
I

Inputs to the Standard Model

This book is about the Standard Model of elementary particle physics. If we set
the beginning of the modern era of particle physics in 1947, the year the pion was
discovered, then the ensuing years of research have revealed the existence of a con-
sistent, self-contained layer of reality. The energy range which defines this layer of
reality extends up to about 1 TeV or, in terms of length, down to distances of order
10−17 cm. The Standard Model is a field-theoretic description of strong and electro-
weak interactions at these energies. It requires the input of as many as 28 inde-
pendent parameters.1 These parameters are not explained by the Standard Model;
their presence implies the need for an understanding of Nature at an even deeper
level. Nonetheless, processes described by the Standard Model possess a remark-
able insulation from signals of such New Physics. Although the strong interactions
remain a calculational challenge, the Standard Model (generalized from its original
form to include neutrino mass) would appear to have sufficient content to describe
all existing data.2 Thus far, it is a theoretical structure which has worked splendidly.

I–1 Quarks and leptons

The Standard Model is an SU(3) × SU(2) × U(1) gauge theory which is spon-
taneously broken by the Higgs potential. Table I–1 displays mass determinations
[RPP 12] of the Z0 and W± gauge bosons, the Higgs boson H 0, and the existing
mass limit on the photon γ .

In the Standard Model, the fundamental fermionic constitutents of matter are the
quarks and the leptons. Quarks, but not leptons, engage in the strong interactions
as a consequence of their color charge. Each quark and lepton has spin one-half.

1 There are six lepton masses, six quark masses, three gauge coupling constants, three quark-mixing angles
and one complex phase, three neutrino-mixing angles and as many as three complex phases, a Higgs mass
and quartic coupling constant, and the QCD vacuum angle.

2 Admittedly, at this time the sources of dark matter and of dark energy are unknown.
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2 Inputs to the Standard Model

Table I–1. Boson masses.

Particle Mass (GeV/c2)

γ < 1× 10−27

W± 80.385± 0.015
Z0 91.1876± 0.0021
H 0 126.0± 0.4

Collectively, they display conventional Fermi–Dirac statistics. No attempt is made
in the Standard Model either to explain the variety and number of quarks and lep-
tons or to compute any of their properties. That is, these particles are taken at this
level as truly elementary. This is not unreasonable. There is no experimental evi-
dence for quark or lepton compositeness, such as excited states or form factors
associated with intrinsic structure.

Quarks

There are six quarks, which fall into two classes according to their electrical charge
Q. The u, c, t quarks have Q= 2e/3 and the d, s, b quarks have Q= − e/3,
where e is the electric charge of the proton. The u, c, t and d, s, b quarks
are eigenstates of the hamiltonian (‘mass eigenstates’). However, because they are
believed to be permanently confined entities, some thought must go into properly
defining quark mass. Indeed, several distinct definitions are commonly used. We
defer a discussion of this issue and simply note that the values in Table I–2 provide

Table I–2. The quarks.

Flavor Massa (GeV/c2) Charge I3 S C B T

u (2.55+0.75
−1.05)× 10−3 2e/3 1/2 0 0 0 0

d (5.04+0.96
−1.54)× 10−3 −e/3 −1/2 0 0 0 0

s 0.105+0.025
−0.035 −e/3 0 −1 0 0 0

c 1.27+0.07
−0.11 2e/3 0 0 1 0 0

b 4.20+0.17
−0.07 −e/3 0 0 0 −1 0

t 173.4± 1.6 2e/3 0 0 0 0 1

aThe t-quark mass is inferred from top quark events. All others are determined in MS
renormalization (cf. Sect. II–1) at scales mu,d,s(2 GeV/c2), mc(mc) and mb(mb) respec-
tively.
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I–1 Quarks and leptons 3

Table I–3. The leptons.

Flavor Mass (GeV/c2) Charge Le Lμ Lτ

νe < 0.2× 10−8 0 1 0 0
e 5.10998928(11)× 10−4 −e 1 0 0
νμ < 1.9× 10−4 0 0 1 0
μ 0.1056583715(35) −e 0 1 0
ντ < 0.0182 0 0 0 1
τ 1.77682(16) −e 0 0 1

an overview of the quark mass spectrum. A useful benchmark for quark masses is
the energy scale 
QCD(� several hundred MeV) associated with the confinement
phenomenon. Relative to 
QCD, the u, d, s quarks are light, the b, t quarks are
heavy, and the c quark has intermediate mass. The dynamical behavior of light
quarks is described by the chiral symmetry of massless particles (cf. Chap. VI)
whereas heavy quarks are constrained by the so-called Heavy Quark Effective
Theory (cf. Sect. XIII–3). Each quark is said to constitute a separate flavor, i.e.
six quark flavors exist in Nature. The s, c, b, t quarks carry respectively the
quantum numbers of strangeness (S), charm (C), bottomness (B), and topness (T ).
The u, d quarks obey an SU (2) symmetry (isospin) and are distinguished by the
three-component of isospin (I3). The flavor quantum numbers of each quark are
displayed in Table I–2.

Leptons

There are six leptons which fall into two categories according to their electrical
charge. The charged leptons e, μ, τ have Q= − e and the neutrinos νe, νμ, ντ
have Q= 0. Leptons are also classified in terms of three lepton types: electron
(νe, e), muon (νμ, μ), and tau (ντ , τ ). This follows from the structure of the charged
weak interactions (cf. Sect. II–3) in which these charged-lepton/neutrino pairs are
coupled to W± gauge bosons. Associated with each lepton type is a lepton number
Le, Lμ,Lτ . Table I–3 summarizes lepton properties.

At this time, there is only incomplete knowledge of neutrino masses. Information
on the mass parameters mνe,mνμ,mντ is obtained from their presence in various
weak transition amplitudes. For example, the single beta decay experiment 3H →
3He+e−+νe is sensitive to the massmνe . In like manner, one constrains the masses
mνμ and mντ in processes such as π+ → μ+ + νμ and τ− → 2π− + π+ + ντ

respectively. Existing bounds on these masses are displayed in Table I–3.
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4 Inputs to the Standard Model

It is known experimentally that upon creation the neutrinos {να} ≡ (νe.νμ, ντ )

will not propagate indefinitely but will instead mix with each other. This means that
the basis of states {να} cannot be eigenstates of the hamiltonian. Diagonalization
of the leptonic hamiltonian is carried out in Sect. VI–2 and yields the basis {νi} ≡
{ν1, ν2, ν3} of mass eigenstates. Information on the neutrino mass eigenvalues
m1,m2,m3 is obtained from neutrino oscillation experiments and cosmological
studies. Oscillation experiments (cf. Sects. VI–3,VI–4) are sensitive to squared-
mass differences.3 Throughout the book, we adhere to the following relations,

definition: �m2
ij ≡ m2

i −m2
j , convention: m2 > m1. (1.1)

From the compilation in [RPP 12], the squared-mass difference |�m2
32| deduced

from the study of atmospheric and accelerator neutrinos gives

|�m2
32| = 2.32+0.12

−0.08 × 10−3 eV2, (1.2a)

whereas data from solar and reactor neutrinos imply a squared-mass difference
roughly 31 times smaller,

�m2
21 = (7.50± 0.20)× 10−5 eV2. (1.2b)

Thus the neutrinos ν1 and ν2 form a quasi-doublet. One speaks of a normal or
inverted neutrino mass spectrum, respectively, for the cases4

normal: m3 > m1,2, inverted: m1,2 > m3. (1.2c)

Since the largest neutrino mass mlgst, be it m2 or m3, cannot be lighter than the
mass splitting of Eq. (1.2), we have the bound mlgst > 0.049 eV. Finally, a com-
bination of cosmological inputs can be employed to bound the neutrino mass sum∑3

i= 1 mi , the precise bound depending on the chosen input data set. In one exam-
ple [deP et al. 12], photometric redshifts measured from a large galaxy sample, cos-
mic microwave background (CMB) data and a recent determination of the Hubble
parameter are used to obtain the bound

m1 +m2 +m3 < 0.26 eV, (1.3a)

whereas data from the CMB combined with that from baryon acoustic oscillations
yields [Ad et al. (Planck collab.) 13]

m1 +m2 +m3 < 0.23 eV. (1.3b)

A further discussion of the neutrino mass spectrum appears in Sect. VI–4.

3 Only two of the mass differences can be independent, so �m2
12 +�m2

23 +�m2
31= 0.

4 There is also the possibility of a quasi-degenerate neutrino mass spectrum (m1 � m2 � m3), which can be
thought of as a limiting case of both the normal and inverted cases in which the individual masses are
sufficiently large to dwarf the |�m2

32| splitting.
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I–2 Chiral fermions 5

Quark and lepton numbers

Individual quark and lepton numbers are known to be not conserved, but for dif-
ferent reasons and with different levels of nonconservation. Individual quark num-
ber is not conserved in the Standard Model due to the charged weak interactions
(cf. Sect. II–3). Indeed, quark transitions of the type qi → qj + W± induce the
decays of most meson and baryon states and have led to the phenomenology of
Flavor Physics. Individual lepton number is not conserved, as evidenced by the
observed να ↔ νβ (α, β = e, μ, τ) oscillations. This source of this phenomenon is
associated with nonzero neutrino masses. There is currently no additional evidence
for the violation of individual lepton number despite increasingly sensitive limits
such as the branching fraction Bμ−→e−e−e+ < 1.0× 10−12.

Existing data are consistent with conservation of total quark and total lepton
number, e.g. the proton lifetime bound τp > 2.1×1029 yr [RPP 12] and the nuclear
half-life limit t0νββ1/2 [136Xe] > 1.6×1025 yr [Ac et al. (EXO-200 collab.) 11]. These
conservation laws are empirical. They are not required as a consequence of any
known dynamical principle and in fact are expected to be violated by certain non-
perturbative effects within the Standard Model (associated with quantum tunneling
between topologically inequivalent vacua – see Sect. III–6).

I–2 Chiral fermions

Consider a world in which quarks and leptons have no mass at all. At first, this
would appear to be a surprising supposition. To an experimentalist, mass is the
most palpable property a particle has. It is why, say, a muon behaves differently
from an electron in the laboratory. Nonetheless, the massless limit is where the
Standard Model begins.

The massless limit

Let ψ(x) be a solution to the Dirac equation for a massless particle,

i/∂ ψ = 0. (2.1)

We can multiply this equation from the left by γ5 and use the anticommutativity of
γ5 with γ μ to obtain another solution,

i/∂ γ5ψ = 0. (2.2)

We superpose these solutions to form the combinations

ψL = 1

2
(1+ γ5)ψ, ψR = 1

2
(1− γ5)ψ, (2.3)
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6 Inputs to the Standard Model

where ‘1’ represents the unit 4× 4 matrix. The quantities ψL and ψR are solutions
of definite chirality (i.e. handedness). For a massless particle moving with precise
momentum, these solutions correspond respectively to the spin being anti-aligned
(left-handed) and aligned (right-handed) relative to the momentum. In other words,
chirality coincides with helicity for zero-mass particles. The matrices �L

R
= (1 ±

γ5)/2 are chirality projection operators. They obey the usual projection operator
conditions under addition,

�L + �R = 1, (2.4)

and under multiplication,

�L�L = �L, �R�R = �R, �L�R = �R�L = 0. (2.5)

In the massless limit, a particle’s chirality is a Lorentz-invariant concept. For
example, a particle which is left-handed to one observer will appear left-handed to
all observers. Thus chirality is a natural label to use for massless fermions, and a
collection of such particles may be characterized according to the separate numbers
of left-handed and right-handed particles.

It is simple to incorporate chirality into a lagrangian formalism. The lagrangian
for a massless noninteracting fermion is

L = iψ /∂ ψ, (2.6)

or in terms of chiral fields,

L = LL + LR, (2.7)

where

LL,R = iψL,R/∂ ψL,R. (2.8)

The lagrangians LL,R are invariant under the global chiral phase transformations

ψL,R(x)→ exp(−iαL,R)ψL,R(x), (2.9)

where the phases αL,R are constant and real-valued but otherwise arbitrary. Antici-
pating the discussion of Noether’s theorem in Sect. I–4, we can associate conserved
particle-number current densities JμL,R,

J
μ

L,R = ψL,Rγ
μψL,R (∂μJ

μ

L,R = 0), (2.10)

with this invariance. From these chiral current densities, we can construct the vector
current V μ(x),

V μ = J
μ

L + JμR (2.11)

and the axial-vector current Aμ(x),
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I–2 Chiral fermions 7

Aμ = J
μ

L − JμR . (2.12)

Chiral charges QL,R are defined as spatial integrals of the chiral charge densities,

QL,R(t) =
∫
d3x J 0

L,R(x), (2.13)

and represent the number operators for the chiral fields ψL,R. They are time-
independent if the chiral currents are conserved. One can similarly define the vector
charge Q and the axial-vector charge Q5,

Q(t) =
∫
d3x V 0(x), Q5(t) =

∫
d3x A0(x). (2.14)

The vector charge Q is the total number operator,

Q = QR +QL, (2.15)

whereas the axial-vector charge is the number operator for the difference

Q5 = QL −QR. (2.16)

The vector charge Q and axial-vector charge Q5 simply count the sum and differ-
ence, respectively, of the left-handed and right-handed particles.

Parity, time reversal, and charge conjugation

The field transformations of Eq. (2.9) involve parameters αL,R which can take on
a continuum of values. In addition to such continuous field mappings, one often
encounters a variety of discrete transformations as well. Let us consider the oper-
ations of parity

x = (x0, x)→ xP = (x0,−x), (2.17)

and of time reversal

x = (x0, x)→ xT = (−x0, x), (2.18)

as defined by their effects on spacetime coordinates. The effect of discrete trans-
formations on a fermion field ψ(x) will be implemented by a unitary operator P
for parity and an antiunitary operator T for time reversal. In the representation of
Dirac matrices used in this book, we have

Pψ(x)P−1 = γ 0ψ(xP ), T ψ(x)T −1 = iγ 1γ 3ψ(xT ). (2.19)

An additional operation typically considered in conjunction with parity and time
reversal is that of charge conjugation, the mapping of matter into antimatter,

Cψ(x)C−1 = iγ 2γ 0ψ
T
(x), (2.20)

https://doi.org/10.1017/9781009291033.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.002


8 Inputs to the Standard Model

Table I–4. Response of Dirac bilinears to
discrete mappings.

C P T

S(x) S(xP ) S(xT )
P (x) −P(xP ) −P(xT )
−Jμ(x) Jμ(xP ) Jμ(xT )

J
μ
5 (x) −J5μ(xP ) J5μ(xT )
−T μν(x) Tμν(xP ) −Tμν(xT )

where ψ
T

β ≡ ψ†
αγ

0
αβ (α, β = 1, . . . , 4). The spacetime coordinates of field ψ(x) are

unaffected by charge conjugation.
In the study of discrete transformations, the response of the normal-ordered

Dirac bilinears

S(x) = : ψ(x)ψ(x) : P(x) = : ψ(x)γ5ψ(x) :
Jμ(x) = : ψ(x)γ μψ(x) : J

μ

5 (x) = : ψ(x)γ μγ5ψ(x) :
T μν(x) = : ψ(x)σμνψ(x) :

(2.21)

is of special importance to physical applications. Their transformation properties
appear in Table I–4. Close attention should be paid there to the location of the
indices in these relations. Another example of a field’s response to these discrete
transformations is that of the photon Aμ(x),

C Aμ(x) C−1 c = −Aμ(x), P Aμ(x) P−1 = Aμ(xP ),

T Aμ(x) T −1 c = Aμ(xT ).
(2.22)

Beginning with the discussion of Noether’s theorem in Sect. 1–4, we shall explore
the topic of invariance throughout much of this book. It suffices to note here that
the Standard Model, being a theory whose dynamical content is expressed in terms
of hermitian, Lorentz-invariant lagrangians of local quantum fields, is guaranteed
to be invariant under the combined operation CPT . Interestingly, however, these
discrete transformations are individually symmetry operations only of the strong
and electromagnetic interactions, but not of the full electroweak sector. We see
already the possibility for such behavior in the occurrence of chiral fermions ψL,R,
since parity maps the fields ψL,R into each other,

ψL,R → P ψL,R(x) P
−1 = γ 0ψR,L(xP ). (2.23)
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I–3 Fermion mass 9

Thus any effect, like the weak interaction, which treats left-handed and right-
handed fermions differently, will lead inevitably to parity-violating phenomena.

I–3 Fermion mass

Although the discussion of chiral fermions is cast in the limit of zero mass, fermions
in Nature do in fact have nonzero mass and we must account for this. In a lagran-
gian, a mass term will appear as a hermitian, Lorentz-invariant bilinear in the fields.
For fermion fields, these conditions allow realizations referred to as Dirac mass and
Majorana mass.5

Dirac mass

The Dirac mass term for fermion fieldsψL,R involves the bilinear coupling of fields
with opposite chirality

−LD = mD[ ψLψR + ψRψL ] = mD ψψ (3.1)

where ψ ≡ ψL + ψR and mD is the Dirac mass. The Dirac mass term is invari-
ant under the phase transformation ψ(x) → exp(−iα)ψ(x) and thus does not
upset conservation of the vector current V μ=ψγμψ and the corresponding num-
ber fermion operator Q of Eq. (2.15). All fields in the Standard Model, save pos-
sibly for the neutrinos, have Dirac masses obtained from their interaction with the
Higgs field (cf. Sects. II–3, II–4). Although right-handed neutrinos have no cou-
plings to the Standard Model gauge bosons, there is no principle prohibiting their
interaction with the Higgs field and thus generating neutrino Dirac masses in the
same manner as the other particles.

Majorana mass

A Majorana mass term is one which violates fermion number by coupling two
fermions (or two antifermions). In the Majorana construction, use is made of the
charge-conjugate fields,

ψc ≡ Cγ 0ψ∗, (ψL,R)
c = (�L,Rψ)

c, (3.2)

where C is the charge-conjugation operator, obeying

C = −C−1 = −C† = −CT . (3.3)

In the Dirac representation of gamma matrices (cf. App. C), one has C= iγ 2γ 0.
Some useful identities involving ψc include

5 We suppress spacetime dependence of the fields in this section.
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10 Inputs to the Standard Model

(ψc
i ) ψj = ψT

i C ψj , ψi ψ
c
j = −ψ∗Ti C ψ∗j ,(

(ψc
i ) ψj

)† = ψj ψ
c
i ,

(
ψT
i C ψj

)† = −ψ∗Tj C ψ∗i ,
(ψc

i ) ψ
c
j = ψj ψi, (ψc

i ) γ
μ ψc

j = −ψj γ μ ψi,
(ψc

R) ψL = 0, (ψc
R) γ

μ ψR = 0.

(3.4)

The two identities in the bottom line follow from �RC�L= 0.
The possibility of a Majorana mass term follows from the fact that a combination

of two fermion fields ψTCψ is an invariant under Lorentz transformations. Two
equivalent expressions for a Majorana mass term involving chiral fields ψL,R are6

−LM = mL,R

2

[
(ψL,R)c ψL,R + ψL,R (ψL,R)c

]
= mL,R

2

[
(ψL,R)

T CψL,R − (ψ∗L,R)T Cψ∗L,R
]
.

(3.5)

Because the cross combination (ψR)T CψL= 0, the Majorana mass terms involves
either two left-chiral fields or two right-chiral fields, and the left-chiral and right-
chiral masses are independent. Treating ψ and ψ∗ as independent variables, the
resulting equations of motion are

i/∂ ψR −mR ψ
c
R = 0, i/∂ ψc

R −mR ψR = 0, (3.6)

with a similar set of equations for ψL. Iteration of these coupled equations shows
that mR indeed behaves as a mass.

A Majorana mass term clearly does not conserve fermion number and mixes
the particle with its antiparticle. Indeed, a Majorana fermion can be identified with
its own antiparticle. This can be seen, using ψR as an example, by rewriting the
lagrangian in terms of the self-conjugate field

ψM = 1√
2

[
ψR + ψc

R

]
, (3.7)

which, given the equations of motion above, will clearly satisfy the Dirac equa-
tion. The total Majorana lagrangian can be simply rewritten in terms of this self-
conjugate field as

L(R)KE + L(R)M = ψRi/∂ ψR −
mR

2

[
(ψR)c ψR + ψR (ψR)c

]
= ψMi/∂ ψM −mRψM ψM

= ψT
MCi/∂ ψM −mRψ

T
MC ψM,

(3.8)

6 The factor of 1/2 with the Majorana mass parameters m(M)
L,R

compensates for a factor of 2 encountered in
taking the matrix element of the Majorana mass term.
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I–4 Symmetries and near symmetries 11

where again the identity �R C�L= 0 plays a role in this construction. To avoid
the possibility of nonconservation of charge, any Majorana mass term must be
restricted to a field with is neutral under the gauge charges. Thus, among the par-
ticles of the Standard Model, we will see that only right-handed neutrinos satisfy
this condition.

Finally, we note that a Dirac field can be written as two Majorana fields with
opposite masses via the construction

ψa = 1√
2

[
ψR + ψc

L

]
, ψb = 1√

2

[
ψL − ψc

R

]
, (3.9)

in which case we find

−LD = mD

[
ψL ψR + ψR ψL

]
= mD

2
(ψc

a) ψa −
mD

2
(ψb)c ψb + h.c.

(3.10)

The apparent violation of lepton number that looks like it would arise from this
framework does not actually occur, because the effects proportional to the mass
of these fields will cancel due to the minus sign between the two mass terms. To
make matters look even more puzzling, we can flip the sign on the mass term for
the second field, by the field redefinition ψb → i ψb in which case both masses
appear positive. However in this case, the weak current would pick up an unusual
factor of i, since the left-handed field would then become

ψL → 1√
2

[
i ψb + ψc

a

]
. (3.11)

In this case, potential lepton-number violating processes would cancel between the
two fields because of the occurrence of a factor of i2= − 1 from the application
of the weak currents. These algebraic gymnastics become more physically relevant
when we combine both Dirac and Majorana mass terms in Chap. VI.

I–4 Symmetries and near symmetries

A symmetry is said to arise in Nature whenever some change in the variables of
a system leaves the essential physics unchanged. In field theory, the dynamical
variables are the fields, and symmetries describe invariances under transformations
of the fields. For example, one associates with the spacetime translation xμ → xμ+
aμ a transformation of the field ψ(x) to ψ(x + a). In turn, the ‘essential physics’
is best described by an action, at least in classical physics. If the action is invariant,
the equations of motion, and hence the classical physics, will be unchanged. The
invariances of quantum physics are identified by consideration of matrix elements
or, equivalently, of the path integral. We begin the study of symmetries here by
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12 Inputs to the Standard Model

exploring several lagrangians which have invariances and by considering some of
the consequences of these symmetries.

Noether currents

The classical analysis of symmetry focusses on the lagrangian, which in general
is a Lorentz-scalar function of several fields, denoted by ϕi , and their first deriva-
tives ∂μϕi , i.e. L=L(ϕi, ∂μϕi). Noether’s theorem states that for any invariance of
the action under a continuous transformation of the fields, there exists a classical
charge Q which is time-independent (Q̇= 0) and is associated with a conserved
current, ∂μJμ= 0. This theorem covers both internal and spacetime symmetries.
For most7 internal symmetries, the lagrangian is itself invariant. Given a continu-
ous field transformation, one can always consider an infinitesimal transformation

ϕ′i(x) = ϕi(x)+ εfi(ϕ), (4.1)

where ε is an infinitesimal parameter and fi(ϕ) is a function of the fields in the
theory. The procedure for constructing the Noether current of an internal symmetry
is to temporarily let ε become a function of x and to define the quantity

ϕ̂i(x) = ϕi(x)+ ε(x)fi(ϕ), (4.2)

such that in the restriction back to constant ε, L becomes invariant and ϕ̂i(x) →
ϕ′i(x). For an internal symmetry, the Noether current is then defined by

Jμ(x) ≡ ∂

∂(∂με(x))
L(ϕ̂, ∂ϕ̂). (4.3)

Use of the equation of motion together with the invariance of the lagrangian
under the transformation in Eq. (4.1) yields ∂μJμ= ∂L/∂ε(x)= 0 as desired. The
Noether charge Q= ∫ d3x J0 is time-independent if the current vanishes suffi-
ciently rapidly at spatial infinity, i.e.

dQ

dt
=
∫
d3x ∂0J0= −

∫
d3x∇ · J= 0. (4.4)

We refer the reader to field theory textbooks for further discussion, including the
analogous procedure for constructing Noether currents of spacetime symmetries.

Identifying the current does not exhaust all the consequences of a symmetry but
is merely the first step towards the implementation of symmetry relations. Notice
that we have been careful to use the word ‘classical’ several times. This is because
the invariance of the action is not generally sufficient to identify symmetries of a
quantum theory. We shall return to this point.

7 An exception occurs for the so-called topological gauge symmetries.
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I–4 Symmetries and near symmetries 13

Examples of Noether currents

Let us now consider some explicit field theory models in order to get practice in
constructing Noether currents.

(i) Isospin symmetry: SU(2) isospin invariance of the nucleon–pion system pro-
vides a standard and uncomplicated means for studying symmetry currents. Con-
sider a doublet of nucleon fields

ψ =
(
p

n

)
, (4.5)

and a triplet of pion fields π ={πi} (i= 1, 2, 3) with lagrangian

L = ψ̄ (i/∂ −m) ψ + 1

2

[
∂μπ · ∂μπ −m2

ππ · π]+ igψ̄τ · πγ5ψ − λ

4
(π · π)2

(4.6)

where m is the nucleon mass matrix

m =
(
m 0
0 m

)
and τ ={τ i}(i= 1, 2, 3) are the three Pauli matrices. This lagrangian is invariant
under the global SU(2) rotation of the fields

ψ → ψ ′ = U ψ, U = exp (−iτ · α/2) (4.7)

for any αi , (i= 1, 2, 3) provided the pion fields are transformed as

τ · π → τ · π ′ = Uτ · πU †. (4.8)

In proving this, it is useful to employ the identity

π · π = 1

2
Tr (τ · πτ · π) , (4.9)

from which we easily see that πiπi is invariant under the transformation of
Eq. (4.8). The response of the individual pion components to an isospin transfor-
mation can be found from multiplying Eq. (4.8) by τ i and taking the trace,

π ′ i = Rij (α)πj , Rij (α) = 1

2
Tr
(
τ iUτ jU †

)
. (4.10)

To determine the isospin current, one considers the spacetime-dependent trans-
formation with α now infinitesimal,

ψ̂ = (1− iτ · α(x)/2) ψ, π̂ i = πi − εijkπjαk(x). (4.11)
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14 Inputs to the Standard Model

Performing this transformation on the lagrangian gives

L(ψ̂, π̂) = L(ψ, π)+ 1

2
ψ̄γ μτ · ∂μαψ − εijk(∂μπi)πj∂μαk, (4.12)

and applying our expression Eq. (4.3) for the current yields the triplet of currents
(one for each αi)

V i
μ = ψ̄γμ

τ i

2
ψ + εijkπj∂μπk. (4.13)

By use of the equations of motion for ψ and π , it is straightforward to verify that
this current is conserved.

(ii) The linear sigma model: With a few modifications the above example
becomes one of the most instructive of all field theory models, the sigma model
[GeL 60]. One adds to the lagrangian of Eq. (4.6) a scalar field σ with judiciously
chosen couplings, and removes the bare nucleon mass,

L = ψ̄i/∂ψ + 1

2
∂μπ · ∂μπ + 1

2
∂μσ∂

μσ

− gψ̄ (σ − iτ · πγ5) ψ + μ2

2

(
σ 2 + π2

)− λ

4

(
σ 2 + π2

)2
.

(4.14)

For μ2 > 0, the model exhibits the phenomenon of spontaneous symmetry break-
ing (cf. Sect. I–6). In describing the symmetries of this lagrangian, it is useful to
rewrite the mesons in terms of a matrix field

� ≡ σ + iτ · π , (4.15)

such that

σ 2 + π2 = 1

2
Tr
(
�†�

)
. (4.16)

Then we obtain

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR + 1

4
Tr
(
∂μ�∂

μ�†
)

+ 1

4
μ2 Tr

(
�†�

)− λ

16
Tr 2

(
�†�

)− g (ψ̄L�ψR + ψ̄R�†ψL
)
,

(4.17)

where ψL,R are chiral fields (cf. Eq. (2.3)). The left-handed and right-handed
fermion fields are coupled together only in the interaction with the � field. The
purely mesonic portion of the lagrangian is obviously invariant under rotations
among the σ,π fields. The full lagrangian has separate ‘left’ and ‘right’ invari-
ances, i.e. SU(2)L × SU(2)R,

ψL,R → ψ ′L,R = UL,RψL,R, �→ �′ = UL�U
†
R, (4.18)

with UL and UR being arbitrary SU(2) matrices,
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I–4 Symmetries and near symmetries 15

UL,R = exp (−iαL,R · τ/2). (4.19)

The fermion portions of the transformation clearly involve just the SU(2) isospin
rotations on the left-handed and right-handed fermions. However, the mesons
involve a combination of a pure isospin rotation among the π fields together with
a transformation between the σ and π fields

σ → σ ′ = 1

2
Tr
(
ULU

†
R

)
σ + i

2
Tr
(
ULτ

kU
†
R

)
πk

� σ + 1

2
(αL − αR) · π ,

πk → π ′k = − i
2

Tr
(
τ kULU

†
R

)
σ + 1

2
Tr
(
τ kULτ


U
†
R

)
π


� πk − 1

2

(
αkL − αkR

)
σ − 1

2
εk
mπ


(
αmL + αmR

)
, (4.20)

where the second form in each case is for infinitesimal αL, αR. For each invariance
there is a separate conserved current

J kLμ = ψ̄Lγμ
τ k

2
ψL − i

8
Tr
(
τ k
(
�∂μ�

† − ∂μ� �†
))

= ψ̄Lγμ
τ k

2
ψL − 1

2

(
σ∂μπ

k − πk∂μσ
)+ 1

2
εk
mπ
∂μπ

m,

J kRμ = ψ̄Rγμ
τ k

2
ψR + i

8
Tr
(
τ k
(
∂μ�

†� −�†∂μ�
))

= ψ̄Rγμ
τ k

2
ψR + 1

2

(
σ∂μπ

k − πk∂μσ
)+ 1

2
εk
mπ
∂μπ

m.

(4.21)

These can be formed into a conserved vector current

V k
μ = J kLμ + J kRμ = ψ̄γμ

τ k

2
ψ + εk
mπ
∂μπm, (4.22)

which is just the isospin current derived previously, and a conserved axial-vector
current

Akμ = J kLμ − J kRμ = ψ̄γμγ5
τ k

2
ψ + πk∂μσ − σ∂μπk. (4.23)

(iii) Scale invariance: Our third example illustrates the case of a spacetime trans-
formation in which the lagrangian changes by a total derivative. Consider classical
electrodynamics (cf. Sect. II–1) but with a massless electron,

L= − 1

4
FμνF

μν + ψ̄ i /Dψ, (4.24)

where ψ is the electron field, Dμψ = (∂μ + ieAμ)ψ is the covariant derivative of
ψ,Aμ is the photon field, and Fμν is the electromagnetic field strength. We shall
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16 Inputs to the Standard Model

describe the construction of both Dμψ and Fμν in the next section. Since there
are no dimensional parameters in this lagrangian, we are motivated to consider
the effect of a change in coordinate scale x → x ′ = λx together with the field
transformations

ψ(x)→ ψ ′(x) = λ3/2ψ(λx), Aμ(x)→ A′μ(x) = λAμ(λx). (4.25)

Although the lagrangian itself is not invariant,

L(x)→ L′(x) = λ4L(λx), (4.26)

with a change of variable the action is easily seen to be unchanged,

S =
∫
d4x L(x)→

∫
d4x λ4L(λx) =

∫
d4x ′ L(x ′) = S. (4.27)

There is nothing in this classical theory which depends on how length is scaled.
The Noether current associated with the change of scale is

J
μ

scale ≡ xνθ
μν, (4.28)

where θμν is the energy-momentum tensor of the theory,

θμν = −gμν
[
−1

4
FλσFλσ + ψ̄i /Dψ

]
− FμλF ν

λ + Aν∂λFμλ + i

2
ψ̄γ μ

↔
∂νψ.

(4.29)

Since the energy-momentum tensor is itself conserved, ∂μθμν = 0, the conservation
of scale current is equivalent to the vanishing of the trace of the energy-momentum
tensor,

∂μJ
μ

scale= θ μ
μ = 0. (4.30)

This trace property may be easily verified using the equations of motion.

Approximate symmetry

Thus far, we have been describing exact symmetries. Symmetry considerations
are equally useful in situations where there is ‘almost’ a symmetry. The very
phrase ‘approximate symmetry’ seems self-contradictory and needs explanation.
Quite often a lagrangian would have an invariance if certain of the parameters in it
were set equal to zero. In that limit the invariance would have a set of physical con-
sequences which, with the said parameters being nonzero, would no longer obtain.
Yet, if the parameters are in some sense ‘small’, the predicted consequences are
still approximately valid. In fact, when the interaction which breaks the symmetry
has a well-defined behavior under the symmetry transformation, its effect can gen-
erally be analyzed in terms of the basis of unperturbed particle states by using the
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I–5 Gauge symmetry 17

Wigner–Eckart theorem. The precise sense in which the symmetry-breaking terms
can be deemed small depends on the problem under consideration. In practice, the
utility of an approximate symmetry is rarely known a priori, but is only evident
after its predictions have been checked experimentally.

If a symmetry is not exact, the associated currents and charges will no longer
be conserved. For example, in the linear sigma model, the symmetry is partially
broken if we add to the lagrangian a term of the form

L′ = a σ = a

2
Tr�, (4.31)

where � is the matrix defined in Eq. (4.15). With this addition, the vector isospin
SU(2) symmetry remains exact but the axial SU(2) transformation is no longer an
invariance. The axial-current divergence becomes

∂μAiμ = aπi, (4.32)

and the charge is time-dependent,

dQi
5

dt
= a

∫
d3x πi. (4.33)

In the linear sigma model, if the parameters g, λ are of order unity it is clear that
the perturbation is small provided 1 
 a/μ3, as μ is the only other mass scale in
the theory. However, if either g or λ happens to be anomalously large or small, the
condition appropriate for a ‘small’ perturbation is not a priori evident.

In our example (iii) of scale invariance in massless fermion electrodynamics, the
addition of an electron mass

Lmass = −mψ̄ψ (4.34)

would explicitly break the symmetry and the trace would no longer vanish,

θ μ
μ = mψ̄ψ �= 0. (4.35)

This is in fact what occurs in practice. Fermion mass is typically not a small param-
eter in QED and cannot be treated as a perturbation in most applications.

I–5 Gauge symmetry

In our discussion of chiral symmetry, we considered the effect of global phase
transformations, ψL,R(x)→ exp (−iαL,R)ψL,R(x). Global phase transformations
are those which are constant throughout all spacetime. Let us reconsider the system
of chiral fermions, but now insist that the phase transformations be local. Each
transformation is then labeled by a spacetime-dependent phase αL,R(x),

ψL,R(x)→ exp(−iαL,R(x)) ψL,R(x). (5.1)
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18 Inputs to the Standard Model

Such local mappings are referred to as gauge transformations. The free massless
lagrangian of Eq. (2.1) is not invariant under the gauge transformation

iψL,R(x)/∂ψL,R(x)→ iψL,R(x)/∂ ψL,R(x)+ ψL,R(x)γ
μψL,R(x) · ∂μαL,R(x),

(5.2)

because of the spacetime dependence of αL,R. In order for such a local transforma-
tion to be an invariance of the lagrangian, we need an extended kind of derivative
Dμ, such that

DμψL,R(x)→ exp(−iαL,R(x))DμψL,R(x) (5.3)

under the local transformation of Eq. (5.1). The quantity Dμ is a covariant deriva-
tive, so called because it responds covariantly, as in Eq. (5.3), to a gauge trans-
formation.

Abelian case

Before proceeding with the construction of a covariant derivative, we broaden the
context of our discussion. Let �(x) now represent a boson or fermion field of any
spin and arbitrary mass. We consider transformations

�→ U(α)� (5.4)

Dμ�→ U(α)Dμ�, (5.5)

with a spacetime-dependent parameter, α=α(x). Suppose these gauge transfor-
mations form an abelian group, e.g., as do the set of phase transformations of
Eq. (5.1).8 It is sufficient to consider transformations with just one parameter as
in Eqs. (5.4)–(5.5) since we can use direct products of these to construct arbitrary
abelian groups.

One can obtain a covariant derivative by introducing a vector field Aμ(x), called
a gauge field, by means of the relation

Dμ� = (∂μ + ifAμ)�, (5.6)

where f is a real-valued coupling constant whose numerical magnitude depends in
part on the field�. For example, in electrodynamics f becomes the electric charge
of �. The problem is then to determine how Aμ must transform under a gauge
transformation in order to give Eq. (5.5). This can be done by inspection, and we
find

Aμ → Aμ + i

f
∂μU(α) · U−1(α). (5.7)

8 An abelian group is one whose elements commute. A nonabelian group is one which is not abelian.
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I–5 Gauge symmetry 19

The gauge field Aμ must itself have a kinetic contribution to the lagrangian. This
is written in terms of a field strength, Fμν , which is antisymmetric in its indices.
A general method for constructing such an antisymmetric second rank tensor is to
use the commutator of covariant derivatives,

[Dμ,Dν] � ≡ if Fμν�. (5.8)

By direct substitution we find

Fμν = ∂μAν − ∂νAμ. (5.9)

It follows from Eq. (5.7) and Eq. (5.9) that the field strength Fμν is invariant under
gauge transformations. A gauge-invariant lagrangian containing a complex scalar
field ϕ and a spin one-half field ψ , chiral or otherwise, has the form

L = −1

4
FμνF

μν + (Dμϕ)†Dμϕ + iψ /Dψ + · · · , (5.10)

where the ellipses stand for possible mass terms and nongauge field interactions.
There is no contribution corresponding to a gauge-boson mass. Such a term would
be proportional to AμAμ, which is not invariant under the gauge transformation,
Eq. (5.7).

Nonabelian case

The above reasoning can be generalized to nonabelian groups [YaM 54]. First, we
need a nonabelian group of gauge transformations and a set of fields which forms a
representation of the gauge group. Then, we must construct an appropriate covari-
ant derivative to act on the fields. This step involves introducing a set of gauge
bosons and specifying their behavior under the gauge transformations. Finally, the
gauge field strength is obtained from the commutator of covariant derivatives, at
which point we can write down a gauge-invariant lagrangian.

Consider fields �={�i} (i= 1, . . . , r), which form an r-dimensional represen-
tation of a nonabelian gauge group G. The �i can be boson or fermion fields of
any spin. In the following it will be helpful to think of � as an r-component col-
umn vector, and operations acting on � as r × r matrices. We take group G to
have a Lie algebra of dimension n, so that the numbers of group generators, group
parameters, gauge fields, and components of the gauge field strength are each n.
We write the spacetime-dependent group parameters as the n-dimensional vector
�α={αa(x)} (a= 1, . . . , n). A gauge transformation on � is

�′ = U(�α)�, (5.11)
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where the r × r matrix U is an element of group G. For those elements of G which
are connected continuously to the identity operator, we can write

U(�α) = exp(−iαaGa), (5.12)

where �G={Ga} (a= 1, . . . , n) are the generators of the group G expressed as
hermitian r × r matrices. The set of generators obeys the Lie algebra

[Ga,Gb] = icabcGc (a, b, c = 1, . . . , n), (5.13)

where {cabc} are the structure constants of the algebra. We construct the covariant
derivative Dμ� in terms of gauge fields �Bμ = {Ba

μ} (a= 1, . . . , n) as

Dμ� = (I∂μ + igBμ)�, (5.14)

where g is a coupling constant analogous to f in Eq. (5.6). In Eq. (5.14), I is the
r × r unit matrix, and

Bμ ≡ GaBa
μ. (5.15)

Realizing that the covariant derivative must transform as

(Dμ�)
′ = U(�α)(Dμ�), (5.16)

we infer from Eqs. (5.12)–(5.14) the response, in matrix form, of the gauge fields,

B′μ = U(�α)BμU−1(�α)+ i

g
∂μU(�α) · U−1(�α). (5.17)

The field strength matrix Fμν is found, as before, from the commutator of covariant
derivatives,

[Dμ,Dν]� ≡ igFμν�, (5.18)

implying

Fμν = ∂μBν − ∂νBμ + ig[Bμ,Bν]. (5.19)

Eqs. (5.17) and (5.19) provide the field strength transformation property,

F′μν = U(�α)FμνU−1(�α). (5.20)

Unlike its abelian counterpart, the nonabelian field strength is not gauge invariant.
Finally, we write down the gauge-invariant lagrangian

L = −1

2
Tr (FμνFμν)+ (Dμ�)∗Dμ�+ i� /D� + · · · , (5.21)

where � and � are distinct multiplets of scalar and spin one-half fields and the
ellipses represent possible mass terms and nongauge interactions. Analogously to
the abelian case, there is no gauge-boson mass term.

https://doi.org/10.1017/9781009291033.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.002
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The most convenient approach for demonstrating the theory’s formal gauge struc-
ture is the matrix notation. However, in specific calculations it is sometimes more
convenient to work with individual fields. To cast the matrix equations into compo-
nent form, we employ a normalization of group generators consistent with
Eq. (5.21),

Tr(GaGb) = 1

2
δab (a, b = 1, . . . , n). (5.22)

To obtain the ath component of the field strength �Fμν ={Fa
μν} (a= 1, . . . , n), we

matrix multiply Eq. (5.19) from the left by Ga and take the trace to find

Fa
μν = ∂μB

a
ν − ∂νBa

μ − gcabcBb
μB

c
ν (a, b, c= 1, . . . , n). (5.23)

The lagrangian Eq. (5.21) can likewise be rewritten in component form,

L = −1

4
FaμνF a

μν + (Dμ

kmϕm)
†(Dμ)knϕn + iψi(/D)ijψj + · · · , (5.24)

where a= 1, . . . , n and the remaining indices cover the dimensionalities of their
respective multiplets.

Mixed case

In the Standard Model, it is a combination of abelian and nonabelian gauge groups
which actually occurs. To deal with this circumstance, let us consider one abelian
gauge group G and one nonabelian gauge group G ′ having gauge fields Aμ and
�Bμ={Bμ

a } (a= 1, . . . , n), respectively. Further assume that G and G ′ commute
and that components of the generic matter field � transform as an r-dimensional
multiplet under G ′. The key construction involves the generalized covariant deriva-
tive, written as an r × r matrix,

Dμ� =
(
(∂μ + ifAμ)I+ ig �Bμ · �G

)
�, (5.25)

where I is the unit matrix and f, g are distinct real-valued constants. Given this,
much of the rest of the previous analysis goes through unchanged. The field
strengths associated with the abelian and nonabelian gauge fields have the forms
given earlier. So does the gauge-invariant lagrangian, except now the extended
covariant derivative of Eq. (5.25) appears, and both the abelian and nonabelian
field strengths must be included. For the theory with distinct multiplets of complex
scalar fields � and spin one-half fields �, the general form of the gauge-invariant
lagrangian is
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L = −1

4
FμνFμν − 1

2
Tr (FμνFμν)+ i� /D� −�m�

+ (Dμ�)†Dμ�− V (|�|2)+ L(�,�), (5.26)

where m is the fermion mass matrix, V (|�|2) contains the � mass matrix and any
polynomial self-interaction terms, and L(�, �) describes the coupling between
the spin one-half and spin zero fields.

I–6 On the fate of symmetries

Depending on the dynamics of the theory, a given symmetry of the lagrangian can
be manifested physically in a variety of ways. Apparently all such realizations are
utilized by Nature. Here we list the various possibilities.

(1) The symmetry may remain exact. The electromagnetic gauge U(1) symmetry,
the SU(3) color symmetry of QCD, and the global ‘baryon-number minus
lepton-number’ (B − L) symmetry are examples in this class.

(2) The apparent symmetry may have an anomaly. In this case it is not really a true
symmetry. Within the Standard Model the global axial U(1) symmetry is thus
affected. Our discussion of anomalies is given in Sect. III–3.

(3) The symmetry may be explicitly broken by terms (perhaps small) in the
lagrangian which are not invariant under the symmetry. Isospin symmetry, bro-
ken by electromagnetism and light-quark mass difference, is an example.

(4) The symmetry may be ‘hidden’ in the sense that it is an invariance of the
lagrangian but not of the ground state, and thus one does not ‘see’ the sym-
metry in the spectrum of physical states. This can be produced by different
physical mechanisms.

(a) The acquiring of vacuum expectation values by one or more scalar fields in
the theory gives rise to a spontaneously broken symmetry, as in the breaking
of SU(2)L invariance by Higgs fields in the electroweak interactions.

(b) Even in the absence of scalar fields, quantum effects can lead to the dynam-
ical breaking of a symmetry. Such is the fate of chiral SU(2)L × SU(2)R
symmetry in the strong interactions.

The various forms of symmetry breaking in the above are quite different. In partic-
ular, the reader should be warned that the word ‘broken’ is used with very different
meanings in case (3) and the cases in (4). The meaning in (3) is literal – what would
have been a symmetry in the absence of the offending terms in the lagrangian is
not a symmetry of the lagrangian (nor of the physical world). Although the usage
in (4) is quite common, it is really a malapropism because the symmetry is not
actually broken. Rather, it is realized in a special way, one which turns out to have
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important consequences for a number of physical processes. The situation is some-
what subtle and requires more explanation, so we shall describe its presence in a
magnetic system and in the sigma model.

Hidden symmetry

The phenomenon of hidden symmetry occurs when the ground state of the theory
does not have the full symmetry of the lagrangian. Let Q be a symmetry charge as
inferred from Noether’s theorem, and consider a global symmetry transformation
of the vacuum state

|0〉 → eiαQ|0〉, (6.1)

where α is a continuous parameter. Invariance of the vacuum,

eiαQ|0〉 = |0〉 (all α), (6.2a)

implies that

Q|0〉 = 0. (6.2b)

In this circumstance, the vacuum is unique and the symmetry manifests itself in the
‘normal’ fashion of mass degeneracies and coupling constant identities. Such is the
case for the isospin symmetric model of nucleons and pions discussed in Sect. I–4,
where the lagrangian of Eq. (4.6) implies the relations

mn = mp, mπ+ = mπ0 = mπ−,

g(ppπ0) = −g(nnπ0) = g(pnπ+)/
√

2 = g(npπ−)/
√

2,
(6.3)

with π± = (π1 ∓ iπ2)/
√

2.
Alternatively, if new states |α〉 �= |0〉 are reached via the transformations of

Eq. (6.1), we must have

Q|0〉 �= 0. (6.4)

Since, by Noether’s theorem, the symmetry charge is time-independent,

Q̇ = i[H,Q] = 0, (6.5)

all of the new states |α〉 must have the same energy as |0〉. That is, if E0 is the
energy of the vacuum state, H |0〉 ≡ E0|0〉, then we have

H |α〉 = H eiαQ|0〉 = eiαQH |0〉 = E0|α〉. (6.6)

Because the symmetry transformation is continuous, there must occur a continuous
family of degenerate states.
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Can one visualize these new states in a physical setting? It is helpful to refer to a
ferromagnet, which consists of separate domains of aligned spins. Let us focus on
one such domain in its ground state. It is invariant only under rotations about the
direction of spin alignment, and hence does not share the full rotational invariance
of the hamiltonian. In this context, the degenerate states mentioned above are just
the different possible orientations available to the lattice spins in a domain. Since
space is rotationally invariant, there is no preferred direction along which a domain
must be oriented. By performing rotations, one transfers from one orientation to
another, each having the same energy.

Let us try to interpret, from the point of view of quantum field theory, the states
which are obtained from the vacuum by a continuous symmetry transformation and
which share the energy of the vacuum state. In a quantum field theory any excita-
tion about the ground state becomes quantized and is interpreted as a particle. The
minimum excitation energy is the particle’s mass. Thus the zero-energy excitations
generated from symmetry transformations must be described by massless particles
whose quantum numbers can be taken as those of the symmetry charge(s). Thus
we are led to Goldstone’s theorem [Go 61, GoSW 62] – if a theory has a contin-
uous symmetry of the lagrangian, which is not a symmetry of the vacuum, there
must exist one or more massless bosons (Goldstone bosons). That is, spontaneous
or dynamical breaking of a continuous symmetry will entail massless particles in
the spectrum.

This phenomenon can be seen in the magnet analogy, where the excitation is a
spin-wave quantum. When the wavelength becomes very large, the spin configura-
tion begins to resemble a uniform rotation of all the spins. This is one of the other
possible domain alignments discussed above, and to reach it does not cost any
energy. Thus, in the limit of infinite wavelength (λ → ∞), the excitation energy
vanishes (E→ 0), yielding a Goldstone boson.9

Spontaneous symmetry breaking in the sigma model

We proceed to a more quantitative analysis of hidden symmetry by returning to
the sigma model of Sect. I–4. Let us begin by inferring from the sigma model
lagrangian of Eq. (4.14) the potential energy

V (σ,π) = −μ
2

2

(
σ 2 + π2

)+ λ

4

(
σ 2 + π2

)2
. (6.7)

9 In the ferromagnet case, the spin waves actually have E ∝ p2 ∼ λ−2 for low momentum. In
Lorentz-invariant theories, the form E ∝ |p| is the only possible behavior for massless single particle states.
For a more complete discussion, see [An 84].
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I–6 On the fate of symmetries 25

With μ2 negative, minimization of V (σ,π) occurs for the unique configuration
σ =π = 0. Hidden symmetry occurs for μ2 positive, where minimization of
V (σ,π) reveals the set of degenerate ground states to be those with

σ 2 + π2 = μ2

λ
. (6.8)

Let us study the particular ground state,

〈σ 〉0 =
√
μ2

λ
≡ v, 〈π〉0 = 0. (6.9)

Other choices yield the same physics, but require a relabeling of the fields. For this
case, field fluctuations in the pionic direction do not require any energy, so that the
pions are the Goldstone bosons. Defining

σ̃ = σ − v, (6.10)

we then have for the full sigma model lagrangian

L = ψ̄ (i/∂ − gv)ψ + 1

2

[
∂μσ̃ ∂

μσ̃ − 2μ2σ̃ 2
]+ 1

2
∂μπ · ∂μπ

− gψ̄ (σ̃ − iτ · πγ5) ψ − λvσ̃
(
σ̃ 2 + π2

)− λ

4

[(
σ̃ 2 + π2

)2 − v4
]
. (6.11)

Observe that the pion is massless, while the σ̃ and nucleon fields are massive. Thus,
at least part of the original symmetry in the sigma model lagrangian of Eq. (4.14)
appears to have been lost. Certainly, the mass degeneracy mσ =mπ is no longer
present, although the normal pattern of isospin invariance survives. However, the
full set of original symmetry currents remain conserved. In particular, the axial
current of Eq. (4.23), which now appears as

Aiμ = ψ̄γμγ5
τ i

2
ψ − v∂μπi + πi∂μσ̃ − σ̃ ∂μπi, (6.12)

still has a vanishing divergence, ∂μAiμ= 0. We warn the reader that to demonstrate
this involves a complicated set of cancelations.

For a normal symmetry, particles fall into mass-degenerate multiplets and have
couplings which are related by the symmetry. The isospin relations in Eq. (6.3)
are an example of this. In a certain sense, a hidden symmetry likewise gives rise
to degenerate states whose couplings are related by the symmetry. The degeneracy
consists of a state taken alone or accompanied by an arbitrary number of Goldstone
bosons. For example, in the sigma model it can be a nucleon and the same nucleon
accompanied by a zero-energy massless pion, which are degenerate. Moreover,
the couplings of such configurations are restricted by the symmetry. Historically,
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26 Inputs to the Standard Model

predictions of chiral symmetry were originally formulated in terms of soft-pion
theorems (cf. App. B–3) relating the couplings of theN states to those of the degen-
erate πN states.

lim
qμ→0

〈πk(q)N ′|O|N〉 = − i

Fπ
〈N ′|[Qk

5,O]|N〉, (6.13)

where O is some local operator and N,N ′ are nucleons or other states. This cap-
tures intuitively the nature of symmetry predictions for a hidden symmetry. In this
book, we will explore such chiral relations using the more modern techniques of
effective lagrangians.

To summarize, if a symmetry of the theory exists but is not apparent in the single-
particle spectrum, it still can have a great deal of importance in restricting parti-
cle behavior. What happens is actually quite remarkable – in essence, symmetry
becomes dynamics. One obtains information about the excitation or annihilation
of particles from symmetry considerations. In this regard, hidden symmetries are
neither less ‘real’ nor less useful than normal symmetries – they simply yield a
different pattern of predictions.

Problems

(1) The Poincaré algebra
(a) Consider the spacetime (Poincaré) transformations, xμ → 
μ

νx
ν + aμ,

where 
μ
σ


σν = gμν . Associated with each coordinate transformation
(a,
) is the unitary operator U(a,
)= exp(iaμPμ− i

2εμνM
μν). For two

consecutive Poincaré transformations there is a closure property, U(a′,
′)
U(a,
)=U(. . .). Fill in the dots.

(b) Prove that U(a−1, 0)U(a′, 0)U(a, 0)=U(a′, 0), and by taking a′μ, aμ
infinitesimal, determine [Pμ, P ν].

(c) Demonstrate that (
−1)λν =
νλ, and then show that
U(0,
−1)U(a′,
′)U(0,
)=U(
−1a′,
−1
′
).

(d) For infinitesimal transformations we write 
μ
λ � g

μ
λ + ε

μ
λ. Prove that

εσλ= −ελσ and henceMσλ= −Mλσ . Upon taking primed quantities in (c)
to be infinitesimal, prove U(0,
−1)P μU(0,
)=
μ

νP
ν and U(0,
−1)

MμνU(0,
)=
μ
α


ν
βM

αβ . Finally, letting unprimed quantities be infini-
tesimal as well, determine [Mαβ, Pμ] and [Mαβ,Mμν].

(2) The Meissner effect in gauge theory [Sh 81]
The lagrangian for the electrodynamics of a charged scalar field is

L0 = −1

4
FμνF

μν + (Dμϕ)
∗(Dμϕ)− V (ϕ)

with covariant derivative Dμ ≡ ∂μ + ieAμ and potential energy,
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V (ϕ) = m2

2
ϕ∗ϕ + λ

4
(ϕ∗ϕ)2 (λ > 0).

(a) Identify the electromagnetic current of the ϕ field.
(b) For m2 > 0, show that the ground state is ϕ= 0, Aμ= 0. In this case, the

theory is that of normal electrodynamics.
(c) For m2 < 0 (m2 → −μ2 with μ2 > 0), we enter a different phase of the

system. Show that the ground state is now ϕ= const. ≡ v, Aμ= 0. What
is the photon mass in this phase? Calculate the potential between two static
point charges each of valueQ. What sets the scale of the screening length?

(d) Let us now add an external field to the system,

L0 → L0 + 1

2
FμνF

μν
ext .

To see that Fμν
ext indeed acts like an applied field, show that if one disregards

the field ϕ the equations of motion require Fμν =Fμν
ext .

(e) Demonstrate that there are two simple solutions to the equations of motion
in the presence of a constant applied field,

ϕ =
{

0 (Fμν = F
μν
ext ),

v (Fμν = 0).

Again, these correspond to unscreened and screened phases of the electro-
magnetic field.

(f) Calculate the energy of the two phases if Fμν
ext describes a constant mag-

netic field. Show that the phase in part (e) with ϕ= 0 has the lower energy
for B > Bcritical whereas for B < Bcritical it is the phase with ϕ= v which
has the lower energy. Discuss the similarity of this result to the Meissner
effect.
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