.947452 2705.794737 7091.076582
2015 145 6344.00 -3258291.5669 -5895740.5804 2159516.0837 -310.428195 2772.553006 7067.077378
2015 145 6354.00 -3261192.7003 -5867682.7971 2230063.5333 -269.776909 2838.941373 7042.279672
2015 145 6364.00 -3263686.6821 -5838963.0117 2300359.0251 -228.998736 2904.952133 7016.686286
2015 145 6374.00 -3265772.2692 -5809585.0386 2370394.6167 -188.098844 2970.577632 6990.300137
2015 145 6384.00 -3267448.2704 -5779552.7686 2440162.3955 -147.082425 3035.810270 6963.124233
2015 145 6394.00 -3268713.5465 -5748870.1679 2509654.4793 -105.954694 3100.642499 6935.161670
2015 145 6404.00 -3269567.0106 -5717541.2783 2578863.0174 -64.720890 3165.066825 6906.415639
2015 145 6414.00 -3270007.6282 -5685570.2159 2647780.1916 -23.386274 3229.075810 6876.889419
2015 145 6424.00 -3270034.4175 -5652961.1712 2716398.2166 18.043873 3292.662073 6846.586380
2015 145 6434.00 -3269646.4498 -5619718.4079 2784709.3415 59.564247 3355.818288 6815.509981
2015 145 6444.00 -3268842.8494 -5585846.2631 2852705.8503 101.169526 3418.537188 6783.663770

(@)

near polar

geosynchronous

(b)

Sun-synchronous

Figure 3.1 (a) The two most common types of orbits used for satellite remote sens-
ing (near polar) and communications (geosynchronous). (b) A Sun-synchronous
orbit has a precession rate of 1 year to maintain constant Sun illumination for
optical sensors.
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3.2 Kepler Elements 21

Near-polar orbits are commonly used for remote sensing applications. They have
altitudes of between 400 and 1500 km above the surface of the Earth. The orbit
plane is inclined with respect to the equatorial plane of the Earth to achieve near-
polar coverage. As discussed in the simple force balance calculation later, these
satellites complete one orbit in about 6 000 seconds so their ground-track speed is
about 6.7 km/s. The equatorial bulge of the Earth causes the orbit plane to precess
like a top. The rate of precession can be adjusted to achieve a particular orbit repeat
cycle or maintain a constant Sun illumination. The Sun-synchronous orbit (dis-
cussed later) is used by optical remote sensing satellites to maintain a constant Sun
illumination direction. Satellites in geosynchronous orbit have an orbital period of
one sidereal day (86 164 s), which requires a much larger orbital radius of 42 000
km. These satellites remain fixed at a particular longitude above the Earth’s equa-
tor and are used mainly for communications as well as to track large-scale weather
patterns. InSAR satellites are usually placed at low altitudes of ~700 km and have
high inclinations for near full Earth coverage.

3.2 Kepler Elements

As discussed earlier, the trajectory of a satellite can be most accurately described
by a time series of state vectors having three position elements and three velocity
elements. A second way of describing the satellite orbit is through six Kepler ele-
ments (Kaula, 1966). The geometry of a satellite in an elliptical orbit around the
Earth is shown in Figure 3.2.

b

v

Figure 3.2 Diagram of a satellite S in an elliptical orbit around the Earth E.
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22 3 Satellite Orbits
The important parameters of the elliptical orbit are:

S — satellite

E — Earth
A — apogee
P — perigee

a — true anomaly (instantaneous angle from satellite to perigee)
a — semimajor axis

b — semiminor axis

e — eccentricity

2 32
where ¢% = <=2

Note they are not all independent, so, for example, the semiminor axis can be
replaced by the eccentricity parameter. Three of these parameters, a, a, and e, are
Kepler elements describing the size and shape of the orbit.

Kaula (1966) solves the general force balance for a particle of negligible mass in
orbit about a large point mass M. He shows that the orbit follows an ellipse where
the angular momentum r>%% remains constant. This is Kepler’s second law. The

dt
shape of the ellipse and the orbital radius versus the true anomaly are

2
2 a (1 —e )
— 4 — = 1 = = 31
a’>  b? (@) l+ecosa -1
For an elliptical orbit about a point mass, the orbit frequency is given by
1/2
GM
wWg = (—3) > (3.2)
a

and the period of the orbit is 7 = (27” where GM (3.98... X 1014m3s‘2), the gravita-
tional constant times the mass of the Earth, is one of the most accurately determined
constants in Earth science. We can check this result for the simple case of a circular

orbit. Consider a force balance on a small mass m orbiting the Earth (Figure 3.3).

g c
° IV
GM a m

Figure 3.3 Force balance diagram of a small satellite of mass m in orbit about the
Earth with a much larger mass M.
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3.2 Kepler Elements 23

The inward-directed force of gravity is Fyg = mi—jy, while the outward-directed

VZ

o= maw? where V is the velocity of the satellite.

1/2
Equating these forces, we find w; = (Ga—/;”) / . Note that the orbital frequency

decreases with increasing orbit radius a. A typical polar-orbiting satellite has an
altitude of 700 km so an orbital radius of 7071 km and an orbit period of 5921 s.
The circumference of the Earth is about 40 000 km so the ground track speed of this
satellite is 6.75 km/s. A satellite in a higher orbit of 1500 km has a ground track
speed of 5.8 km/s. As discussed in Chapter 2, this nominal velocity of ~6 km/s
places a lower bound on the pulse repetition frequency of 2V/L or 1200 Hz for a
10 m long antenna.

A geosynchronous satellite orbits the Earth in one sidereal day (86 164 s — the
rotation period in an inertial frame) so must have an orbital radius of 42 000 km.

Figure 3.4 shows the elliptical satellite orbit placed in an Earth-centered, quasi-

centrifugal force is F. =m

inertial coordinate system where the z-axis points toward the north pole, the x-
axis points toward the Sun, and the y-axis is 90° east along the equatorial plane of
the Earth. The orientation of the elliptical orbit plane in this system is defined by
three angles, which are three additional Kepler elements. They are the inclination of
the orbit plane with respect to the equatorial plane of the Earth (i — inclination), the
longitude of the point where the ascending orbit crosses the equatorial plane of the
Earth (Q — longitude of node), and the angle between the ascending crossing point
(node) and perigee (w — argument of perigee). In summary, a complete description
of an ideal elliptical orbit is described by six Kepler elements:

2N

>

Figure 3.4 Diagram of the elliptical orbit in a quazi-inertial coordinate system.
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24 3 Satellite Orbits

a — true anomaly (instaneous angle from satellite to perigee)
w — argument of perigee

Q — longitude of node

a — semimajor axis

e — eccentricity

i — inclination.

3.3 Precession of the Orbit Plane

Because the Earth rotates, it is not spherical and is better described by an oblate
ellipse (spheroid). A more precise description of the Earth’s gravity potential

field is
-GM a2 .9
V(r6)=—— [l—]zﬁ (3sin 9—1)], (3.3)
where:
6 — latitude

a, — equatorial radius
J> — dynamic form factor = 1.08 x 1073,

The dynamic form factor reflects the extra mass on the equatorial bulge of the Earth.
The gravitational attraction of an oblate spheroid has two effects on the orbit. First,
it decreases the orbit frequency (increases the period). Second, it causes the orbit
plane to precess with respect to the inertial frame. The precession occurs because
the equatorial bulge of the gravity field exerts a torque on the angular momentum
vector of the orbit plane (Figure 3.5).

For a circular orbit, the precession frequency is given by

2 T
&:_32(&) cosi= > (3.4)

Ws 2 \a )

where:
Wy = 2T—” — precession frequency and period T},
n

ws = ZT—” — satellite orbit frequency and orbit period

S

a, — equatorial radius

a — orbital radius

J, — dynamic form factor = 1.08 x 1073
i — inclination of satellite orbital plane.

Note the precession is retrograde for 0 < i < 90° and prograde for i > 90°. Later we
discuss how the orbit inclination and orbit radius can be adjusted so the precession
is prograde and has a period of exactly 1 year.
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3.4 Ground Track of Circular Orbit 25

Z

Figure 3.5 Satellite of mass m orbiting the Earth at an inclination i. The orbit has
an angular momentum vector L perpendicular to the orbital plane. The 6§ com-
ponent of the gravity vector applies a torque to the orbit, causing a retrograde
precession of the angular momentum vector and thus a precession of the orbital
plane.

3.4 Ground Track of Circular Orbit

(These Sections 3.4 through 3.6.6 are optional reading.) In many remote sensing
applications, we would like to predict the path traced by the subsatellite point along
the surface of the Earth (Figure 3.6). This could be accomplished by running an
orbit simulation program. However, in many cases one only needs to know the
approximate location or velocity of the satellite. Two applications include:

a) Suppose you know the basic orbit parameters (Kepler elements) of a
LANDSAT-type satellite and you want to know how long it will take before
the satellite is over your target area.

b) You have satellite altimeter profiles and you know the longitudes of their equa-
tor crossings. Given an equator crossing, you would like to know if the track
intersects a particular area; this can be used to design an efficient way to search
profiles. A related application is to align altimeter profiles along tracks so they
can be compared to look for ocean variability. A crude alignment can be done
using Kepler elements. Here we derive simple analytic formulas for the ground
track of a satellite in a circular orbit about a rotating Earth.

Many remote sensing satellites have nearly circular orbits (e <0.01), so we’ll
assume e = 0.0. Since the orbit is circular, the argument of perigee w is no longer
relevant. The basic problem is to map the position (Figure 3.7) of a satellite track in
a circular orbit (inertial frame) into an Earth-fixed coordinate system (Figure 3.8).
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26 3 Satellite Orbits

Figure 3.6 Satellite in a circular orbit around an elliptical Earth where:
wy — satellite orbit frequency

w, — Earth rotation frequency = 27/86 164

wy — precession frequency.

Figure 3.7 Satellite S in the coordinate system of the orbit plane where:
g1 =COS @ = COS Wyt

g = sin @ = sin w;t

g3 =0.

Let ¢ = 0 be the time when the satellite crosses the Earth’s equator on an ascending
orbit at a longitude of A4,.

Two rotations are needed to align the satellite frame q to the Earth-fixed frame x.
First, the q-frame is rotated by an angle i about the g; axis to account for the incli-
nation of the orbit plane with respect to the Earth’s equatorial plane. Second, the
system is rotated about the x3 axis to account for the Earth’s rotation rate minus the
precession rate of the orbital plane in inertial space.
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3.4 Ground Track of Circular Orbit 27

4 north pole
z

Greenwich

Figure 3.8 Earth-fixed coordinate system where:
x=cosfcos A

y=cosfsin A

z=siné.

Let Q= (w, — wy) t = w’.t where w’, is the Earth rotation rate minus the orbit
precession rate. The satellite position in the x-frame is related to the satellite
position on the g-frame as follows:

x=R; (-Q)R; () q (3.5)
or
X cosQ sinQ 0|1 Ccos @
yl=|—-sinQ cosQ 0] |0 cosi —sini| [sina (3.6)
Z 0 0 1110 sini cosi

By solving the rotations explicitly, one can derive analytical expressions for map-
ping from the satellite frame to the Earth-fixed frame and vice versa. Multiplying
matrices yields

cos 6 cos A =cos Q cos a + sin Q cos i sin «
cos @ sin A = —sin Q cos @ + cos 2 cos i sin «. 3.7
sin @ = sin i sin &
The last equation relates latitude to the time since the equator crossing and vice
versa.
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28 3 Satellite Orbits

0 (t) = sin™! (sin w,t sin i)
sin 9) (3.8)

t(@):ws_lsin_l( —
sin i

The cosine and sine of the longitude (relative to 1,) at some later time are given by

€oS W’ coS Wyt + Sin w’ .t sin wyt COS i
cos d =

cos @
(3.9)

0 2 (—sina)’etcosa)st+cosw’etsina)stcosi)
sin A = )

cos @

By combining these two expressions and adding the zero-time longitude, the
longitude at a later time is

(3.10)

_1 [ —sinw’ .t cos wgt + cos w’ .t sin wst cos i
ﬂ(t)ztanl( ¢ d c > )+/la

COS W', COS Wyt + SIn w1t SIN wgt COS I

These equations, 3.8 and 3.10, are approximate formulas to construct the ground
track of a satellite in a circular orbit around a rotating Earth and we use them later
to provide simple descriptions of the main types of satellite orbits.

3.5 Ellipsoidal Earth Model

Throughout this derivation we used geocentric latitude 6, which is the angle
between the equator and a line from the center of the Earth to the point on the sur-
face of the Earth (Figure 3.9). However, geographic latitude 6, is more commonly
used for Earth location and maps. Before satellites were available for geodetic
work, one would establish latitude by measuring the angle between a local plumb
line and an external reference point such as Polaris. Since the local plumb line is
perpendicular to the local flattened surface of the Earth (i.e., spheroid), it points to
one of the foci of the best-fitting elliptical model for the shape of the Earth.

The conversion between geocentric and geographic latitude depends on the
flattening of the Earth f as shown in Figure 3.9.

The radius of the Earth versus latitude is

5 o =172
0 0
;»((9)=(C°S2 +Sm2) , (3.11)
a2 c

where:
a. — equatorial radius = 6378 135 m
¢ — polar radius = 6356 775 m (not to be confused with the speed of light in other

. . _ Qe—C ., 1
chapters) and the flattening of the Earth is f = %= = .
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3.5 Ellipsoidal Earth Model 29

Z
S

de 0 0

spheroid

Figure 3.9 Approximate ellipsoidal shape of the Earth used to relate the geocentric
and geographic latitudes.

The conversion between geocentric and geographic latitude is straightforward and
is left as an exercise. The formulas are

2

C
tan 0 = — tan @
a2 ¢ (3.12)

tang = (1 —f)2 tan 6.

To derive this equation, one starts with the equation for an ellipse Z—z + i—z = 1. Then
take the gradient of this equation and rearrange terms. ’

Example: What is the geocentric latitude at a geographic latitude of 45?7 The
answer is 44.8, which amounts to a 22 km difference in location!

Later in the book we will need to convert a point from geodetic coordinates
(Qg, /l,t), where A is longitude and ¢ is topography above the reference ellipsoid,
into Earth-fixed Cartesian coordinates (x,y,z) (Figure 3.8). The conversion is

x=(N+1)cos 6gcos A

y= (N2+ 1) cos B, sin A (3.13)
z= (c—2N+t) sin 6,
ae

where

a?

N= < . (3.14)
172
(agcos2 0, + ¢ sin” Gg) !
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30 3 Satellite Orbits

3.6 Special Orbits

This simple circular orbit calculation provided the mathematical tools to describe
several commonly used orbits.

6= sin™! (sin wgt sin i)
sin 9) (3.15)

1(0) = w;'sin™! (—
Sin 1

(3.16)

1 [ —sin w’ .t cos wgt + cos w’ .t sin wst cos i
/l(t)ztanl( ¢ z ¢ > ) Ao,

COS W', COS Wyt + SIN W', SIN Wyt COS i

3.6.1 Zero Inclination Orbit

In this case, i = 0, and the orbit precession frequency is zero.

Using formulas for the sine and cosine of sums of angles (e.g., sin(a —b) =
sin a cos b — cos a sin b), one can simplify the longitude function to the obvious
result

sin (wg — we) t

A(f) =tan™! [ ] = (W5 — W) I. (3.17)

cos (wg — we) t

3.6.2 Geostationary Orbit

In this case, i =0, w; = w, =27/86 164.

The satellite orbit frequency matches the Earth rotation rate. From the
Equation 3.2, we have an expression for the orbit frequency versus orbital radius.
Geostationary required an orbital radius of 42 170 km or about 6.6 times the Earth
radius. Usually this type of orbit is used for communications or for monitoring
the weather patterns from a global perspective. Coverage of this type of orbit is a
small circle of radius 55° centered on the subsatellite point. About six satellites are
needed to provide a complete equatorial view of the Earth and these orbits are not
used for high-latitude coverage.

3.6.3 Geosynchronous Orbit

In this case, i #0, w; = w,.

With a nonzero inclination, this orbit can cover higher latitudes, but it spends
only 1/2 of its time in the correct hemisphere. Inserting these parameters into the
above-ground track equations and neglecting the precession frequency of the orbit
plane, one obtains

Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 07:50:38, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009606226.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009606226.004
https://www.cambridge.org/core

3.6 Special Orbits 31

-

Figure 3.10 Ground track of a satellite in geosynchronous orbit traces out a
figure 8.

=1, s,
6 () =sin™ (sin wet sin i)

COS Wt Sin w,t (cosi—1) (3.18)
5 .

A()= tan™! [

cOS2w,t + cOS isin“w,t

Now consider the case of small inclination, so cosi=1— ’7 The denominator
is about 1 and the numerator can be simplified, so the approximate results for
longitude and latitude versus time are

A() =t -1(i21'2 t) ,-2.2 t
= tan — — SIn 2w = — SIn Zw
22 ‘ ¢ (3.19)

0= ST (Sin w,t sin i) = i sin w,l.

The latitude varies as a sine wave with a frequency of w,, while the longitude varies
like a sine wave with a frequency of 2w,. At ¢ =0, both the latitude and longitude
are zero. The ground track of the orbit follows a figure 8 (Figure 3.10).

3.6.4 Sun-Synchronous Orbit

For many remote sensing applications, especially optical, it is important to have the
ascending node pass over the equator at the same local time so the Sun illumination
angle is the same on every orbit. To create a Sun-synchronous orbit, the plane of
the orbit must precess in a prograde direction with a period of exactly 1 year.

wn =27/(365.25 x 86 400) = 1.991 x 10~ "s7!

w, _ 3D

2
_ a . . . . o
Remember =" (f) cosi so prograde precession requires i > 90°. Thus

the orbital inclination is dictated by the orbital altitude. For example, the
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Figure 3.11 Inclination versus altitude for a Sun-synchronous orbit. Three exam-
ples of optical remote sensing satellites show excellent fits to this simplified
analysis.

Sun-synchronous LANDSAT satellite has an orbital altitude of 705 km (radius
a=6980 km) so must have an inclination of 98.2° (Figure 3.11). For a typical
altitude range of remote sensing satellites of 400—1 000 km, the inclination for a
Sun-synchronous orbit is quite narrow (97-99.5°).

3.6.5 Orbits Tuned for Ocean Altimetry and InSAR

The following is desirable for ocean altimetry/InSAR:

(a) Ascending and descending tracks should cross at a high angle to resolve both
components of sea surface slope/deformation.

(b) One should be aware of the aliasing of lunar and solar tides into the
height/deformation.

(c) One should choose a repeat cycle that will optimize spatial and temporal
coverage.

(d) High-latitude coverage may be desired for ice topography and deformation.

Example: The Geosat radar altimeter was launched in 1985 to measure the topog-
raphy of the ocean surface in support of the Trident submarine program. The main
objective of the first 1.5 years of the mission was to obtain complete marine cov-
erage with tracks that cross at high angles for optimum gravity field recovery. An
inclination of 108° provides the best compromise. However, this retrograde orbit
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3.6 Special Orbits 33

is nearly Sun-synchronous, which leads to aliasing of daily solar tide into a much
longer period of time.

After Geosat completed its 1.5-year mapping mission, it began an extended
repeat mission to observe changes in ocean topography associated with mesoscale
currents. To measure changes, it was placed in an orbit having a ground track that
repeats every 17.05 days. Of course, this was not optimal in terms of aliasing Iunar
and solar tides.

tide period (hours) period (days) phase shift after 17.05 days
M2  principal lunar 12.421 0.5175 20°
K1  luni-solar 23.934 0.997 34°
S2  principal solar  12.00 0.500 36°
Ol  diurnal lunar 25.819 1.076 54°

The Topex orbit was designed to minimize tidal aliasing. It was placed in a
prograde orbit having an inclination of 66° and a repeat cycle of 10 days.

3.6.6 Exact Repeat Orbits

For applications measuring changes in surface deformation (i.e., InSAR) or
changes in ocean topography (i.e., ocean altimetry), the orbit must retrace its
ground track. To accomplish this there must be an integer relationship between
the orbit frequency and the rotation rate of the Earth relative to the precessing orbit
plane.

2n ) ) . .
ny = time for n; rotations of the Earth relative to the orbit plane
We — Wy,

by o . .
—ny = time it takes the satellite to complete n; orbits
Wy
Setting these two times to be equal provides an expression relating orbit frequencies
to integer repeats.
2r 2r We—W, n
P PN i L 3 (3.20)
We — Wy Wy Wy na
For example, consider the Sentinel-1 SAR, which has 175 orbit cycles in 12 days.
This requires the following orbit frequencies:

W, =7.292x107 57!

ws=1.041 x 107371
ni

Wy = We — Ws—.
np
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Figure 3.12 Ground track of Sentinel-1 computed using Equations 3.15 and 3.16
and an inclination of 98.2°.

An example of the Sentinel-1 ground track is shown in Figure 3.12. This is a
retrograde orbit, so the ascending tracks go in a northwest direction and reach a
maximum latitude of 81.8°.

3.7 Precise Orbits for InSAR

The earlier discussion on Kepler elements provides an overview of orbit kinemat-
ics and dynamics. However, these simple approaches are not sufficiently accurate
for InSAR processing, which relies on orbit accuracy of 20-50 mm. In this section
we describe the precise orbital information that is currently available with standard
remote sensing products. The development of methods for constructing these pre-
cise orbits from a combination of precise tracking (GNSS, satellite laser ranging
(SLR), and Doris) mainly comes from the radar altimeter community where they
require radial orbit accuracy of better than 20 mm to achieve their objectives for
monitoring global sea level (Cerri et al., 2010).

As shown in Table 3.1, the precise orbit is provided as state vectors having a
time spacing of 10-60 seconds. The typical InSAR satellite travels 70 km during
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3.7 Precise Orbits for InSAR 35

the 10-second time interval, so there may be four or fewer state vectors during a
typical 250 km SAR image frame. To perform the SAR processing, we will need
a precise position every 1/2 antenna length or about every 5 m. Remarkably, mm-
accuracy interpolation can be achieved by an algorithm called Hermite polynomial
interpolation. For satellite orbits, the interpolator uses six position points and the
corresponding six velocity points to construct a smooth interpolating function that
exactly matches the six position and six derivative (velocity) points and provides
a smooth interpolation between the central points. Note the state vectors need to
extend at least three points before and after the frame for accurate interpolation.
The state vectors provided with Radarsat-1 SAR data do not extend beyond the
start and end of the SAR acquisition (frame), so the algorithm fails. The accuracy
of the Sentinel-1 orbit is better than 30 mm in the radial and cross-track directions
and 50 mm in the along-track direction. This precise orbital information is used in
four aspects of the InSAR processing discussed next and is the key to robust and
efficient software.

3.7.1 Proper Focus

First proper focus of the SAR image involves the coherent summation of range-
aligned echoes over the length of the synthetic aperture as shown in Figure 3.13.
This is discussed more completely in Chapter 4.

point
reflector

Figure 3.13 Geometry of SAR antenna flying over a point reflector on the ground.
The range R varies with slow time s as measured by the precise orbit provided in
an Earth-fixed coordinate system.
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Therefore, we need to calculate the range as a function of slow time s (see def-
inition of slow time in Figure 1.3.). First consider the case of a straight-line orbit
passing over a fixed-point reflector. The range to the reflector would vary as a
hyperbola with slow time. In the actual case, the orbital path is elliptical and the
Earth is rotating so the range versus time function is a more complicated function.
However, because the synthetic aperture is short (<5 km) compared with the nom-
inal range from the satellite to the reflector (~800 km), a three-parameter parabolic
approximation is commonly used to model range versus time

R(s):R0+R(s—s0)+§(s—so)2+... (3.21)

where R, is the closest approach of the spacecraft to the point reflector and s, is
the time of closest approach. These three parameters, R,, R, and R, are needed to
focus an image (Chapter 4). In terms of the SAR processor, these are called the
near-range R,, the Doppler centroid fpc, and the Doppler frequency rate fz, which
are related to the coefficients of this polynomial

2R —2R

foc = _7 and fp=—=, (3.22)

where A is the wavelength of the radar. When a SAR image is focused at zero
Doppler, the range rate at position s, is by definition zero.

3.7.2 Transformation from Geographic to Radar Coordinates

The second use of precise orbital information is to map every point on the sur-
face of the Earth (lon, lat, topography) into the range and azimuth coordinates of
the radar. This back projecting (SAT_Ilt2rat in GMTSAR) provides a lookup table
(trans.dat in GMTSAR) for transforming between geographic and radar coordi-
nates. The algorithm for creating this mapping is conceptually simple but can be
computationally expensive. The precise orbital information is used to determine the
range from the satellite to a topography grid cell. The approximate time of the min-
imum range is found using a golden section search algorithm (Press et al., 2007).
A second-order polynomial is fit to this range versus time function about the time
of minimum range (Equation 3.21). If the SAR image is focused at zero Doppler,
then the range coordinate of the mapping is simply the minimum range and the
azimuth coordinate is the time of the minimum range. Of course, by definition, the
range rate (Doppler) is zero at this azimuth position. If the radar image was focused
at a Doppler centroid other than zero, then Equation 3.22 can be used to calculate
the nonzero range-rate at this Doppler.

_Afpc
2

R= (3.23)
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3.7 Precise Orbits for InSAR 37

Next, by taking the derivative of the parabolic approximation, one can determine
the along-track time shift that will be produced by focusing at a nonzero Doppler.
This is given by

As = e (3.24)
2R

The corresponding range correction is given by

AR = ZAS. (3.25)

These two corrections are needed in the transformation from geographic to radar
coordinates when the image is focused at a Doppler other than zero.

3.7.3 Image Alignment

The third use of the precise orbital information is to align the secondary images to
the master image to sub-pixel accuracy in order to form the interferogram. (Note
that reference and repeat images refer to individual interferograms, while master
and secondary images refer to a geometrically aligned stack.) There are two main
approaches to this image alignment.

The traditional alignment approach is done in three steps: (1) First, the orbital
information is used to make a rough (1-2 pixel accuracy) estimate of the offset of
the master and secondary images. (2) Then 2-D cross-correlation of sub-patches of
data (e.g., 64 by 64 pixels) is used to estimate the affine transformations needed to
map the secondary image onto the master image. As described earlier, the trajec-
tories of the master and secondary images are very smooth so their differences in
both the range dr and azimuth da coordinates are well described by the following
equations:

dr=cy+ ciry + caay, (3.26)

da = c3 + cary + c5a,,
where r,, and a,, are the range and azimuth coordinates of the master image and
there are six unknown coefficients cg to c¢s. The coefficients are determined by fit-
ting planes to the range and azimuth offset data derived from the cross-correlation
of the sub-patches. It seems reasonable that six parameters are sufficient to com-
pletely account for the affine transformation because the orbit is well described by
a six-element state vector and the differences in the master and secondary state
vectors are very small over the time span of the radar acquisition. (3) The final step
is to use a 2-D sinc-function interpolator to resample the secondary image into the
coordinates of the master image (resamp in GMTSAR). The accuracy of the align-
ment depends on the coherence between the master and secondary images. When
coherence is high, the two images can be aligned to 0.1 pixel accuracy. When the
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38 3 Satellite Orbits

coherence is low, the alignment can be worse than 1.0 pixel. The method fails when
the master and secondary images have poor correlation.

A second more accurate alignment approach utilizes the 50 mm accuracy of
the precise orbits to perform the alignment geometrically. The advantage of this
approach is that it is accurate to a small fraction of a pixel and there does not need
to be any corelation between the master and secondary images. The preprocessing
starts with a pixelwise estimate of range and azimuth offsets using precise orbits
and a downsampled (~360 m) digital elevation model (DEM), which covers the
region of the SLC satellite images. The precise orbit is used to back-project each
pixel in the DEM (lon, lat, ellipsoidal height) into the range and azimuth coordi-
nates of the master and secondary images. The algorithm first uses a golden section
search method (Press et al., 2007) to quickly find the closest point at the PRF
sampling between the orbital trajectory and the topography pixel. Then a poly-
nomial refinement algorithm is used to improve the numerical accuracy to better
than 10 mm in the azimuth coordinate. The range coordinate is the range between
the antenna and the topography pixel evaluated at the corresponding azimuth coor-
dinate. Note that the range rate or Doppler is zero at this closest point. A correction
for alignment to a nonzero Doppler is discussed in Section 3.7.2. The differences
between the range dr (r,a) and azimuth da (r,a) of the secondary image with
respect to the master image are used to construct a dense look-up map of range
and azimuth shifts, using a surfacing technique described in Smith and Wessel
(1990). After these maps are generated, the coregistration is done pixelwise, which
accounts for topography variation across the full image.

3.7.4 Flattening Interferogram

The fourth use of the precise orbit is for calculating the parallel and perpen-
dicular components of the interferometric baseline that are needed for removing
the interferometric phase for the range differences to every pixel in the image
(SAT_baseline in GMTSAR). This correction depends on both the orbital trajec-
tory and the shape of the Earth, including the ellipsoidal, geoidal, and topographic
components given in Chapter 4. If this is done in a consistent way, then long swaths
of data can be calculated on a frame-by-frame basis and seamlessly merged in geo-
graphic coordinates. This is only possible because the baselines, orbital heights, and
topographic data are all seamless at the frame boundaries. This seamless recombi-
nation of interferograms requires that the user select a common Earth radius and
near range for the entire swath in the file configure.txt in GMTSAR. This fea-
ture is especially useful for ScanSAR-to-ScanSAR interferometry because each of
the ScanSAR subswaths can be processed independently at their original azimuth
sampling rate (i.e., PRF) and then reassembled in geographic coordinates without
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adjustment. Frame-by-frame processing also has an advantage because the file size
of one complex SAR image and its interferometric products can be far less than the
2 Gbyte file limit on older 32-bit computers. Second, one can easily take advantage
of multiple processors that are available on many computers to process multiple
frames of interferometric products simultaneously, without having to rewrite any
computer code.

3.8 Problems

1. Precise orbital information is used in four areas of InSAR processing. Describe
the four uses.

2. A satellite orbit can be represented by six parameters. Describe two approaches
to defining these six parameters. How many parameters are needed to align
a secondary image to a master image for interferometry? Why not more or
fewer? (Also discussed in Section 8.5.)

3. The natural coordinates of a radar image have range or time along one axis and
azimuth or slow time along the other axis. Why is the term slow time used?

4. Describe an algorithm to transform a point on the surface of the Earth
(longitude, latitude, elevation) into radar coordinates.

5. When a SAR image is focused at zero Doppler, the radar coordinates of a point
reflector correspond to the minimum range. Why? Derive the Equations 3.24
and 3.25 for adjusting the range and azimuth coordinates when an image is
focussed at a nonzero Doppler.

6. GMTSAR uses a quadratic function to approximate the changes in baseline
(horizontal and vertical) along the image frame. The quadratic formula is:

B(s):a+bs+cs2

where s is slow time ranging from the start to the end of the frame [0, TT].
Suppose the actual baseline is measured at three times along the frame 0, %, T
and the values are Bj, By, B3. Derive an expression for the parameters a, b, c.
The forward model is

B, 1 0 O a
_ T T?

By |= 7 T

B; 1 T T? c

7. Satellite orbital information is commonly provided as state vectors of position
and velocity at regular intervals (e.g., 1 minute). Hermite polynomial interpo-
lation is often used to interpolate the orbit to the full sampling rate of the radar
(e.g., 2000 Hz). What are the strengths and weaknesses of this approach? (This
may require a literature search.)
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40 3 Satellite Orbits

8. Explain the terminology: master and secondary, reference and repeat.

9. Given a satellite in a circular orbit around the Earth at an orbital frequency of
w;s and an inclination of i, develop a formula for the latitude velocity d6/dt of
the satellite. (Assume a spherical Earth.) What happens when the inclination is
90°? What happens when the inclination is 0°?

10. Calculate the ground track for a satellite in a circular orbit about a spherical
Earth. (Don’t worry about converting from geocentric to geodetic coordinates.)
Use this formula to calculate and plot the ground track of any remote sensing
satellite. The following parameters will produce an exact 10-day repeat track
for the Sentinel-1 satellite.

w,=21/86164.1

ws =271/5908
W =W, — Wy 755
1=98.2-%

180
0(r) = sin”! [sin Wyt sin i]
_ =1 n—1 [siné
t(0) =w; sin [—sim.]
_ —_1 [ —sinw}cos wst+cos wit sin wyt cos i
A(t) = tan [ COS W) COS Wyt+sin W)t sin wt cos i + 4o
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