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Abstract. Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products
of the standard representation of sl2 , where they use singular blocks of categoryO for sln and trans-
lation functors. Here we construct a positive characteristic analogue using blocks of representations
of sln over a field k of characteristic p with zero Frobenius character, and singular Harish-Chandra
character. We show that the aforementioned categorification admits a Koszul graded li�, which
is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using
coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian
refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse
equivalence on the derived categories for complementary Grassmanians. �is is part of a larger
project to give a combinatorial approach to Lusztig’s conjectures for representations of Lie algebras
in positive characteristic.

1 Introduction

In [4], Bernstein, Frenkel and Khovanov categorify the action of sl2 on the tensor
product (C2)⊗n using singular blocks of category O for sln . In [24], Frenkel, Kir-
illov and Khovanov show that the classes of the simple objects in these represen-
tation categories match up with the dual canonical basis in (C2)⊗n , specialized at
q = 1. �ese results can be used to give a combinatorial approach to the Kazhdan–
Lusztig Conjectures in type A, and categorical techniques have since been used
widely in representation theory. In the present paper, we extend this approach to
representation categories of Lie algebras in positive characteristic. We show that the
resulting categorification can be equipped with a Koszul grading, using the theory
of geometric categorical actions developed by Cautis, Kamnitzer, and Licata and
geometric localization theory developed by Bezrukavnikov, Mirković, and Rumynin.
In § 4, we discuss some open questions and give a summary of the sequel [37] based
on the techniques developed in the present paper.

Categorification refers to the idea of li�ing algebraic, and representation theoretic,
structures and maps to the categorical level. In particular, given a linear map between
two vector spaces, the vector spaces are li�ed to categories, and the linear map is
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li�ed to a functor. In many cases, including the one discussed in this paper, and
the one studied by Bernstein, Frenkel, and Khovanov [4], the categories in question
themselves arise in representation-theoretic contexts, and interesting properties of
these representation categories can be deduced using the general framework of
categorification. One of the first examples was given by Ariki [2] and Grojnowski
[25], which says the highest weight modules of ŝln can be categorified using suitable
representation blocks of affine Hecke algebras and their quotients. Chuang and
Rouquier [19] use the categorical framework that they developed to prove Broue’s
abelian defect conjecture. Categorical techniques also play an important role in Elias–
Williamson’s proof of Kazhdan–Lusztig conjectures for categoryO, and applications to
knot homology extending Khovanov homology have been established in the work of
Webster [44], [45]. Recently categorification has been applied to representation theory
in positive characteristic; in particular, see the work of Riche andWilliamson [21], [41]
on p-canonical bases for algebraic groups, and [32] for an overview. See also the work
of the first author in collaboration with Anno [1] and Yang [37] on representations of
sln with two-row nilpotent Frobenius characters.

We are interested in sl2-categorifications. An sl2-representation on a finite-
dimensional complex vector space V consists of a weight space decomposition
V = ⊕r∈Z Vr , linear maps Er+1 ∶ Vr → Vr+2 and Fr+1 ∶ Vr+2 → Vr , such that

Er−1Fr−1 − Fr+1Er+1 = r ⋅ Id
Loosely speaking, when we categorify the representation V, we replace each weight
space Vr by a category Cr such that K0(Cr) ≃ Vr ; and replace the maps Er+1 and
Fr+1 by functors Er+1 ∶ Cr → Cr+2 and Fr+1 ∶ Cr+2 → Cr which satisfy the categorical
sl2 relation (as spelled out in (2.1) in Section 2.1). We will also need Chuang–
Rouquier’s notion of an sl2-categorification, which consists of some extra data: endo-
morphisms X ∈ End(⊕Er), T ∈ End(⊕Er+2 ○ Er) satisfying certain compatibilities
(see Section 2.1).

One of the first interesting examples of this was given by Bernstein, Frenkel,
and Khovanov [4] (and motivated by the geometric constructions from Beilinson,
Lusztig, MacPherson [3], and Grojnowski [25]). �e sl2-representation in question
is V = (C2)⊗n , which has a weight space decomposition V = ⊕0≤i≤n V−n+2i with
dim(V−n+2r) = (nr).�e categoryC−n+2r is taken to be the singular block of categoryO
for sln with Harish-Chandra character µr = −ρ + e1 +⋯+ er (here ρ is the half-sum
of all positive roots, and e1 , . . . , en are coordinates on the Cartan matrix). E−n+2r+1
(resp. F−n+2r+1) are given by translation functors between these blocks, and are given
by tensoring with Cn (resp. (Cn)∗) followed by projection. A basis for K0(C−n+2r) is
then given by the classes of the Verma modules, and this basis is identified with the
standard basis of the weight space V−n+2r . Chuang and Rouquier [19] verify that this
is a sl2-categorification in their sense.

In this paper, we first construct a modular analogue of this result, using blocks
of representations of the Lie algebra g ∶= sln defined over an algebraically closed
field k of characteristic p > n; see Sections 2.2 and 2.3 for more details. We will
be categorifying the same representation V = (C2)⊗n , and will take C−n+2r to be
the category Mod0,µr

(Ug) of finitely generated Ug-modules, on which the Harish-
Chandra center acts via the same generalized central character µr , and the Frobenius
center acts by central character 0. As before, these central characters are carefully
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chosen so that the rank of the Grothendieck group is equal to (n
r
). Again, the functors

E−n+2r+1 andF−n+2r+1 are translation functors between the corresponding blocks, and
are given by tensoring with k

n (resp. (kn)∗) followed by projection.
Here we emphasize that although the sl2-representation being categorified is

defined over C, the categories used in this construction are representation categories
of sln over a field of positive characteristic.�is is closely related to the categorification
constructed by Chuang and Rouquier [19, § 7.5] using representations of SLn(k) (see
Remark 2.11). A more precise statement is given in Section 2.3.

�eorem A Consider the categories C−n+2r =Mod0,µr
(Ug), for 0 ≤ r ≤ n, and the

translation functors E−n+2r+1,F−n+2r+1.�ere exist (explicitly constructed) functors and
natural transformations, which satisfy the conditions of a sl2-categorification in the sense
of Chuang and Rouquier.

�esecondmain result of the present paper is on a graded li� of the categorification
from �eorem A, which is equivalent to one constructed by Cautis, Kamnitzer, and
Licata [13]; see Section 3.3 for more details. When working in the graded setting,
following Rouquier [42], the analogous notion categorifying an action of the quantum
group Uq(sl2) is that of a “strong categorical sl2-action”, recalled in Section 2.1 (see
also [13, § 2.1]). In the construction of Cautis, Kamnitzer, and Licata [13], the category
C−n+2r is taken to be the derived category of Gm-equivariant coherent sheaves on
T∗Gr(r, n) (here Gr(r, n) is the Grassmannian of r-dimensional vector spaces in
k
n , and Gm is the multiplicative group). �e functors that are denoted by E(−n +

2r + 1) and F(−n + 2r + 1) are given by certain pull-push maps using an intermediary
space. �ey show that this fits into their framework of “geometric categorical sl2-
actions”, and consequently deduce that this is a strong sl2-categorification. Upon
taking Grothendieck groups, one obtains the Uq(sl2)-representation V⊗n , where V
is the standard representation of Uq(sl2).

�e graded li� of the modular representation categories in question, denoted

by Mod
fg, gr
0,µr
(Ug), is called the Koszul grading, constructed by Riche [39], using a

localization equivalence that builds upon the framework developed byBezrukavnikov,
Mirković, and Rumynin in [7]. �e localization equivalence yields that:

DbCohGm
(T∗Gr(r, n)) ≃ DbMod

fg, gr
0,µr
(Ug).

�e graded li� of the categorification from �eorem A is obtained from the cate-
gorification of Cautis, Kamnitzer, and Licata [13] via twisting by certain line bundles,
followed by applying the above equivalences to it. See Section 3.3 for a more precise
version of the below.

�eorem B On the categories D−n+2r =Mod
fg,gr
0,µr
(Ug) there are functors E−n+2r+1 ,

F−n+2r+1 and an octuple of natural transforms making it a strong sl2-categorification.
Moreover, this categorification is equivalent to the categorification constructed by Cautis,

Kamnitzer, and Licata [13]. �e forgetful functor F ∶Mod
fg,gr
0,µr
(Ug)→Mod

fg
0,µr
(Ug)

commutes with this categorification and the one from�eorem A.

Corollary �e geometric categorification constructed by Cautis, Kamnitzer, and
Licata [13] admits an abelian refinement.
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�e construction of Cautis, Kamnitzer, and Licata [13] uses derived categories, and
the existence of an abelian refinement is not immediate from the definition. A more
general theory of abelian refinements and exotic t-structures is developed by Cautis
and Koppensteiner [16, Corollary 9.2]. Our proof of �eorem B involves studying the
image of the sl2 functors, under the linear Koszul duality equivalence that is used
by Riche[39]. �is leads us to study coherent sheaves on the Grothendieck–Springer
varieties g̃P. �e category of coherent sheaves studied here is closely related to Cautis
and Kamnitzer’s categorical loop sln action on these categories [12]. See Remark 3.13
for a more precise discussion of these connections, as well as [11], [15]. See also [10],
where Cautis, Kamnitzer and Dodd establish a connection with [4] using D-modules
and Hodge theory.

An explicit derived equivalence Db Coh(T∗Gr(k,N)) ≅ Db Coh(T∗Gr(N −
k,N)) is achieved as a consequence of the categorification by Cautis, Kamnitzer, and
Licata [13], which answered an earlier open question of Kawamata and Namikawa
on whether stratified Mukai flops induced derived equivalences. As an application of
the above theorem, we prove that the derived equivalences induced by these stratified
Mukai flops are perverse equivalences in the sense of Chuang and Rouquier [20].
More precisely, we have the following (namely, we can describe explicitly the change of
t-structures under this class of stratified Mukai flops). See § 2.4 and Remark 3.14 for
a more detailed discussion.

Corollary �e derived equivalence Db Coh(T∗Gr(k,N)) ≅ Db Coh(T∗Gr(N −
k,N)) of Cautis, Kamnitzer, and Licata [13] is a perverse equivalence, when both sides
are endowed with the t-structures coming from the localization of Riche [40].

Organization of this paper

In Section 2, we recall some background material about categorification, and about
modular representations of Lie algebras. We then state in more details and prove�e-
orem A. In Section 3, we recall some background material about Riche’s localization
results; then we state in more detail and prove �eorem B. In Section 4, we discuss
some open problems and further directions.

2 Construction of the Categorification

In this section, we construct the sl2-categorification using blocks of representations
of sln , and prove �eorem A. In Sections 2.1 and 2.2, we collect some background
material about categorification and modular representations of Lie algebras, that will
be used in later sections. �e reader may wish to return to these two sections a�er
reading Section 2.3, and readers familiar with the material may wish to skip Sections
2.1 and 2.2.

2.1 Categorical sl2-actions

We give an overview of categorical sl2-actions, and state some of Chuang and
Rouquier’s results [19]; this subsection is purely expository.
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Definition 2.1 A weak sl2-categorification is the data of an adjoint pair (E , F) of
exact endo-functors on a k-linear abelian categoryA, such that

(1) the action of e = [E] and f = [F] on V = Q⊗ K(A) gives a locally finite sl2-
representation;

(2) A admits a t-structure the heart of which is artinian and noetherian, and the
classes of the simple objects are weight vectors;

(3) F is isomorphic to a le� adjoint of E.

Let V = ⊕r∈ZVr be the weight decomposition, let Ar be the full subcategory
consisting of objects in A whose classes in the Grothendieck group lie in Vr . One
easy consequence of this definition is that we have a decompositionA = ⊕r∈ZAr [19,
Lemma 5].

Definition 2.2 An sl2-categorification is a weak sl2-categorification, together with
the data of X ∈ End(E) and T ∈ End(E2), and q ∈ k×, a ∈ k, such that:

• (1ET) ○ (T1E) ○ (1ET) = (T1E) ○ (1ET) ○ (T1E) in End(E3)
• (T + 1E2) ○ (T − q1E2) = 0 in End(E2)
• In End(E2), we have:

T ○ (1EX) ○ T =
⎧⎪⎪
⎨
⎪⎪⎩

qX1E if q ≠ 1
X1E − T if q = 1

• X − a is locally nilpotent
�e categorical sl2-relation

EF∣A−r ⊕ Id⊕rA−r
≃ FE∣A−r , EF∣Ar

≃ FE∣Ar
⊕ Id⊕rAr

(here r ≥ 0) follows [19, �eorem 5.27] as a consequence of Definition 2.2. Roughly
speaking, a sl2-categorification is a collection of categories Ar ; adjoint functors
between them

Er+1 ∶ Ar → Ar+2 , Fr+1 ∶ Ar+2 → Ar

that satisfy the categorical sl2-relation.�e results of Chuang and Rouquier imply that
the notion of sl2-categorification satisfies this property.

Below we briefly recall the definition of a strong categorical sl2-action; for sake
of brevity, we omit some of the details and refer the reader to [13, § 2.1] for a list
of the compatibilities that must be satisfied. �is data is essentially equivalent to a
representation of the categorical quantum group as defined by Rouquier [42] and
Khovanov–Lauda [33], [34] (see also [13, Remark 2.2], and [17], [9] for related work).
Given these pieces of data, one obtains an action of the quantum groupUq(sl2) on the
split Grothendieck group [14, § 2.2]; thus one may think of this as a categorification of
a representation of the quantum group for sl2.

Definition 2.3 A strong categorical sl2-action consists of the following pieces of
data:
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• For each −n ≤ r ≤ n, a k-linear, Z-graded additive category D(r). Let D(r) = 0 if
r ∉ [−n, n]. Here graded means that each D(r) has a shi� functor ⟨1⟩ which is an
equivalence.

• For each k ≥ 1, functors E(k)(r) ∶D(r − k)→D(k + r) and F(k)(r) ∶
D(k + r)→D(r − k) denote E(r) ∶= E(1)(r), F(r) ∶= F(1)(r); we refer to
E(k)(r), F(k)(r) as the divided powers. An octuple of natural transforms
(η1 , η2 , ε1 , ε2 , ι, π, T̂(r), X̂(r)):

• Adjunction morphisms:

η1 ∶ id→ F(k)(r)E(k)(r)⟨rk⟩, η2 ∶ id→ E(k)(r)F(k)(r)⟨−rk⟩

ε1 ∶ F(k)(r)E(k)(r)→ id⟨rk⟩, ε2 ∶ E(k)(r)F(k)(r)→ id⟨−rk⟩
• Morphisms:

ι ∶ E(k+1)(r)⟨k⟩→ E(k + r)E(k)(r − 1),
π ∶ E(k + r)E(k)(r − 1)→ E(k+1)(r)⟨−k⟩

• Morphisms:

X̂(r) ∶ E(r)⟨−1⟩→ E(r)⟨1⟩,

T̂(r) ∶ E(r + 1)E(r − 1)⟨1⟩→ E(r + 1)E(r − 1)⟨−1⟩
�ese subject to compatibility conditions [13, § 2.1]. 1

�e notion of a “geometric categorical sl2-action” has been developed by Cautis,
Kamitzer, and Licata [13], which is more convenient when working in the framework
of coherent sheaves, and they show that it can be used to construct a categorical sl2-
action. To avoid repetition, we omit the definition [13, Definition 2.2, § 4, § 5].

2.2 Modular representations of Lie algebras

Let G be a semisimple, simply connected, algebraic group, with Lie algebra g, defined
over a field k of characteristic p. Assume that p satisfies conditions (H1)–(H3) [31, B.6].
In the case that we will be studying, where G = SLn(k), g = sln(k), it is sufficient that
p > n. Let g = n− ⊕ h⊕ n+ be the triangular decomposition,W be the associatedWeyl
group, and ρ the half-sum of all positive roots. Recall that we have the twisted action
ofW on h∗:

w ⋅ λ = w(λ + ρ) − ρ
In this subsection we will collect some facts about the representation theory of g, and
refer the reader to Jantzen’s expository article [31] for a detailed treatment.

First wewill need the following description of the center of the universal enveloping
algebra Ug. Define the Harish-Chandra center ZHC to be ZHC = (Ug)G . Given an
element x ∈ g, it is known that there exists a unique x[p] ∈ g such that x p

− x[p] ∈

1Here r is what has been denoted by λ in [13], and k here is what has been denoted by r in loc. cit..
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Z(Ug). �en the Frobenius center ZFr is defined to be the subalgebra generated by
{x p
− x[p] ∣ x ∈ g}. In fact, for p > n, Z(Ug) is generated by ZFr and ZHC [31, § C].

Definition 2.4 For any ν ∈ h∗, its orbit under the Weyl group dot-action ν ∈ h∗//W
defines a character of the Harish-Chandra character ZHC. (We follow the convention
that the Harish-Chandra characters are ρ-shi�ed.) Let Mod

fg
0,ν(Ug) be the full cat-

egory of all finitely generated modules, where the Frobenius center ZFr acts with a
fixed zero character, and ZHC acts via a generalized central character ν ∈ h∗//W . We

will refer toMod
fg
0,ν(Ug) as a block.�e restricted Lie algebraU0g is the quotient ofUg

by the ideal ⟨x p
− x[p] ∣ x ∈ g⟩, and Rep(U0g) is the category of all finitely generated

representations of U0g.

Definition 2.5 A central character ν ∈ h∗ is said to be regular if its (twisted)W-orbit
contains ∣W ∣ elements, and singular otherwise.

�e following decomposition [31, Section C] is why we refer to the categories

Mod
fg
0,ν(Ug) as blocks; we will refer to it as a singular (or regular) block depending

on whether ν is singular (or regular). �e principal block is the one containing the
trivial (i.e. one-dimensional) module.

Rep(U0g) ≃ ⊕
ν∈h∗//W

Mod
fg
0,ν(Ug)

Definition 2.6 Let µ ∈ h∗ be an integral weight, i.e., coming fromΛ = Hom(T ,Cm).
Define U0b to be the quotient of Ub by the ideal ⟨x p

− x[p] ∣ x ∈ b⟩, and kµ the U0b-
module with highest weight µ. �en the baby Verma module Z(µ) is defined as:

Z(µ) = U0g⊗U0b kµ

It is defined analogously to its counterparts in category O, and they share many
properties. Most importantly, the module Z(µ) has unique simple quotient, which we
denote L(µ).�us for any integral weight µ ∈ h∗, we have a simplemodule L(µ); these
are pairwise nonisomorphic, any simple module in Rep(U0g) occurs in this way, and

L(µ) lies in Mod
fg
0,ν(Ug) precisely if µ ∈W ⋅ ν. In other words, the irreducible objects

inMod
fg
0,ν(Ug) are {L(w ⋅ ν) ∣ w ∈W}. �e number of simple objects inMod

fg
0,ν(Ug)

is hence equal to the size of the W-orbit of ν (using the twisted Weyl group action)
[31, Sections C and D].

Definition 2.7 Given a dominant integral weight λ ∈ Λ+ = {⟨λ, α⟩ ≥ 0 for each
positive root α}, let γ = −w0λ. Here w0 ∈W is the long word in the Weyl group, and
let O(γ) be the corresponding line bundle on the flag variety. �en the Weyl module
V(λ) is defined to be the following G-module:

V(λ) = H0(O(γ))∗
Weyl modules can also be defined over the Lie algebra g using the below equiva-

lence, involving the first Frobenius kernel G1. See [30, Chapter 7] for a definition of
the subscheme G1 ⊂ G and [28, Chapter 5] for a proof of the equivalence below

Rep(G1) ≃ Rep(U0g).
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Definition 2.8 �e Weyl module V(λ) ∈ Rep(U0g) is defined by first taking the
image of V(λ) under the restriction map: Rep(G)→ Rep(G1), and then take the
image under the above equivalence: Rep(G1) ≃ Rep(U0g).

Intuitively, the Weyl modules V(λ) may be thought of as the reduction Vλ ⊗Z k,
where Vλ is the irreducible module in characteristic zero, equipped with a Z-form (to
make this precise, one needs the notion of a minimal admissible lattice [35, Section
1.1]. (See [31, Section 2.13] andHumphreys’ expository note [29] formore details about
Weyl modules.)

Let λ ∈ h∗ be the image of λ ∈ Λ a�er reducingmodulo p.�en the moduleV(λ) ∈
Rep(U0g) has a unique maximal submodule, and L(λ) is the quotient [30, Section
2.14]. Further, V(λ) lies in the same block as L(λ) (this follows from the alternative
approach to the Weyl modules using minimal admissible lattices).

Remark 2.9 For readers who aremore familiar with the category Rep(G), it is worth
noting that any irreducible representation ofU0g can be li�ed to an irreducible repre-
sentation ofGwith a restricted highest weight (i.e. a weight λ ∈ ΛZ with 0 ≤ ⟨λ, α̌⟩ < p
for each simple α). More precisely, under the equivalence Rep(G1) ≃ Rep(U0g), the
irreducible L(λ) corresponds to the restriction of the irreducible module for G with
highestweight λ, under the restrictionmapRep(G)→ Rep(G1). All other irreducibles
in Rep(G)may be obtained using the Steinberg tensor product theorem. In this paper,
we will solely be dealing with representations of the restricted enveloping algebraU0g;

more specifically, the blocks Mod
fg
0,ν(Ug).

2.3 Statement of Theorem A

Let g = sln be defined over an algebraically closed field k of characteristic p, with p > n.
Our goal is to categorify the sl2-action on V = (C2)⊗n . Denote its weight spaces,

and the restrictions of the operators E and F between them, as follows (hereV−n+2r = 0
if r ∉ {0, 1,⋯, n}):

V = (C2)⊗n = n

⊕
r=0

V−n+2r , dim(V−n+2r) = (n
r
)

E = n

⊕
r=0

E−n+2r+1 , E−n+2r+1 ∶ V−n+2r → V−n+2r+2

F = n

⊕
r=0

F−n+2r+1 , F−n+2r+1 ∶ V−n+2r+2 → V−n+2r .

Let e i be the diagonal matrices whose (i , i)th entry is 1 and zeros otherwise, so that
the positive roots of g are given by {e i − e j ∣ i < j}, and the simple roots are e i − e i+1
for 1 ≤ i ≤ n − 1. Recall that ρ may be expressed as follows:

ρ = n − 1

2
e1 +

n − 3

2
e2 +⋯+

1 − n

2
en .
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Recall that the fundamental weights are λ i = e1 +⋯+ e i , for 1 ≤ i ≤ n − 1. For 0 ≤ r ≤
n, let us define

µr = −ρ + e1 + e2 +⋯+ er , C−n+2r =Mod
fg
0,µr
(Ug)

From the results of Section 2.2, we see that the Grothendieck group of C−n+2r has
rank (n

r
), i.e., equal to the dimension of the vector spaceV−n+2r . Let k

n be the standard
representation of sln , and (kn)∗ its dual, respectively. Let us define:

E−n+2r+1 ∶ C−n+2r → C−n+2r+2 , E−n+2r+1(M) = projµr+1
(M ⊗ k

n);
F−n+2r+1 ∶ C−n+2r+2 → C−n+2r , F−n+2r+1(N) = projµr

(N ⊗ (kn)∗).(1)

Here projµ for any µ ∈ h//W is the functor taking the direct summand on which the
Harish-Chandra center acts by µ.

Remark 2.10 �ese functors are analogous to those of Bernstein, Frenkel, and
Khovanov [4, �eorem 1, Corollary 1]. Instead of the singular blocks of category O

used there, we use singular blocks of modular representations of sln . �e singular
Harish-Chandra characters we use are the same as used by Bernstein, Frenkel, and
Khovanov [4].

In the below, note that althoughwe are categorifying a representation of sl2(C), the
categories used in this construction are representation categories of sln over a field of
positive characteristic.

�eoremA LetC−n+2r ∶=Mod0,µr
(Ug), and letE−n+2r+1 andF−n+2r+1 be the functors

defined in (1). �ere exist natural transformations satisfying the conditions of a strong
sl2-categorification as in Definition 2.2.

On⊕r K
0(C−n+2r), the functors (1) recover the action of sl2 on (C2)⊗n .

As a corollary, one obtains the categorical sl2-relation, in accordance with [19,
�eorem 5.27]:

F−n+2r+1 ○ E−n+2r+1 ⊕ Id⊕r ≃ E−n+2r−1 ○ F−n+2r−1 ⊕ Id⊕n−r

Remark 2.11 In [19, Section 7.5], Chuang and Rouquier construct an sl2 cate-
gorification using rational representations of G = SLn(k). Using the equivalence
Rep(U0(g)) ≃ Rep(G1), we can restate our categorification using blocks of Rep(G1).
Under the natural restriction map Rep(G)→ Rep(G1), one can show that the
two categorifications are compatible, i.e., the restriction maps commute with the
translation functors between the blocks. We also expect that �eorem A can be
extended to higher Frobenius kernels. Let Gr be the kernel of the rth Frobenius map,
F r
∶ G → G. Our proof relies on manipulations with Weyl modules, which also works

in this level of generality. It would be interesting to compute the sl2-representation
obtained by counting the number of simple objects in the Grothendieck groups of the
categories corresponding to the weight spaces. It is straightforward to check that the
two categorificationswould be compatible, i.e. that the restrictionmaps commutewith
translation functors between the blocks.

Remark 2.12 In Bernstein, Frenkel, and Khovanov’s categorification [4], one has
an explicit identification between the Grothendieck groups of the categories involved
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(singular blocks of category O) and the weight spaces that they categorify. �e classes
of the Verma modules correspond to the standard basis in these weight spaces. In
our setting, we do not have an explicit identification, although �eorem A implies
that an identification exists. �e baby Verma modules all have the same class in the
Grothendieck group, so it is not clear which modules categorify the standard basis.
�is issue is fixed in the sequel to this paper (see Section 3.2 of [39]) by looking at
a graded version of these categories. In that section we also calculate the images of
the baby Verma modules under the translation functors E−n+2r+1 and F−n+2r+1 in the
Grothendieck group; this is a straightforward adaptation of Propositions 6 and 7 in
Section 3.1 of [4]. See also Section 4 for a related discussion.

2.4 Perverse equivalence

�emain result of Chuang andRouquier [19] applied to this setting yields that we have
the existence of a derived equivalence

Φr ∶ D
b(C−n+2r)→ Db(Cn−2r),

li�ing the action of exp(−F) exp(E) exp(−F) ∶ K0(C−n+2r)→ K0(Cn−2r). Further-
more, the behavior of this derived equivalence with respect to the natural t-structures
is controlled by a perversity function as follows.

Let S be the set of simple objects of Cr . We define two filtrations of S:

S i = {V ∈ S ∣ Fi+1V = 0} and S′i = {V ∈ S ∣ E i+1V = 0}.
�ese filtrations on S induced filtrations on Cr by Serre subcategories, denoted by
Cr , i and C

′
r , i respectively. Let DCr , i

(Cr) denote the thick subcategory of Db(Cr) of
complexes with cohomology in Cr , i ; similar for DC′

r , i
(Cr).

�e following is a direct consequence of �eorem A and [20, Proposition 8.4].

Corollary 2.13 For any r and i, Φr[i] restricts to an equivalence D
b
C−n+2r , i

(C−n+2r)→

Db
Cn−2r , i

(Cn−2r), and the induced equivalence between quotient triangulated categories

Db
C−n+2r , i

(C−n+2r)/D
b
C−n+2r , i+1

(C−n+2r) ≅ Db
Cn−2r , i

(Cn−2r)/D
b
C−n+2r , i+1

(C−n+2r)

restricts to an equivalence

C−n+2r , i/C−n+2r , i+1 ≅ Cn−2r , i/C−n+2r , i+1 .

Following the terminologies of Chuang and Rouquier [20], the above equivalence
is a perverse equivalence, with respect to perversity function p(i) = i. In particular,
for two abelian categories A and A′ and a perverse equivalence F ∶ Db(A)→ Db(A′)
with respect to a perversity function p, the abelian category A′ is determined by A and
p and vice versa [20, Proposition 4.17].

2.5 Outline of the proof

To prove �eorem A, first we will show that this gives a weak sl2-categorification as
in Definition 2.1. �is is a consequence of the following two results, the first of which
is well known, and the second is a combinatorial calculation. Note there are infinitely
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manyWeylmodulesV(λ) lying in each block.�is lemma implies that one can choose
a subset that constitutes a basis.

Lemma 2.14 �e Grothendieck group of C−n+2r is spanned by the classes of the Weyl
modules which lie in it.

Proposition 2.15 Suppose that V(λ) lies in C−n+2r . We have the following equality
in the Grothendieck group:

[{F−n+2r+1 ○ E−n+2r+1 ⊕ Id⊕r}V(λ)] ≃ [{E−n+2r−1 ○ F−n+2r−1 ⊕ Id⊕n−r}V(λ)]

�e proofs of Lemma 2.14 and Proposition 2.15 can be found in Section 2.6.
To complete the proof of �eorem A, we need to construct endomorphisms

X ∈ End(E) and T ∈ End(E2), satisfying the compatibilities from Section 2.1. For
this purpose, we follow Chuang and Rouquier [19, § 7.4], where they show that
the categorification constructed by Bernstein, Frenkel, and Khovanov satisfies these
properties.

2.6 Proof of Theorem A

Lemma2.14 is certainly not new, and is known to experts. For the reader’s convenience,
we briefly sketch a proof.

Proof of Lemma 2.14 First, note that the classes of the Weyl modules in Rep(G)
span K0(Rep(G)). To see this, the classes of the irreducibles form a basis, and the
transition matrix between the irreducibles and Weyl modules is upper triangular,
using the standard highest weight theory. Note, however, that this upper triangularity
argument breaks down a�er passing to Rep(U0g).

Recall from Section 2.2 that there is a natural restriction map Rep(G)→ Rep(G1).
Each simple object in Rep(G1) is the image of a simple object in Rep(G) [37, Section
2.2]. Hence the restriction map is surjective on the level of Grothendieck groups.
�erefore, Rep(G1) is spanned by the classes of all (restrictions of) Weyl modules.
We also have

Rep(G1) ≃ Rep(U0g)

and hence all Weyl modules span the Grothendieck group of Rep(U0g). Lemma 2.14
follows now using the fact that Rep(U0g) splits up as a direct sum of blocks, and that
each Weyl module lies in one of these blocks. ∎

Proof of Proposition 2.15 Since V(λ) lies in C−n+2r , λ ∼ µr ; thus, for some w ∈W :

λ = ew(1) +⋯+ ew(r) − ρ
Let us assume that each of the parts of n parts of λ has size at least 1 (if not, simply add
one box to each row of λ; this does not change V(λ) as an sln-module). Let us refer
to the rows indexed by w(1), . . . ,w(r) as being “marked”, and all other rows as being
“unmarked”. Let S(λ) ⊂ Λ+

Z
be the set of weights whose partitions are obtained from

λ by adding exactly one box. Let T(λ) ⊂ Λ+
Z
be the set of weights whose partitions are
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obtained from λ by removing a box in some row. Recall the following two identities:

[V(λ)⊗ V] = ∑
µ∈S(λ)

[V(µ)]

[V(λ)⊗ V∗] = ∑
µ∈T(λ)

[V(µ)].

�ese are well known in the characteristic zero setting. In our setup, note that the
identities hold in K0(Rep(G)) since the character map is an isomorphism onto
the Grothendieck group. Using the aforementioned functor Rep(G)→ Rep(G1) ≃
Rep(U0g), these two formulas follow. By the definitions of E−n+2r+1 , F−n+2r−1, we
have:

[E−n+2r+1(V(λ))] = ∑
µ∈S(λ), µ∼µr+1

[V(µ)]

[F−n+2r−1(V(λ))] = ∑
µ∈T(λ), µ∼µr−1

[V(µ)]

Suppose that µ ∼ µr+1; then for some w′ ∈ Sn , we have that:

µ + ρ = w′(µr+1 + ρ) = w′(e1 +⋯+ er+1)
⇐⇒ µ = ew′(1) +⋯+ ew′(r+1) − ρ

It follows that for a given µ ∈ S(λ), we have that µ ∼ µr+1 precisely if the box being
added does not lie in one of the k marked rows. Similarly, a given µ ∈ T(λ) satisfies
µ ∼ µr−1 precisely if a box being removed lies in one of the r marked rows. Let us say
that an unmarked (resp. marked) row is typical if it is possible to add (resp. remove) a
box in that row; let us call a row atypical if it is not typical. LetQ(λ) ⊂ Λ+ consist of all
weights whose partitions are obtained from λ by adding a box in a typical, unmarked
row, and removing a box in a typical, marked row. �en we have that:

[F−n+2r+1E−n+2r+1(V(λ))] = c1[V(λ)] + ∑
µ∈Q(λ)

[V(µ)];

(c1 is the number of typical, unmarked rows);

[E−n+2r−1F−n+2r−1(V(λ))] = c2[V(λ)] + ∑
µ∈Q(λ)

[V(µ)];

(c2 is the number of typical, marked rows).

It remains to check c1 + r = c2 + (n − r), or equivalently that there is a bijection
between atypical marked rows, and atypical unmarked rows. �is follows from the
observation that the ith row is marked and atypical precisely if the i + 1st row is
unmarked and atypical. To see this, if the ith row is marked, and atypical, then

λ i+1 = λ i . However, using the explicit formula for λ and ρ, λ i+1 − λ i = 0, 1 or 2, with
the first case only occurring when i ∈ {w(1), . . . ,w(r)}, and i + 1 ∉ {w(1),⋯,w(r)}.
Hence the (i + 1)st row is unmarked and also atypical; the converse follows
similarly. ∎
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Example 2.16 Let g = sl5 , r = 2 and p = 7. �e weight λ = (20, 13, 7, 2, 2) satisfies
λ ∼ µ2, since λ = e1 + e4 − ρ and µ2 = e1 + e2 − ρ. �en:

[E0(V(λ))] = [V(20, 13, 8, 2, 2)] + [V(20, 14, 7, 2, 2)]
[F−1(V(λ))] = [V(19, 13, 7, 2, 2)].

It is straightforward to verify equations (9) and (9). Here c1 = 2, c2 = 1 and
Q(λ) = {(19, 13, 8, 2, 2), (19, 14, 7, 2, 2)}. ∎

So far we have constructed a “weak sl2-categorification” (see Definition 2.1). To
complete the proof of�eoremA, it suffices to construct X ∈ End(E) andT ∈ End(E2)
that satisfy the conditions specified in Definition 2.2 when q = 1 and a = 0; the
functorial sl2 relations then follow [19, �eorem 5.27] (here E = ⊕0≤r≤n E−n+2r+1). To
do this, we closely follow the template of Chuang and Rouquier [19, § 7.4], where they
show that the categorification constructed by Bernstein, Frenkel, and Khovanov [4] is
in fact an sl2-categorification; only very minor modifications are needed.

Proof of �eorem A Given a module M ∈Mod
fg
0,µ(Ug) for some µ, define XM ∈

Endg(V ⊗M) by noting that Hom(V ⊗ V∗ ⊗M ,M) = End(V ⊗M), and using
the adjoint map g⊗M → M. More explicitly, XM(v ⊗m) = Ω(v ⊗m), where Ω =
∑n

i , j=1 e i j ⊗ e ji . Define also TM ∈ Endg(V ⊗ V ⊗M) by simply switching the factors:

TM(v1 ⊗ v2 ⊗m) = v2 ⊗ v1 ⊗m.�is gives endomorphisms X (resp. T) of the functor
V ⊗ − (resp. V ⊗ V ⊗ −).

Let us explain why the endomorphism X descends to an endomorphism X ∈
End(E) [19, § 7.4.3]. It is sufficient to identify E as a generalised eigenspace of X
acting on V ⊗−. �is will in turn follow once we verify that EZ(λ) is a generalized
eigenspace of X acting on V ⊗ Z(λ), where λ is a weight lying in the shi�edW-orbit
of µ (since any object is mapped onto surjectively by an extension of baby Vermas). If
C is the central Casimir element, and δ ∶ Ug→ Ug⊗Ug denotes the comultiplication,
we have that:

C = n

∑
i , j=1

e i je ji =
n

∑
i=1

e2i i + ∑
1≤i< j≤n

(e i i − e j j) + 2 ∑
1≤i< j≤n

e ji e i j

Ω = 1

2
(δ(C) − C ⊗ 1 − 1⊗ C).

Hence C acts on the baby Verma module Z(λ) via the scalar

bλ =
n

∑
i=1

λ2i + ∑
1≤i< j≤n

(λ i − λ j).

Now consider the action of Ω on the subquotient of V ⊗ Z(λ) isomorphic to
Z(λ + e i). Using the above formula for Ω in terms of C, it follows that Ω acts on
this subquotient by the scalar cλ , i ∶= 1

2 (bλ+e i − bλ − be1). It is easy to compute that,
provided p > 2, cλ , i = cλ , j precisely if λ + e i and λ + e j are in the sameW-orbit (here
one must take the ρ-shi� into account).

�e fact that T descends to an endomorphism T ∈ End(E2) follows [19,
Lemma 7.21], as does the third condition in Definition 2.2.�e first, second and fourth
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conditions [19, Definition 5.21] that we have to check are self-evident. �is completes
the proof. ∎

2.7 The g = sl2(k) example.

Let us describe the g = sl2(k) case in detail. Much of what is discussed in this section
is well known, but we include many of the basic facts for the reader’s convenience.

Here there are two irreducible objects in the principal block: the one-dimensional
module L(0), and the p − 1 dimensional module L(−2) (note that in this cases, both
of these irreducibles are Weyl modules). Recall that the baby Verma module Z(0)
(resp. Z(−2)) is generated by a weight vector v0 (resp. v−2) satisfying Hv0 = 0 (resp.
Hv−2 = −2v−2), and has L(0) (resp. L(−2)) as its head; see Section 2.2 formore details.
We have two short exact sequences

0→ L(−2)→ Z(0)→ L(0)→ 0

0→ L(0)→ Z(−2)→ L(−2)→ 0

Denote the projective cover of L(0) as P(0), and the projective cover of L(−2) as
P(−2). �e projective covers P(0) and P(−2) both have dimension 2p, and can be
described as follows. Denote the irreducible Steinberg module Z(−1); then P(−2) =
Z(−1)⊗ k

2, since translation functorsmap projectives to projectives. Using the results
fromHumphreys [27,�eorem 3, pg. 4] (see also [28, Chapter 10], in particular 10.6) it
follows that P(0) is the indecomposable summand of Z(−1)⊗ Z(−1) containing the
weight vector v−1 ⊗ v−1 (here v−1 ∈ Z(−1) is the highest weight vector). �e element
v−1 ⊗ v−1 generates a module isomorphic to Z(−2), and there exists w ∈ Z(−1)⊗
Z(−1) in the zero weight space, such that E(w) ∈ ⟨v−1 ⊗ v−1⟩; then P(0) is generated
by v−1 ⊗ v−1 and w. �us we have two short exact sequences:

0→ Z(−2)→ P(0)→ Z(0)→ 0

0→ Z(0)→ P(−2)→ Z(−2)→ 0

Let A = End(P(0)⊕ P(−2)); then it follows that C ≃Mod-A. Here A is an 8 dimen-
sional algebra, since

dim(Hom(P(i), P( j))) = [P(i) ∶ L( j)] = 2
For i , j ∈ {0,−2}, we construct ψ1

i , j ,ψ
2
i , j ∈ Hom(P(i), P( j)) such that

Hom(P(i), P( j)) = kψ1
i , j ⊕ kψ2

i , j . Let ψ1
i , i = idP(i), let ψ2

0,0 be the composite

map P(0)→ Z(0)→ P(0), and let ψ2
−2,−2 be the composite map P(−2)→ Z(−2)→

P(−2). Let ψ1
0,−2 be the composite map P(0)→ Z(0)→ P(−2), and ψ1

−2,0 be the
composite map P(−2)→ Z(−2)→ P(0). To construct ψ2

0,−2, note that we can li�
the composite map P(0)→ Z(0)→ Z(−2) to obtain a map P(0)→ P(−2); ψ2

0,−2 is
the unique such map satisfying ψ2

0,−2(w) = F p−1v−1 ⊗ v− (here k
2 = kv+ ⊕ kv−).

Similarly, to construct ψ2
−2,0, we can li� the map P(−2)→ Z(−2)→ Z(0)

to obtain a map P(−2)→ P(0); ψ2
−2,0 is the unique such map satisfying

ψ2
−2,0(v−1 ⊗ v+) = F p−1(v−1 ⊗ v−1) and ψ

2
−2,0(v−1 ⊗ v−) = Fw.

Lemma 2.17 �e relations in A are as follows; here i , j ∈ {0,−2}, k ∈ {1, 2}.

• ψk
i , jψ

k′

i′ , j′ = 0 unless j′ = i.
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• ψ1
j, jψ

k
i , j = ψk

i , jψ
1
i , i = ψk

i , j ; and ψ
2
j, jψ

k
i , j = ψk

i , jψ
2
i , i = 0 unless k = 1 and i = j.

• If i ≠ j: ψ1
i , jψ

1
j, i = 0, and ψk

i , jψ
k′

j, i = ψ2
j, j unless k = k′ = 1.

Proof �e first relation, and the first part of the second relation, are obvious. �e
first part of the third relation follows using the definition of the maps ψ1

i , j ,ψ
1
j, i ,

and the fact that the compositions Z(0)→ P(−2)→ Z(−2) and Z(−2)→ P(0)→
Z(0) are zero; the same argument implies that ψ2

j, jψ
1
i , j = ψ1

i , jψ
2
i , i = 0 if i ≠ j, and

(ψ2
i , i)

2 = 0.
For the second part of the third relation, first note that ψ1

i , jψ
2
j, i = ψ2

j, j follows

from the definitions. �e following calculations imply that ψ2
0,−2ψ

2
−2,0 = ψ2

−2,−2 and
ψ2
−2,0ψ

2
0,−2 = ψ2

0,0; one can similarly verify that ψ2
i , jψ

1
j, i = ψ2

j, j .

ψ2
0,−2ψ

2
−2,0(v−1 ⊗ v−) = ψ2

0,−2(Fw) = F(v−1 ⊗ v+) = ψ2
−2,−2(v−1 ⊗ v−)

ψ2
−2,0ψ

2
0,−2(w) = ψ2

−2,0(v−1 ⊗ v+) = F p−1(v−1 ⊗ v−1) = ψ2
0,0(w)

To complete the proof, it remains to finish the second part of the second relation,
i.e. that when i ≠ j, ψ2

j, jψ
2
i , j = ψ2

i , jψ
2
i , i = 0. �is follows from the other relations: for

instance, ψ2
i , jψ

2
i , i = ψ2

i , jψ
2
j, iψ

1
i , j = ψ2

j, jψ
1
i , j = 0 (alternatively, one may use the tech-

niques from the previous paragraph). ∎

Example 2.18 Via § 3, this algebra has a grading that satisfies the Koszul property,
which we briefly describe here. �is grading is constructed from the derived equiv-
alence with the category of coherent sheaves on T∗P1, with the equivalence given by
a tilting vector bundle, which in this case is given explicitly in [6, Example 1.10.6].
More precisely, consider the tilting object π∗(O⊕O(1)) with π ∶ T∗P1 → P1 being
the projection. �e endomorphism algebra of this tilting object can be found in [47,
Example 10.7] given by the following quiver with relations

relations: α0β1 = α1β0; β0α1 = β1α0 . �e functor RHomT∗P1(π∗(O⊕O(1)),−)
induces a derived equivalence between modules over the path algebra of the above
quiver with relations with Db Coh(T∗P1). Under this equivalence, the abelian
subcategory of Db Coh(T∗P1) corresponding to the abelian category of modules
over the path algebra is the category of exotic coherent sheaves. �e simple objects in
this category of exotic coherent sheaves are i∗O and i∗O(−1)[1], which correspond
respectively to the two vertices of the quiver.�e weight 2C∗-action on the cotangent
fibers gives a grading of EndT∗P1(π∗(O⊕O(1))). In terms of quiver with relations,
the grading is given such that α i has degree zero and β i has degree 2 for i = 0, 1.
�e presentation of the quiver with relations is so that the arrows from the simple
object S i to S j in the quiver form a basis of Ext1(S j , S i)

∗, and the relations form a
basis of Ext2(S j , S i)

∗ for i , j = 0, 1 [46, Proposition 7.3]. For dimensional reasons,
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there are no Exts in degree higher than 2. �is endomorphism algebra of the tilting
object is Koszul dual to the 8-dimensional algebra A above. �e grading on A is the
homological grading of the Ext-algebra of the simple objects, that is, the arrows are
in degree 1, and the relations are degree 2.

Recall that given two rings R and S, and an (S , R)-bimoduleM, we have a functor
FM ∶ R −mod→ S −mod, given by FM(P) = M ⊗R P. �e adjoint functor FM ∶ S −
mod→ R −mod is given by the (R, S)-bimodule M′ = HomR(M , R).

Lemma 2.19 �is categorification of the sl2(C)-action on C2
⊗C2 uses the three

categories k −mod, A−mod and k −mod, with functors between them:

E−1 ∶ k −mod→ A−mod, F−1 ∶ A−mod→ k −mod

E1 ∶ A−mod→ k −mod, F1 ∶ k −mod→ A−mod

�e functor E−1 ∶ k −mod→ A −mod corresponds to the (A, k)-bimodule Aψ1
−2,−2, the

functor F−1 ∶ A −mod→ k −mod corresponds to the (k,A)-bimodule ψ1
−2,−2A, and

F1 ≃ E−1 , E1 ≃ F−1.
Proof �e functor E−1 sends the 1-dimensional vector space to the projective (le�)
A-module Aψ1

−2,−2, so the first part is clear. Using the above fact about adjoints,
the functor F−1 corresponds to the (right) A-module HomA(Aψ

1
−2,−2 ,A), which is

isomorphic to ψ1
−2,−2A. ∎

Recall from Remark 2.12 that although �eorem A implies the existence of an
isomorphism below, as sl2-modules, it does not give us an explicit identification.

n

⊕
k=0

K0(C−n+2k) ≃ (C2)⊗n

Below we construct such an identification when n = 2, and describe the basis
in the sl2-representation C2

⊗C2 = V−2 ⊕ V0 ⊕ V2 coming from the classes of
the irreducible objects. Define w−2 = [Z(−1)] ∈ V−2, w1

0 = [L0],w
2
0 = [Ls] and w2 =

[Z(−1)] ∈ V2. �en:

Ew−2 = [Z(−1)⊗ k
2] = 2(w1

0 +w
2
0)

Fw1
0 = [L0 ⊗ k

2]∣µ1
= 0, Fw2

0 = [Ls ⊗ k
2]∣µ1

= w−2
Ew1

0 = 0, Ew2
0 = w2 , Fw2 = 2(w1

0 +w
2
0)

�e above computation allows us to identify K0(C−2 ⊕ C0 ⊕ C2)withC
2
⊗C2, as sl2-

representations, so that:

w−2 ↦ v0 ⊗ v0;w
1
0 ↦ v0 ⊗ v1 − v1 ⊗ v0 ,w

2
0 ↦ v0 ⊗ v1;w2 ↦ v1 ⊗ v1

Under this identification, the four simple objects are mapped to the images of the
dual canonical bases for the Uq(sl2)-representation, specialized at q = 1 (see the
description in [23, § 5.2]).
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3 A Graded Lift and Equivalence to a Geometric Categorification

Herewe state and prove amore precise version of�eoremB, the secondmain result of
this paper. In Sections 3.1 and 3.2 we give a purely expository overview of linear Koszul
duality, and Riche’s localization results (building onwork of Bezrukavnikov,Mirković,
and Rumynin, [7]); these will be used in later sections, and the reader is encouraged
to return to it when needed. �roughout this section, we impose the condition that
char(k) = p > n.

3.1 Linear Koszul duality

Here all scheme theoretic objects are defined over the field k.We omit the definition of
a dg-scheme X, and the category DGCoh(X) of dg-coherent sheaves on this space [39,
§ 1.8]. Given a vector bundle F over X with sheaf of sections F we consider a coherent
sheaf of dg-algebras S = SOX

(F∨), endowed with an internal grading so that F∨ is of
bidegree (2,−2) [39, § 2.3]. Here we use bidegree (i , j) to denote the homogeneous
piece of cohomological degree i and internal degree j. �e category DGCohgr(F) is
the derived category of bounded-above complexes of Gm-dg-modules over S with
cohomology that is quasi-coherent, and locally finitely generated [39, § 2.3]. On this
category, we have two shi�ing functors, [ ] and {}, corresponding respectively to the
shi� in cohomological and internal degrees.

We similarly consider the coherent sheaf of dg-algebras R = SOX
(F∨), endowed

with an internal grading so that F∨ is of bidegree (0,−2). We use Gm to denote
the multiplicative group. Here the subindex m stands for multiplicative. Recall that
Gm-equivariance structure is the same as grading. Note that the corresponding
derived category of bounded above complexes ofGm-dg-modules over R is naturally
equivalent to Db CohGm

(F), the derived category of equivariant coherent sheaves on
F [39, Lemma 2.3.2]. Under these conventions, Riche [39, (2.3.5)] (see also [40, (1.1.2)])
describes a “regrading” equivalence ξ, sendingM

p
q toM

p−q
q :

ξ ∶ DGCohgr(T∗P) ≅ Db CohGm
(T∗P)

Now we work in the setup of Section 2.2. Let P be a parabolic subgroup, and
let µ be a weight lying only on those reflection hyperplanes corresponding to the
parabolic P. Let P = G/P be the corresponding partial flag variety, T∗P be the cotan-
gent bundle, p the corresponding parabolic Lie algebra, and u its unipotent radical.
Define:

g̃P = {(X , gP) ∈ g∗ ×P ∣ X∣g .u = 0}
We consider the dg-scheme g̃P ×g {0}, which is the derived fiber product; let

DGCohgr(g̃P ×g {0}) be the derived category of Gm-dg-modules.

Lemma 3.1 ([39], Section 10.1) Linear Koszul duality gives an equivalence of cate-
gories:

κ ∶ DGCohgr(g̃P ×g {0}) ≅ DGCohgr(T∗P)
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Proof �is follows from [40,�eorem 2.3.10], where we take F = T∗P and E = g∗ ×
P. �en F⊥ ⊆ E∗ is isomorphic to g̃P. ∎

3.2 Riche’s localization results

We have an equivalence [39, �eorem 3.4.14]

γ̃Pµ ∶ D
bMod

fg
µ ,0(Ug) ≃ DGCoh(g̃P ×g {0}).(2)

By g̃P ×g {0}, we mean the dg-scheme g̃P ∩
R
g∗×P P [39, Definition 1.8.3].

�e equivalence (2) has a graded version [39, �eorem 10.3.1] (see also [5, �eo-
rem 1.6.7]). More precisely, the algebra Ug has a suitable completion which admits
a Koszul grading: In particular, the category of finitely generated graded modules

Mod
fg, gr
µ ,0 (Ug) [39, § 10.2] is endowed with a derived equivalence

γ̃Pµ ∶ D
bMod

fg,gr
µ ,0 (Ug) ≃ DGCohgr(g̃P ×g {0})

and a forgetful functor Forg ∶Mod
fg,gr
µ ,0 (Ug)→Mod

fg
µ ,0(Ug) so that the following

diagram commutes

�e composition ξ ○ κ ○ γ̃Pµ gives the following equivalence

DbMod
fg, gr
µ ,0 (Ug) ≃ DGCohgr(g̃P ×g {0}) ≃ DGCohgr(T∗P) ≃ Db CohGm(T∗P).

Let P ⊆ Q ⊆ G be two parabolic subgroups, and µ, ν ∈ Λ be weights which respec-
tively lie only on those reflection hyperplanes corresponding to P and Q. We have
the natural map π̃Q

P
∶ g̃P ×g {0}→ g̃Q ×g {0}. �e functors on derived categories of

coherent sheaves are denoted by

Rπ̃Q

P∗ ∶ DGCohgr(g̃P ×g {0})→ DGCohgr(g̃Q ×g {0})

Lπ̃Q∗
P ∶ DGCohgr(g̃Q ×g {0})→ DGCohgr(g̃P ×g {0})

Translation functors between the ungraded categories defined as in (1) have li�s.
More precisely, we have functors

Tν
µ ∶Mod

fg, gr
µ ,0 (Ug)→Mod

fg, gr
ν ,0 (Ug) T

µ
ν ∶Mod

fg, gr
ν ,0 (Ug)→Mod

fg, gr
µ ,0 (Ug)

satisfying the commutativity conditions

Tν
µ ○ γ̃

P

µ ≅ γ̃
Q

ν ○ Rπ̃
P

Q∗ and T
µ
ν ○ γ̃

Q

ν ≅ γ̃
P

µ ○ Lπ̃
P∗
Q .

One sees that [39, Proof of Proposition 5.4.3] a�er forgetting the grading, these
correspond to the translation functors (1): In particular, they are well-defined on the
abelian categories albeit a priori only defined on the derived categories.
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3.3 Statement of Theorem B

In what follows, we are primarily interested in the special case of Sections 3.1 and
3.2 when G = SLn , µ = µr = −ρ + e1 +⋯+ er , r = 1, . . . , n. �e singular weight µr
corresponds to the parabolic subgroup Pr stabilizing the flag

0 ⊂ k{e1 , . . . , er} ⊂ k
n .

�e corresponding partial flag variety is Pr = G/Pr = Gr(r, n), the Grassmanian of
r-dimensional vector spaces in k

n .
Our main result is that the above categorification admits a graded li�, which is

equivalent to that constructed by Cautis, Kamnitzer, and Licata [13]. Let us start by
recalling the setup used there. Note that:

T∗Gr(r, n) = {(V , X) ∣ 0 ⊂ V ⊂ kn , X ∈ Endk(k
n),

dimV = r, XV = 0, X(kn) ⊂ V}

�emultiplicative groupGm of the field k acts on T∗Gr(r, n) by dilation on the fibers:
t ⋅ X = t2X. For each 0 ≤ r ≤ n, define the bounded derived categories of equivariant
coherent sheaves on these varieties:

D(−n + 2r) = DbCohGm
(T∗Gr(r, n))

LetW ⊂ T∗Gr(r, n) × T∗Gr(r + 1, n) be the Lagrangian correspondence

{(0 ⊂ V ⊊ V ′ ⊂ kn) ∣ dimV = r, dimV ′ = r + 1, XV ′ = 0, X(kn) ⊂ V}

Let us define the functors E(−n + 2r + 1), F(−n + 2r + 1) via the following Fourier–
Mukai kernels E(−n + 2r + 1),F(−n + 2r + 1) ∈ DbCohGm

(T∗Gr(r, n) × T∗Gr(r +
1, n)).

E(−n + 2r + 1) ∶ D(−n + 2r)→ D(−n + 2r + 2)(3)

E(−n + 2r + 1) = OW ⊗ det(V ′)n−2r−1 det(V)−(n−2r−1){n − r − 1}

F(−n + 2r + 1) ∶ D(−n + 2r + 2)→ D(−n + 2r)

F(−n + 2r + 1) = OW ⊗ det(V ′)det(V){r}

�ese functors can alternatively be expressed as pull-push functors in the derived
sense, similar to Lemma 3.6. For example, E(−n + 2r + 1) corresponds to pulling back
using the projection W → T∗Gr(r, n), tensoring with a line bundle, and pushing
forward under the projectionW → T∗Gr(r + 1, n), withW endowed with a structure
as the derived fiber product.

Cautis, Kamnitzer, and Licata prove the following [13, �eorem 2.5].

�eorem 3.2 ([13]) �e above categories D(−n + 2r) and the functors E(−n + 2r +
1), F(−n + 2r + 1) give a geometric categorical sl2-action. In particular, there exists an
octuple of natural transforms (i , π, ε1 , ε2 , η1 , η2 , X̂ , T̂) satisfying the conditions of a
strong categorical sl2-action.

Remark 3.3 �ere is a difference between the notation we are following and the
one of Cautis, Kamnitzer, and Licata [13]. �e notation of Cautis, Kamnitzer, and
Licata [13] is set up so that D(−n + 2r) = DGm

(T∗Gr(n − r, n)) instead, so the line
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bundles appearing there are slightly different. Although Cautis, Kamnitzer, and Licata
[13, �eorem 2.5] state theorems over the field k = C, the proof works equally well
when k is an algebraically closed field with characteristic p≫ 0.

Recall from Section 3.1 that Mod
fg
µ ,0(Ug) admits a Koszul grading, denoted by

Mod
fg, gr
µ ,0 (Ug).�e forgetful functor is denoted by F ∶Mod

fg, gr
µ ,0 (Ug)→Mod

fg
µ ,0(Ug).

Our main result of this section is as follows; the equivalences needed are essentially
those constructed by Riche up to twisting by a line bundle.

�eorem B

(1) On the categories ⊕n
r=0Mod

fg, gr
µ−n+2r ,0

(Ug), there are functors E−n+2r+1 and F−n+2r+1

together with an octuple of natural transforms (η1 , η2 , ε1 , ε2 , ι, π, T̂(r), X̂(r)),
satisfying conditions of a strong sl2-categorification.

(2) Moreover, the forgetful functor

F ∶ ⊕n
r=0Mod

fg, gr
µ−n+2r ,0

(Ug)→ ⊕n
r=0Mod

fg
µ−n+2r ,0

(Ug)

intertwines this categorification and the one from in�eorem A.

(3) �ere exist equivalences Ŵr ∶ D
b(Mod

fg, gr
µr ,0
(Ug)) ≃ Db(CohGm

(T∗Gr(r, n)) of

graded triangulated categories, which intertwine the functors E(−n + 2r + 1) and
F(−n + 2r + 1) from �eorem 3.2 and the functors E−n+2r+1 and F−n+2r+1 afore-
mentioned in (1).

Note that (1) follows directly from (3) thanks to �eorem 3.2, which not only
proved the functorial relations but also gives the octuple of natural transforms from
the geometric setting.

In the rest of this section, we prove�eorem B.

3.4 Linear Koszul duality on Grassmannians

Let us now revisit �eorem B, and see what happens to the graded li�s of the

translation functors between the categories Mod
fg, gr
µr ,0
(Ug) a�er transporting them

across Riche’s localization equivalence 3.2. We will find that, a�er doing this, one
obtains a variant of the categorification constructed by Cautis, Kamnitzer, and Licata;
the resulting statement will then follow from their results.

First, we will transport the graded translation functors to the right-hand side of the
first equivalence (here Pr is the parabolic corresponding to the weight µr):

DbMod
fg, gr
µr ,0
(Ug) ≃ DGCohgr(g̃Pr

×g {0})(4)

Define also the parabolic subgroup P = Pr ∩ Pr+1 and the corresponding partial flag
variety P = Fl(r, r + 1, n). Let µr ,r+1 be the singular weight corresponding to it. We
have the following maps:

g̃Pr

b1
← (g̃Pr

×Pr
P)

a1
← g̃P

a2
→ (g̃Pr+1

×Pr+1
P)

b2
→ g̃Pr+1
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Abusing notation, we will use the same symbols to denote the corresponding maps

a�er applying the base change − ×g {0} to both sides; note that b1 ○ a1 = π̃Pr+1

P
, b2 ○

a2 = π̃Pr

P
.

Lemma 3.4 T
µr+1
µr
= T µ

µr
T

µr+1
µ and T

µr
µr+1
= T µ

µr+1
T

µr
µ .

Proof �is follows from the same proof as [6, Proposition 2.2.6]. ∎

Using Lemma (3.2), under the equivalence (4) the “graded li�s of translation
functors” mentioned in�eorem B becomes the following.

E(−n + 2r + 1) ∶ DGCohgr(g̃Pr
×g {0})→ DGCohgr(g̃Pr+1

×g {0})(5)

E(−n + 2r + 1) = b2∗a2∗a∗1 b∗1 {−(n − r − 1)};
F(−n + 2r + 1) ∶ DGCohgr(g̃Pr+1

×g {0})→ DGCohgr(g̃Pr
×g {0}),

F(−n + 2r + 1) = b1∗a1∗a∗2 b∗2{−r}.
Note that we inserted an artificial shi�ing by {−(n − r − 1)} and {−r} (without which
�eorem B would not be true as stated). Cautis and Koppensteiner [16] and Cautis
and Kamnitzer [12] use these functors in a more general setup of categorical loop sln-
actions; see Remark 3.13 for more details.

Secondly, we calculate the images of the functors E(−n + 2r + 1) and F(−n + 2r +
1) under the Koszul duality maps from Lemma 3.1:

DGCohgr(g̃Pr
×g {0}) ≃ DGCohgr(T∗Pr)

Note that W, the Lagrangian correspondence (see Section 3.3), is the intersection of
T∗Pr ×Pr

P and T∗Pr+1 ×Pr+1
P inside the ambient space T∗P. We have the following

maps.

T∗Pr

β1

← T∗Pr ×Pr
P

α1

→T∗P
α2

← T∗Pr+1 ×Pr+1
P

β2

→ T∗Pr+1 ,

T∗Pr ×Pr
P

γ1
←W

γ2
→ T∗Pr+1 ×Pr+1

P, T∗Pr

p
←W

q
→ T∗Pr+1 .

Let the tautological flag onP be denoted by 0 ⊆ V′ ⊊ V ⊆ On . �e following lemma
is the key step in the proof.

Lemma 3.5 A�er applying the Koszul duality equivalences of Lemma 3.1 to the sources
and targets of the functors E(−n + 2r + 1) and F(−n + 2r + 1), they correspond to the
following Fourier–Mukai transforms:

E(−n + 2r + 1) = q∗ ○ − ⊗ det(V)n−r det(V ′)−n+r+1[n − r − 1]{n − r − 1} ○ p∗ ∶

DGCohgr(T∗Pr)→ DGCohgr(T∗Pr+1);

F(−n + 2r + 1) = p∗ ○ − ⊗ det(V)−r det(V ′)r+1[r]{r} ○ q∗ ∶

DGCohgr(T∗Pr+1)→ DGCohgr(T∗Pr).

Note that the Fourier–Mukai transforms are taken in the same sense as in (3).
More precisely, we consider these Fourier–Mukai kernels as coherent sheaves on the
product T∗Pr × T

∗
Pr+1, which are set-theoretically supported on the subvariety W.

In particular, the pullback p∗ is understood as taking inverse-image to the product
T∗Pr × T

∗
Pr+1; the tensor and pushing forward all take place on the product.�e fact
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that the kernels are supported onW ensures the functors to be of finite cohomological
amplitude and hence are well-defined on the corresponding categories. See [13, § 2.2.1]
for a detailed explanation. We have the following fact.

Lemma 3.6 �e Fourier–Mukai transformE(−n + 2r + 1) is equivalent to the functor

β2∗ ○ α
∗
2 ○ ⊗det(V)

n−r det(V ′)−n+r+1[n − r − 1]{n − r − 1} ○ α1∗ ○ β
∗
1 ;

�e Fourier–Mukai transform F(−n + 2r + 1) is equivalent to the functor

β1∗ ○ α
∗
1 ○ ⊗det(V)

−r det(V ′)r+1{r}[r] ○ α2∗ ○ β
∗
2 .

Proof As β1 and β2 are smooth propermaps, for simplicity we considerE(−n + 2r +
1) andF(−n + 2r + 1) as Fourier–Mukai transforms betweenDGCohgr(T∗Pr ×Pr

P)
and DGCohgr(T∗Pr+1 ×Pr+1

P), keeping in mind that p = β1 ○ γ1 and q = β2 ○ γ2.
Let DGCohgr(W) be the derived category of Gm-equivariant dg-modules onW,

endowed with the structure of derived fiber product of α1 and α2. �en, the standard
base change of derived schemes [8, Proposition 3.7.1] implies that α∗2 ○ α1∗ = γ2∗ ○ γ∗1 .
Noting that det(V)n−r det(V ′)−n+r+1{n − r − 1}[n − r − 1] is pulled back from P, by
projection formula and base change [8, § 3.8], we have:

α∗2 ○ ⊗det(V)
n−r det(V ′)−n+r+1{n − r − 1}[n − r − 1] ○ α1∗

= γ2∗ ○ ⊗det(V)n−r det(V ′)−n+r+1{n − r − 1}[n − r − 1] ○ γ∗1 .
Now to prove the statement about E(−n + 2r + 1), we only need to show that

the Fourier–Mukai transform in the derived sense is the same as the trans-
form in the sense described in the paragraph before this lemma. �is is stan-
dard, see e.g., [8, Proposition 4.2.1 and Remark 4.2.2]. More precisely, the kernel
det(V)n−r det(V ′)−n+r+1{n − r − 1}[n − r − 1] as a locally free dg-module on W has
only finitely many cohomology all of which are coherent sheaves onW; therefore [8,
Remark 4.2.2] as a functor DGCohgr(T∗Pr ×Pr

P)→ DGCohgr(T∗Pr+1 ×Pr+1
P) it

is equal to its image in Db Coh
gr
W((T

∗
Pr ×Pr

P) × (T∗Pr+1 ×Pr+1
P)), which is the

Fourier–Mukai transform in the sense considered here.
Similarly for the statement about F(−n + 2r + 1). ∎

Proof of Lemma 3.5 By [39, Proposition 2.4.5], b∗i is Koszul dual to β∗i for i = 1, 2.
Let us calculate the Koszul dual to a∗1 . On P, we have two vector bundles, F1 = P ×Pr

T∗Pr and F2 = T∗P.�e natural embedding F1 ↪ F2 is α1. Here a
∗
1 is Koszul dual [39,

Proposition 4.5.2] to the functor

α1∗ ○ det(F1)
−1 det(F2)[n2 − n1]{2(n2 − n1)}

�e tangent bundle of Pr is Hom(V ′ , kn/V ′). Hence, det(T∗Pr) =
det(Hom(kn/V ′ ,V ′)). Recall that:

det(Hom(V,W)) = det(V)−rk(W)det(W)rk(V)
Hence, det(F1) = det(kn/V ′)−r det(V ′)n−r , and n1 = r(n − r). Similarly, the tangent
bundle ofP is filtered byHom(V ′ ,V/V ′), Hom(V ′ , kn/V), andHom(V/V ′ , kn/V),
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and hence its determinantal bundle is the tensor product of that of all the three sub-
quotients. �erefore, det(F2) = det(kn/V)−1 det(V/V ′)n−(r+1) and n2 = r(n − r) +
n − r − 1. �erefore, det(F2)det(F1)

−1 = det(V)n−r det(V ′)−n+r+1, and n2 − n1 = n −
r − 1. Putting this together, the functor b2∗a2∗a

∗
1 b
∗
1 corresponds to the followingmap,

a�er applying the Koszul duality equivalence from Lemma 3.1:

β2∗ ○ α
∗
2 ○ ⊗det(V)

n−r det(V ′)−n+r+1[n − r − 1]{2(n − r − 1)} ○ α1∗ ○ β
∗
1 .

Since the Koszul duality κ in Lemma 3.1 commutes with internal shi�s [40,
Remark 11.10], the functor E corresponds to the following map:

β2∗ ○ α
∗
2 ○ ⊗det(V)

n−r det(V ′)−n+r+1[n − r − 1]{n − r − 1} ○ α1∗ ○ β
∗
1 .

Using Lemma 3.6, the stated formula for E follows.
�e corresponding statement for the functor F is proved analogously. On P, there

are two vector bundles F′1 = P ×Pr+1
T∗Pr+1 and F′2 = F2 = T∗P. �e natural embed-

ding F′1 ↪ F′2 is denoted by α′. We have det(F′1) = det(kn/V)−(r+1) det(V)n−(r+1)

and det(F′2) = det(kn/V)−1 det(V/V ′)n−(r+1). It follows that det(F′2)det(F
′
1)
−1 =

det(V)−r det(V ′)r+1, and n′2 − n
′
1 = r. Putting this together, it follows that the map

b1∗a1∗a
∗
2 b
∗
2 corresponds to the following map, under the Koszul duality equivalence

from Lemma 3.1:

β1∗ ○ α
∗
1 ○ ⊗det(V)

−r det(V ′)r+1[r]{2r} ○ α2∗ ○ β
∗
2 .

�e stated formula for F now follows analogously from Lemma 3.6, keeping in mind
that Koszul duality κ commutes with internal shi�s. ∎

Recall from Section 3.1 the equivalences

ξ i ∶ DGCohgr(T∗Pi) ≅ Db CohGm
(T∗Pi)

0 ≤ i ≤ n, induced by the regrading sending M
p
q to M

p−q
q (see, e.g., [40, (1.1.2)]). �e

below lemma follows from the definitions, keeping inmind the descriptions ofE(−n +
2r + 1),F(−n + 2r + 1) given in Lemma 3.5. See the below diagram for an illustration.

Lemma 3.7 Under the equivalences ξ i for i = r, r + 1, the functors E(−n + 2r +
1) and F(−n + 2r + 1) correspond to the Fourier–Mukai transforms between the
Db CohGm

(T∗Pr)s:

E(−n + 2r + 1) = q∗ ○ ⊗det(V)n−r det(V ′)−n+r+1{n − r − 1} ○ p∗
F(−n + 2r + 1) = p∗ ○ ⊗det(V)−r det(V ′)r+1{r} ○ q∗ .
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3.5 Equivalence to a geometric categorification

�e following lemma is straightforward, and whose proof we leave to the reader.

Lemma 3.8 Let D(r) with r ∈ Z be categories, and E(r) ∶D(r − 1)→D(r +
1), F(r) ∶D(r + 1)→D(r − 1) be functors. Suppose that we have an octuple of nat-
ural transforms (η1 , η2 , ε1 , ε2 , ι, π, T̂(r), X̂(r)) satisfying conditions of a strong sl2-
categorification. Assume furthermore that we have functors E(r), F(r) and automor-
phism Θr of the categoryD(r) for each r such that

E(r) = Θr+1 ○ E(r) ○Θ
−1
r−1 , F(r) = Θr−1 ○ F(r) ○Θ

−1
r+1 .

�en, the functors E(r) and F(r) satisfy functorial relations of a weak sl2-
categorification; moreover, there is an octuple of natural transforms (η′1 , η

′
2 , ε
′
1 , ε
′
2 , ι
′ ,

π′ , T̂ ′(r), X̂′(r)) satisfying the conditions of a strong sl2-categorification.

We obtain the following.

Lemma 3.9 DefineΘr ∶ D
b CohGm

(T∗Gr(r,N))→ Db CohGm
(T∗Gr(r,N)) to be

⊗det(Vr)
r whereVr is the tautological subbundle onGr(r,N).�en, theΘrs intertwine

the pairs of functors {E(−n + 2r + 1), F(−n + 2r + 1)} and {E(−n + 2r + 1),F(−n +
2r + 1)}.

Proof In Lemma 3.8, take the categorification {Er , Fr} to be the CKL as in § 4.2.
One easily verifies that {Er , F r} are precisely E(−n + 2r + 1),F(−n + 2r + 1). To see
Θrs are induced by Fourier–Mukai transforms, note that they are induced by kernels of
the same line bundles on the diagonals T∗Gr(r,N)↪ T∗Gr(r,N) × T∗Gr(r,N). ∎

Summarizing the results of the present section, we obtain the following.

Proposition 3.10 �e categories D(−n + 2r) = DbCohGm
(T∗Pr), and the Fourier–

Mukai transforms E(−n + 2r + 1) ∶ D(−n + 2r)→ D(−n + 2r + 1), F(−n + 2r + 1) ∶
D(−n + 2r + 1)→ D(−n + 2r), along with suitable morphisms i , π, ε, η, X̂ , T̂ , consti-
tute a strong categorical sl2-action.

Proof �is follows from Lemmas 3.8 and 3.9, along with�eorem 3.2[13]. ∎

Remark 3.11 �ere exist morphisms between Fourier–Mukai kernels X̂(r) and T̂
[13, �eorem 5.1]. Moreover, the choice of X̂ and T̂ is parametrized by a certain space
V(1)tr × V(2)tr × k× [13, p.g.20], while the choice of i , π, ε, η is unique up to scaling
by k×.

3.6 Concluding remarks

To summarize the precise relation between the categorification via modular represen-
tations Mod0,µ(Ug) and the graded translation functors from Lemma (3.2), and the
categorification from Proposition 3.10, we have the following diagram
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�e equivalence Ŵr claimed in �eorem B(2) is given by the top row of this diagram.
�is finishes the proof of �eorem B. We deduce that:

Corollary 3.12 When the characteristic of the field is either 0, or p > n, the categorifi-
cation of�eorem 3.2 [13] admits an abelian refinement.

Proof �e statement is a direct corollary of�eorem B when p > n. When the char-
acteristic is 0, recall that we have a family of exotic t-structures on DGCohgr(g̃P ×g
{0}) indexed by alcoves (cf. Remark 1.5.4 of [5]). We wish to choose alcoves such that
the functors E(−n + 2r + 1) and F(−n + 2r + 1) are exact with respect to the corre-
sponding t-structures. Since the alcove diagram does not depend on the characteristic
(cf. Section 1.8 of [5]), and such a choice of alcoves exists for p > n, we can also pick a
suitable family of alcoves when the characteristic is 0 (cf. �eorem 3.0.2 of [5]). ∎

Remark 3.13 Corollary 3.12 fits into a more general framework developed by Cautis
and Koppensteiner [16]. Uniqueness and existence properties for abelian refinements
of the categorification in [13] and its variants are proved there. Up to shi�s, the
categorification described by equations (5) can be extracted from the more general
categorical action of (Lgln , θ) on K̃g [16, the line before Lemma 9.1], and proved by
Cautis and Kamnitzer [12]. �e sl2-categorification defined by equations 5 admits an
abelian refinement [16, Corollary 9.2] using certain exotic t-structures. From the pre-
vious section, we deduce that this categorification is equivalent to the categorification
[13] by linear Koszul duality.

Remark 3.14 �eorem B, together with Corollary 2.13, further fits into the gen-
eral framework of D-equivalence in birational geometry. In general it has been
conjectured by Bondal and Orlov, and proved in dimension 3 by Bridgeland that
flops induce derived equivalences. Categories of perverse coherent sheaves were
used in Bridgeland’s proof, and the resulting equivalence is perverse in the sense
of Chuang and Rouquier [20]. Later on, Kawamata and Namikawa proved similar
results for Mukai-flops between birational symplectic varieties. �ey further raised
the question on whether stratifiedMukai flops, in particular those for complementary
Grassmannians, induced derived equivalences. In [13], an explicit derived equivalence
Db Coh(T∗Gr(k,N)) ≅ Db Coh(T∗Gr(N − k,N)) was achieved as a consequence
of the categorification, answering the question of Kawamata and Namikawa, although
the question of perversity of this equivalence was still le� open.We note that combin-
ing�eorem B and Corollary 2.13, we obtain that the derived equivalences induced by
stratified Mukai flops for complementary Grassmanians are perverse equivalences.

Remark 3.15 �eorem B implies �eorem A. Indeed, the categorification
from �eorem A is induced by Fourier–Mukai kernels [39, Proposition 5.4.3] in
DGCoh(g̃Pr

×g g̃Pr+1
×g {0}), which admits natural graded li�ing given by (5). From
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Section 3.4, �eorem B can be reformulated in terms of Fourier–Mukai kernels
on the spaces g̃Pr

×g g̃Pr+1
×g {0}. �e natural transforms between the functors are

constructed from morphisms between the corresponding Fourier–Mukai kernels
[13, �eorem 5.1] (see also Remark 3.11). �e nil-affine Hecke relations amount to
certain relations between the morphisms of Fourier–Mukai kernels. In particular, the
necessary relations (i.e., those from 2.2) between the functors and morphisms on the
graded categories of coherent sheaves are satisfied.�erefore, the relations between the
functors and natural transforms on the ungraded categories of coherent sheaves also
hold. Here note that the said relations fromDefinition 2.3 imply those fromDefinition
2.2 [42, �eorem 3.19].

Example 3.16 When n = 2, Proposition 3.2 can be described as follows. We are
categorifying the action of Uq(sl2) on V⊗2. We have the following three categories,
categorifying the three weight spaces

D(−2) = DGm
(T∗G(0, 2)) = DGm

(pt),

D(0) = DGm
(T∗G(1, 2)) = DGm

(T∗P1),D(2) = DGm
(pt)

Below we describe the functors between them by writing down the corresponding
Fourier–Mukai kernel.

E(−1) ∶ D(−2)→ D(0)←→ O(1){1}

F(−1) ∶ D(0)→ D(−2)←→ O(−1)

E(1) ∶ D(0)→ D(2)←→ O(−1)

F(1) ∶ D(2)→ D(0)←→ O(1){1}

In this case, D(−2) = D(2), E(−1) ≃ F(1) and E(1) ≃ F(−1).
�e categorical relations that these functors satisfy are as follows (see also [13,

pg. 5]).

E(1)F(1) ≃ F(−1)E(1) ≃ [1]{−1}⊕ [−1]{1}
E(−1)F(−1) ≃ F(1)E(1)

�e second relation is self-evident. �e first relation can be verified directly using
Koszul resolution [18, § 5.4] and cohomology of sheaves on P1 [26, § 3.5].

4 Further Directions

In the sequel [38], we extend the results of the present paper in two directions. First
we construct categorical slk-actions by considering a larger collection of singular
blocks of modular representations of sln , following Sussan [43]. In this setting, we
generalise�eoremBby showing that these categorifications admit a graded li�which
is equivalent to a geometric construction of Cautis, Kamnitzer and Licata. Second
we consider representation categories with nonzero Frobenius central characters, and
use their singular blocks to categorify tensor products of symmetric powers of the
standard slk-module. We also show that the geometric construction of categorical
symmetric Howe duality by Cautis and Kamnitzer [12] can be used to obtain a graded
li� of this categorification.
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One crucial difference in the positive characteristic setting compared to that of
[43] is that it is necessary to look at categories of representations equipped with a
torus grading. More precisely, using the notation from Section 2.2, we define the
category (g, T) −mod as follows: an object consists of a module M with a grading
M = ⊕ν∈XMν , such that each root vector Eα mapsMν ontoMν+α and everyH ∈ h acts
on Mν as multiplication by ν(H) (here X is the group of characters of T). �is torus
grading is essential for the formulation of Lusztig’s conjectures for representations of
Lie algebras in positive characteristic; see Section 3 of [22] for a precise formulation.
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