
JFP 26, e13, 52 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000137

1

Romeo: A system for more flexible binding-safe
programming∗

PAUL STANSIFER and MITCHELL WAND

College of Computer and Information Science,

Northeastern University Boston, Massachusetts, USA

e-mail: pauls@ccs.neu.edu and wand@ccs.neu.edu

Abstract

Current systems for safely manipulating values containing names only support simple binding

structures for those names. As a result, few tools exist to safely manipulate code in those

languages for which name problems are the most challenging. We address this problem with

Romeo, a language that respects α-equivalence on its values, and which has access to a

rich specification language for binding, inspired by attribute grammars. Our work has the

complex-binding support of David Herman’s λm, but is a full-fledged binding-safe language

like Pure FreshML.

1 Introduction

Name collision, the appearance of a name in a context where it means something

other than what was intended, is usually thought of as a minor hazard of pro-

gramming. But in the context of metaprogramming, the danger is significantly more

serious, first because the metaprogrammer has no idea what names will appear in

input syntax, and second because it is a natural programming practice to create

copies of a single piece of syntax and expect each copy to behave independently,

even when interleaved.

For example, suppose a metaprogrammer writes a function that, when given two

lambda expressions, (lambda (x1) e1) and (lambda (x2) e2), constructs

(lambda (x1) (lambda (x2) (e1 e2))).

If such a function were passed (syntax for) two identity functions, it should produce

(syntax for) the composition function:

(lambda (a) (lambda (b) (a b)))

But if both its arguments are the same identity function, shadowing will (in many

metaprogramming systems) change the meaning to something else:

(lambda (c) (lambda (c) (c c)))

∗ This material is based on research sponsored by the Defense Advanced Research Projects Agency
and the Air Force Research Laboratory under agreement number FA8750-10-2-0233. Any opinions,
findings, conclusions or recommendations expressed herein are those of the authors, and do not
necessarily reflect those of the US Government, DARPA, or the Air Force.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

2 P. Stansifer and M. Wand

Bugs resulting from name collision can be difficult to track down and fix. If the

user of a metaprogramming system encounters such a bug, it will manifest, at best,

as a static error in generated code. The user must reason about the internals of the

metaprogramming system to determine how they caused that code to be generated.

In the worst case, it will manifest as a behavioral anomaly that is invisible to code

inspection.

Unfortunately, metaprogrammers do not typically receive much help from their

languages and tools; a recent survey of nine tools for - domain-specific language

implementation found that eight of them were vulnerable to errors or incorrect

behavior as a result of name collision (Erdweg et al., 2014).

In order to solve this problem, it is necessary to codify the user’s intentions. This

is the responsibility of binding specifications, which indicate, for a particular term,

how the set of names in scope in its subterms differ from the set of names in scope

for it. Typically, each form in a language has a binding specification, and the binding

behavior of a term is determined by looking up which form it corresponds to.

A system with binding specifications can be binding-safe. In binding-safe systems,

α-equivalent inputs proceed to α-equivalent outputs (Herman & Wand, 2008). From

the point of view of the user (either the programmer or the metaprogrammer), such

a system behaves the same regardless of what names the user chooses. The primary

benefit to the user is that name collision errors are impossible, but we have also

discovered a secondary benefit: It is possible to write simpler code when terms can

always be safely put into binding forms without fear of accidentally capturing free

variables.

Two binding-safe metaprogramming systems are of particular interest to us: λm
and Pure FreshML.

1.1 The λm calculus

David Herman’s λm calculus (2010) is inspired by the world of Scheme macros.

Typically, Scheme is made up of a very small number of core forms, sufficiently

expressive to write any program, but not user-friendly. For example, it might

contain lambda but not let. The user (and the author of the standard library)

uses metaprogramming to implement each user-friendly language form (macro) by

describing how to translate (expand) it into core forms (or just simpler macros). The

Scheme macro system orchestrates this expansion process.

Scheme predates the notion of binding safety, but Scheme programmers have

been attacking the problem of name collision since at least 1986 (Kohlbecker et al.,

1986). The standard approach Schemers have developed is called “hygiene”. Unlike

binding safety, which is a property of the metaprogramming system, hygiene is a

property of the macro expander, operating by annotating names on the input and

output of the metaprogram that is a macro implementation, rather than affecting the

execution of the metaprogram itself. Furthermore, hygiene does not require binding

specifications.

One disadvantage of this “lightweightness” is that, without binding specifications

to indicate the intended binding behavior of macros, it is hard to say what it means

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 3

for a system to be hygienic. In fact, is was not until 2015 that a notion of what it

means for an implementation of hygiene to be correct was proposed (Adams, 2015).

This makes it difficult to explain to the programmer how to understand hygiene,

and makes it almost impossible to build any static guarantees off hygiene.

The λm-calculus addresses this by introducing binding specifications for macros,

and then defining a binding-safe macro expander. One of the major challenges is

that a single macro invocation may include arbitrarily many subterms, each with its

own scope, and while each of those scopes may introduce a different set of names,

the same name may be bound in many of them. λm’s binding specification system

is powerful enough to express certain situations like this, including many standard

Scheme macros.

The primary limitation of λm (from our point of view) is that it is merely a

pattern-matching macro system. This means that the metaprogrammer can only

specify an expected invocation syntax for a macro (with “holes” for parameters),

and a template for transcription (with interpolations from those holes), as opposed

to writing a function that could perform arbitrary computation. In Scheme parlance,

this is like syntax-rules (minus Macro By Example’s treatment of ...), as opposed

to syntax-case. This makes many common macros impossible to define.

Furthermore, macros are only one of many forms of metaprogramming that can

benefit from binding safety.

1.2 Pure FreshML

Francois Pottier’s Pure FreshML (2007a) is a core calculus of a functional language

for metaprogramming, in which values are terms with binding structure. Programs

in Pure FreshML are binding-safe. In contrast to systems that easily achieve binding

safety by representing terms as functions (higher order abstract syntax) or by

representing names canonically (de Bruijn indices), terms in Pure FreshML are

ordinary trees that contain names, which seems to be the most ergonomic way to

metaprogram.

The most important aspect of its enforcement of binding safety is that, whenever a

binding term v is destructured (i.e. passes through Pure FreshML’s pattern-matching

construct), the name it binds (say, a) is automatically “freshened”, meaning that all

occurrences of a in v are replaced by a new name. This prevents name collisions,

but does not produce a fully binding-safe system.1

Binding safety requires α-equivalent inputs to proceed to α-equivalent outputs,

which is essentially a guarantee of determinism. The generation of fresh names is

non-deterministic, so Pure FreshML must ensure that the output of its programs

don’t contain any of those fresh names (at least as free names; non-determinism

in bound names is acceptable according to the definition of binding safety). For

a freshened name to escape the context, it was introduced in is an error, so Pure

FreshML has a static proof system to prove that such an escape will never occur.

1 Pure FreshML is based on FreshML (Shinwell et al., 2003), which stops here and achieves a less strong
safety guarantee.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

4 P. Stansifer and M. Wand

Fig. 1. Example types for two lambda calculi, one of which has the let* form. (The names

from the right-hand column are used to identify injections in Figure 2.)

However, the only kind of binding form permitted in Pure FreshML is a pair of

a name and a term, where the name is in scope for the term (in other words, the

binding structure of a lambda term). This is partially addressed by Cαml (Pottier,

2006), which improves on Pure FreshML’s expressivity somewhat. However, even

Cαml’s binding specifications are significantly limited. In particular, Cαml terms

are divided into expressions (which contain references) and patterns (which contain

binders), while terms in λm can play both roles simultaneously.

1.3 Example

For example, consider the following use of the let* syntactic form in Scheme, which

exhibits a complex binding structure:

(let* ((a 1)

(b (+ a a))

(c (* b 5)))

(display c))

The let* form is defined to bind the names it introduces not only in the body,

but also in the right-hand side of each subsequent arm. Thus, in the code above,

all references to names are well-defined, and the value of c is 10. This behavior

is similar to the behavior of do in Haskell and to telescopes in dependently typed

languages.

We wish to “expand away” let*s. In Figure 1, we write some binding types

using (a syntactically sugared version of) Romeo, and in Figure 2, we define a

function (using those types) that translates expressions from the lambda calculus

augmented with a let* construct into the plain lambda calculus. The α-equivalence-

preserving nature of the translation is a property of Romeo, and the key is

Romeo’s destructuring construct, open (similar to the “val <x1>x2 = e” construct

in FreshML (Shinwell et al., 2003) or the case construct in Pure FreshML (Pottier,

2007b)). For example, (open let-star (lsce-body) . . .) behaves the same way as the

(match let-star [(list lsc e-body) ...]) in Scheme, except that the value of

let-star is α-converted in a way that avoids name collision (see E-Open-� in Section

4). This α-conversion is guided by the type of the value being destructured.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 5

Fig. 2. A Romeo-L function to expand away let*.

If we had wanted to translate let (which only differs from let* in its binding

behavior) instead, the exact same code would also serve that purpose; all that would

need to be changed would be the types (see Section 4.3.2). We will discuss this

example in more detail: We will cover the types in Section 2.1, the behavior of the

code in Section 4.3.1, and the static guarantees the code provides in Section 8.3.

1.4 Contributions

Our primary contribution is an extension of David Herman’s system for binding-

safety in a pattern-matching macro system (Herman, 2010) to cover macros defined

by procedures, and thus general meta-programming for terms with bindings. Our

language is inspired by Pure FreshML (Pottier, 2007b).

Our system has the following features:

• Values in Romeo are “plain old data”: Atoms arranged in abstract syntax trees

without binding information. Types provide the missing binding information.

• Romeo has an execution semantics which guarantees that instead of a name

“escaping” the context in which it is defined, a fault is produced.

• Thanks to that guarantee, we prove a theorem showing that, in any execution,

the dynamic environment can be replaced by one with α-equivalent values,

and that execution will proceed to a value α-equivalent to what it otherwise

would have.

• We provide a deduction system with which the programmer can establish that

escape (and thus, fault) will never occur.

2 Binding language

2.1 Overview of binding types

Values in our system are plain old data, that is, S-expressions or something similar.

We use binding types to specify the binding properties of these terms. Binding types

augment a traditional context-free grammar with a single attribute (in the style of

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

6 P. Stansifer and M. Wand

an attribute grammar) that represents the flow of bindings from one subterm to

another.

In Figure 1, the type definition of CoreExpr looks like a traditional grammar for

the lambda calculus, with one major difference: The notation CoreExpr↓0 indicates

that the binder “exported” by the child in position 0 (the BAtom, which exports the

name in that position) is to be in scope in the CoreExpr body of the lambda. To

facilitate the matching of related names together, the type for name introductions

(or binders), BAtom, is made distinct from the type of names that reference binders,

RAtom.

Instead of a binary product (×), our type system has a “wide” product

(Prod⇑βex (τi↓βi)i). Using a wide product increases the expressivity of our system

because the position references on the right-hand-side of ↓ (and ⇑) are indices

into the product. Manipulating forms that introduce multiple different but related

scopes was one of the primary challenges in proving the correctness of our

system.

Our system observes the convention that all names bound in a particular term

are bound in all subterms, unless overridden by a new binding for the same name.2

Things get more complicated when the binders are exported longer distances up

the tree. Returning to Figure 1, consider let*, in Expr . The “sequential let” line

indicates that the binders exported by LetStarClauses are in scope in the body of the

let* expression. The grammar for LetStarClauses says that a set of let*-clauses is

either the empty list or the cons of a single clause and a LetStarClauses .

In the second production for LetStarClauses , the Prod⇑0 (BAtom, Expr) indicates

that the first clause exports the binder from its position 0 (that is, the BAtom).

(However, this name is not in scope in the Expr .) The LetStarClauses↓0 indicates

that the names exported from the first clause are in scope in the remainder of the

clauses.

The ⇑ (1 � 0) indicates that the entire LetStarClauses exports all the binders

exported by either the first clause or the rest of the clauses, and that names in

the rest of the clauses override those from the first clause. If we had wanted

to specify that all the binders in a let* must be distinct, then we could have

written ⇑ (1 � 0), which behaves like ⇑ (1 � 0), except that duplicated atoms are an

error.

Thus, our type system can be seen as an attribute grammar with a single attribute,

whose values are sets of names representing bindings. These sets are synthesized

from binders and values that export them, and inherited by every term underneath

a term that imports one of them.

Our notations ↓, ⇑, �, and � form an algebra of attributes; the tractability of this

algebra is a key to many of our results. We call the terms in this language binding

combinators.

2 It is possible to imagine a system in which old names are removable (e.g. a construct (unbind x e),
in which the name x is not a valid reference in e, even if it was outside that construct), but this does
not appear to be a feature that users are clamoring for. (But see the end-of-scope operator described
by Hendriks and van Oostrom (2003).)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 7

Fig. 3. Typed production rule for event handler.

2.1.1 Example: multiple, partially shared bindings

For another example, imagine constructing a pair of event handlers, one of which

handles mouse events and one of which handles keyboard events, but both of which

need to know what GUI element is focused at the time of the event. This new form,

defined in Figure 3, binds three atoms (the BAtoms, which are in positions 0, 1, and

3), one of which is bound in both subexpressions, and two of which are bound in

only one of them. Here is a possible use of this new form:

(handler gui-elt

mouse-evt (deal-with gui-elt mouse-evt)

kbd-evt (put-tag gui-elt (text-of kbd-evt)))

And, here is an α-equivalent, but harder-to-read, version:

(handler a

b (deal-with a b)

b (put-tag a (text-of b)))

The scope of the first b is the (deal-with . . .), and the scope of the second one is

the (put-tag . . .).

Regardless of whether they have the same names, the meanings of the two events

must not be conflated, but in both subterms, the GUI element is the same. For this

reason, the operations our system performs on products must handle binding by

first identifying what names are exported by each child (e.g. a BAtom or a Prod with

a non-empty ⇑), and then determining which names are imported by which children.

The latter is the responsibility of the ↓ operator.

Our goal of supporting realistic concrete syntax is particularly relevant here. The

user could have implemented the handler statement as a function with the following

style of expected invocation:

(handler-fn (lambda (gui-elt mouse-evt)

(deal-with gui-elt mouse-evt))

(lambda (gui-elt kbd-evt)

(put-tag gui-elt (text-of kbd-evt))))

If programmer convenience were irrelevant, languages would need no binding

constructs other than lambda. However, programmer convenience is precisely the

point of metaprogramming systems.

2.2 Binding types, in more detail

In this section, we introduce our actual language of binding types and the metalan-

guage we use to describe them.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

8 P. Stansifer and M. Wand

a ∈ Atom

v ∈ Value ::= a

| inj0(v)

| inj1(v)

| prod (vi)i

τ ∈ Type ::= BAtom

| RAtom

| τ + τ

| Prod⇑β (τi↓βi)i
| μX.τ

| X

| nthi τ

Values are either atoms, left- or right- injections of values (to model sum types),

or tuples of values. We write prod (vi)i for the tuple (v0 . . . vn), for some n. We will

use notation like this for sequence comprehensions throughout our presentation.

The basic types are BAtom (for binders) and RAtom (for references). These

types tell us how to interpret atoms. By convention, BAtoms export themselves and

RAtoms export nothing.

Tuples are interpreted by Prod types. The wide product type

Prod⇑βex (τ0↓β0, . . . , τn↓βn), which we denote by the comprehension Prod⇑βex (τi↓βi)i,
tells us how to interpret the value prod (vi)i. The term βi, constructed in our algebra

of attributes, combines (a subset of) the binders exported by v0, . . . , vn to determine

the local names bound in vi. By convention, these names override those inherited

from outside (above) prod (vi)i. The binding combinator βex, similarly constructed in

our algebra of attributes, combines the binders exported by v0, . . . , vn to determine

the names exported as binders by the whole tuple prod (vi)i. If ↓ or ⇑ is omitted, the

corresponding β defaults to �.

Instead of parsing S-expressions, we have explicit sum types and injections. A

value inj0(v) (resp. inj1(v)) is interpreted by the type τ0 + τ1, so that v is interpreted

by τ0 (resp. τ1).

Last, we have recursive types μX.τ (where τ must be productive), to interpret a

value v according to μX.τ is to interpret it according to τ
[
(μX.τ) /X

]
. To support

it, we have type variables X, and type-level destructors nthj . We define the latter

as nthj Prod⇑βex (τi↓βi)i � τj (reusing our existing type constructor as a way to write

type tuples, the βis and βex are ignored). The nthj construct is uninteresting on its

own, but it allows for the definition of mutually recursive types.

2.3 The algebra of binding combinators

Binding combinators are terms built from the following grammar:

� ∈ �
β ∈ Beta ::= � | β � β | β � β | �.

As discussed above, we use binding combinators to collect names from the sets

exported by the subterms of a sequence prod (vi)i. We will need to interpret these

combinators as operating over both sets of names and substitutions (finite maps

from names to names). As before, we make liberal use of comprehensions: We write

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 9

�β� (Ai)i for �β� (A0, . . . , An), etc. The interpretation is as follows:

� � () : Beta × AtomSet → AtomSet

��� (Ai)i � �
��� (Ai)i � A�

�β � β′� (Ai)i � �β� (Ai)i ∪ �β′� (Ai)i
�β � β′� (Ai)i � �β� (Ai)i � �β′� (Ai)i .

Here and elsewhere, we write X to mean a sequence of X s.

In Romeo, constructing a value whose type contains a β that contains a � that

attempts to union two non-disjoint sets of names is an error. We omit checking for

this error, as it is straightforward, and is merely provided for metaprogrammers to

enforce their intended usage rules.

A substitution σ is a partial function from atoms to atoms. For the purposes of

manipulating them, we represent a substitution as a set of ordered pairs of atoms.

Our substitutions are naive, which is to say that they ignore binding structure and

simply affect all names. We interpret β’s on substitutions as follows:

� � () : Beta × Subst → Subst

��� (σi)i � �
��� (σi)i � σ�

�β � β′� (σi)i � �β� (σi)i � �β′� (σi)i
�β � β′� (σi)i � �β� (σi)i � �β′� (σi)i .

We define the “override” operation σ � σ′ as follows:

σ � σ′ � σ ∪
{

〈ad, ar〉
∣∣∣∣ 〈ad, ar〉 ∈ σ′

ad /∈ dom(σ)

}

The operation for combining disjoint substitutions σ � σ′ is like �, except that it

is undefinded if the domains of the substitutions in question overlap.

Now, using �β� (Ai)i, we can compute the exported binders from any value. These

are also called the free binders, because they are considered to be free names

in their term (the expected theorems relating free names to α-equivalence only

hold if we do this). The free binders of a value are determined using the value’s

type.

fb
(
Prod⇑βex (τi↓βi)i , prod (vi)i

)
� �βex� (fb(τi, vi))i

fb(τ0 + τ1, inj0(v)) � fb(τ0, v)

fb(τ0 + τ1, inj1(v)) � fb(τ1, v)

fb(μX.τ, v) � fb
(
τ[μX.τ/X], v

)
fb(BAtom, a) � {a}
fb(RAtom, a) � �

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

10 P. Stansifer and M. Wand

There are several other useful quantities that we can compute using these

combinators. First is the set of free references of a term:

fr
(
Prod⇑βex (τi↓βi)i , prod (vi)i

)
�

⋃
i

(
fr(τi, vi) \ �βi�

(
fb

(
τj , vj

))
j

)
fr(τ0 + τ1, inj0(v)) � fr(τ0, v)

fr(τ0 + τ1, inj1(v)) � fr(τ1, v)

fr(μX.τ, v) � fr
(
τ[μX.τ/X], v

)
fr(BAtom, a) � �
fr(RAtom, a) � {a}

The set of free atoms of a term is the union of the free references and the exported

(or free) binders:

fa(τ, v) � fr(τ, v) ∪ fb(τ, v)

The set of exposable atoms is the set of those non-free names in a value that will

become free when that value is broken into subterms. These are the atoms which

are on their “last chance” for renaming before they become free. This set, only

defined on products, is equal to the union of the binders exported by each term in

a sequence, less the terms that are exported to the outside:

xa
(
Prod⇑βex (τi↓βi)i , prod (vi)i

)
�

(⋃
i

fb(τi, vi)

)
\ fb

(
Prod⇑βex

(
τj↓βj

)
j
, prod

(
vj

)
j

)

Finally, we can determine whether a particular index is in the support of (i.e. referred

to by) β:

∈̂ ⊆ � × Beta

� ∈̂ � � false

� ∈̂ �′ �
(
� = �′)

� ∈̂ β � β′ � � ∈̂ β or � ∈̂ β′

� ∈̂ β � β′ � � ∈̂ β or � ∈̂ β′

3 α-equivalence

Our next task is to go from a binding type to a notion of α-equivalence on values

described by that type. Because our binding types allow for buried binders (i.e.

binders that may be an arbitrary depth from the form that binds them) to be

exported, we define two values to be α-equivalent, if both:

• they export identical binders, and

• their non-exported binders can be renamed along with the names that reference

them to make the terms identical.

=α : ⊆ Value × Value × Type

v =B v′ : τ v =R v′ : τ

v =α v
′ : τ

αEq

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 11

We use =B (pronounced “binder-equivalent”) for the first relation and =R (pro-

nounced “reference-equivalent”) for the second.

3.1 Binder equivalence

Two values are =B iff their exported (free) binders in the same positions are

identical. Note that non-exported binders are irrelevant to =B, but are important to

the calculation of =R.

Here and throughout, we omit the rules for injections and fixed points, which are

trivial.

=B : ⊆ Value × Value × Type

a =B a : BAtom
Bα-BAtom

a =B a′ : RAtom
Bα-RAtom

∀i ∈̂ βex. vi =B v′
i : τi

prod (vi)i =B prod
(
v′
i

)
i
: Prod⇑βex (τi↓βi)i

Bα-Prod

For example,

prod (a b c) =B prod (a b d) : Prod⇑0�1 (BAtom, BAtom, BAtom)

because non-exported atoms are ignored, but

prod (a b c) �=B prod (b a c) : Prod⇑0�1 (BAtom, BAtom, BAtom)

because exported names in each position must be the same.

3.2 Reference equivalence

Calculating =R is analogous to the conventional notion of α-equivalence, except

that we need to extract and rename the bindings that are buried in subterms.

3.2.1 Joining the binders

The first step in the wide product case is to match binders in identical positions

with each other, for which we must define the �
 operator (pronounced “join”). It

walks through both values in lockstep, assigning a common fresh atom for each

pair of corresponding binding atoms. The result is a pair of injective substitutions

whose domains are equal to the set of exported binders (fb) of the values being

joined.

To calculate �
 in the wide product case, we recursively generate such a pair of

substitutions for each subterm of the products being compared, make sure that the

generated names (the ranges of those substitutions) are disjoint, and then combine

those substitutions with �βex�. The resulting pair of substitutions is the output of

the �
 relation.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

12 P. Stansifer and M. Wand

�
 : → �
 ⊆ Value × Value × Type × Subst × Subst

a �
 a′ : BAtom → {〈a, afresh〉} �
 {〈a′, afresh〉}
J-BAtom

a �
 a′ : RAtom → � �
 �
J-RAtom

∀i. vi �
 v′
i : τ → σi �
 σ′

i

∀i �= j. rng(σi) # rng
(
σj

)
σ = �βex� (σi)i σ′ = �βex�

(
σ′
i

)
i

prod (vi)i �
 prod
(
v′
i

)
i
: Prod⇑βex (τi↓βi)i → σ �
 σ′ J-Prod

Here and elsewhere, we use # to denote the disjointness operator over names,

sets of names, and (the names in) values. It is naive, meaning that it entirely

ignores binding structure. (Note that in J-Prod, we only examine the range of the

substitutions without primes because the ranges of the two substitutions emitted by

�
 are identical.)

For example, consider the two let* expressions we have previously discussed:

(let* ((a 1) (let* ((d 1)

(b (+ a a)) (d (+ d d))

(c (* b 5))) (d (* d 5)))

(display c)) (display d))

The results of �
 on their subterms in position 1 (the display expressions) are

� and �, because neither one has any free binders. Position 0 corresponds to

the LetStarClauses , and is more interesting. �
 will non-deterministically generate

three names, which we will choose to be aa, bb, and cc. Then, we will have

σ0 = {〈a, aa〉 , 〈b, bb〉 , 〈c, cc〉} and σ′
0 = {〈d, cc〉}. The different ranges of these

substitutions indicate that some names (the ones called a and b in the left-hand

value) are shadowed and cannot be referred to at all by references on the right-hand

side.

A more complete derivation is available in the supplementary material.

3.2.2 Comparison by substitution

Now, we can write the rules for =R. At the type RAtom, the atoms being compared

are necessarily free, and are reference equal iff they are identical. Symmetrically to

=B, any two atoms are =R at BAtom.

At a wide product, the information from performing �
 on the subterms pairwise

is used to unify references that refer to binders in the same position. This is done as

follows: For each pair of subterms vi, v
′
i , we use �
 to generate a pair of substitutions

σi, σ
′
i that rename the binders exported by vi, v

′
i to be identical.

Then, for each subterm vi, we compute �βi�
(
σj

)
j
(vi) (and the symmetrical value

for v′
i), adjusting all the imported names (as defined in βi) so that, regardless of the

difference between vi and v′
i , references to binders in the same position become equal

to a single new value (as generated by �
).

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 13

Fig. 4. Substitutions generated for the handler example.

Note that this substitution is naive (that is, it disregards types and therefore

binding). Even though we are only interested in the substitution’s effect on free

references, this naivete is acceptable because, first, =R does not examine free

binders, and second (broadly speaking), the substitution of unfree names is harmless

(see Lemma 7.31). Because our substitutions are naive, we require that each

substitution’s range be disjoint from the values being examined (recall that �

non-deterministically chooses the substitutions’ ranges). Without this requirement,

we would have (let* ((x 7)) x) =R (let* ((y 7)) a) : Expr , witnessed by

σ0 = {〈x, a〉} and σ′
0 = {〈y, a〉}.

=R : ⊆ Value × Value × Type

a =R a′ : BAtom
Rα-BAtom

a =R a : RAtom
Rα-RAtom

∀i. vi �
 v′
i : τi → σi �
 σ′

i ∀i, j. rng(σi) , rng
(
σ′
i

)
vj , v

′
j

∀i �= j. rng(σi) # rng
(
σj

)
∀i. �βi�

(
σj

)
j
(vi) =R �βi�

(
σ′
j

)
j

(
v′
i

)
: τi

prod (vi)i =R prod
(
v′
i

)
i
: Prod⇑βex (τi↓βi)i

Rα-Prod

In our ongoing let* example, the appropriate substitution is a no-op on the

LetStarClauses , which import nothing, but recursive application of =R will discover

their shared binding structure and compare them as equal. On the other hand,

the Expr bodies will be both transformed into (display cc), which lacks binding

structure, and is naively equal to itself. So, the two expressions are =R. (They are also

trivially =B, and therefore =α.) A complete derivation of their reference-equivalence,

including analyzing the LetStarClauses themselves, is available in the supplementary

material.

An example that better demonstrates the complexities of renaming is the

event handler example from Section 2.1.1. The result of invoking �
 on each pair of

children, in order to compare the two versions for α-equivalence, is in

Figure 4.

Because the corresponding subterms import nothing, β0 = β1 = β3 = �. β2 is 0�1

and β4 is 0 � 3. The result of performing those substitutions is shown in Figure 5,

establishing the relationship between mouse-evt and the first b and the relationship

between kbd-evt and the second b.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

14 P. Stansifer and M. Wand

Fig. 5. Result of substitution in the handler example (all other subterms are trivial).

4 Romeo

Romeo is a first-order, typed, side-effect-free language whose values are abstract

syntax trees. It uses types to direct the interpretation of these trees as syntax trees

with binding, and to direct the execution of expressions in a way that respects that

binding structure. We divide the task of achieving safety into three parts:

• First, the execution semantics ensures that whenever the program causes a

name to escape the context in which it is defined, a fault is produced.

• Second, based on the non-escape property, we prove that at any point in

execution, the dynamic environment could be replaced by one with α-equivalent

values, and execution would still proceed to a value α-equivalent to what it

otherwise would have. Execution is deterministic up to α: that is, the non-

deterministic choices that are made (e.g. for fresh identifiers) do not change

the α-equivalence class of the result.

• Last, we provide a deduction system (see Section 8) to generate proof

obligations which, if satisfied, guarantee that escape (and thus, fault) will

never occur.

The syntax of Romeo is given as follows:

p ∈ Prog ::= fD . . . e : τ

fD ∈ FnDef ::= (define-fn (f x : τ . . . pre C) : τ e post C)

e ∈ Expr ::= (f x . . .)

| (fresh x in e)

| (let x where C be e in e)

| (case x (x e) (x e))

| (open x (x . . .) e)

| (if x equals x e e)

| eqlit

eqlit ∈ QuasiLit ::= x

| (ref x)

|
(
inj0 eqlit τ

)
|

(
inj1 τ eqlit

)
|

(
prod⇑β

(
e
qlit
i ↓βi

)
i

)
Here, C ranges over a language of invariants from which the proof obligations

for static safety are constructed. Romeo’s operational semantics does not refer to

these invariants. This sublanguage is discussed in Section 8.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 15

Typechecking is largely straightforward. In the body of open, the variables x . . .

are given the types of the subterms of the scrutinee x, and in the body of fresh, x is

bound to a name that is distinct from all other names in the execution environment.

In order to use that name as a reference, the ref form takes an argument of type

BAtom and returns it as a RAtom. A complete definition of the typechecking

judgment can be found in the supplementary material.

We annotate injections with the types of the arm-not-taken, and product con-

structors with their binding structure. This allows us to synthesize the types of

expressions with a function typeof (Γ, e) whose definition is routine.

To simplify the deduction system, we require variables in some places where

expressions would be more natural (like function arguments or xobj in open). As

a result, programs are written in (roughly) A-normal form, naming intermediate

results with let.

4.1 Operational semantics

We define Romeo’s execution in big-step style. An advantage, for our purposes, of

the big-step style is that it allows us to simultaneously enforce constraints about the

return values of and about the names generated by the fresh and open forms.

We begin with some auxiliary definitions that we will need

w ∈ Result ::= v | fault

ρ ∈ ValEnv ::= ε | ρ [x → v]

Γ ∈ TypeEnv ::= ε | Γ, x:τ

faenv(Γ, ρ) =
⋃

x∈ dom (Γ)

fa(Γ(x) , ρ(x))

The form of the execution judgment is

Γ �exe 〈e, ρ〉 k
=⇒ w

The k argument indicates the number of execution steps taken to produce the result

in question.

4.2 Execution rules

We can now give the rules for execution in Romeo. Rules that introduce names

come in two forms, -Ok, and -Fail. In each case, the difference is that fault occurs

in the -Fail case. A fault indicates that a name has escaped the scope that created

it (E-Fresh-�) or exposed it (E-Open-�). Much of the rest of the machinery in those

rules is about ensuring that newly introduced names do not collide with each other

or with names in the environment.

Some execution rules will depend on the type environment Γ. This is because

the binding structures of values are represented in their types (τ), but not in their

runtime representations (v). Therefore, type erasure is not possible — the meaning

of values (and thus the behavior of those rules) depends on type information.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

16 P. Stansifer and M. Wand

a /∈ faenv(Γ, ρ) Γ, x:BAtom �exe 〈e, ρ [x → a]〉 k
=⇒ w

τ = typeof ((Γ, x:BAtom) , e) w = fault ∨ a /∈ fa(τ, w)

Γ �exe 〈(fresh x in e) , ρ〉 k+1
==⇒ w

E-Fresh-Ok

a /∈ faenv(Γ, ρ) Γ, x:BAtom �exe 〈e, ρ [x → a]〉 k
=⇒ w

τ = typeof ((Γ, x:BAtom) , e) w �= fault ∧ a ∈ fa(τ, w)

Γ �exe 〈(fresh x in e) , ρ〉 k+1
==⇒ fault

E-Fresh-Fail

We begin with the rules for evaluating fresh expressions. The rules require that the

new name not occur in the environment ρ. Our determinacy theorems (Theorems

7.1 and 7.2) guarantee that the choice of the new name will not affect the result

(up to α-equivalence). We have two versions of the rule: Fresh-Fail, which returns

fault when the new name appears free in the result of executing the body e, and

Fresh-Ok, which returns w when that is not the case.

During the execution of e, x is treated as a BAtom. It is convertible to a RAtom

by the expression (ref x).

The hypothesis τ = typeof ((Γ, x:BAtom) , e) is needed to determine whether to

produce fault or not. Determining the type, of course, is entirely static and could

be pre-computed once rather than at each evaluation.

ρ
(
xobj

)
=α prod (vi)i : τobj τobj = Γ

(
xobj

)
τobj = Prod⇑βex (τi↓βi)i

faenv(Γ, ρ) �suff-disj prod (vi)i :τobj Γ, (xi:τi)i �exe 〈e, ρ [xi → vi]i〉
k
=⇒ w

τ = typeof (Γ, e) w = fault ∨ xa
(
τobj, prod (vi)i

)
fa(τ, w)

Γ �exe

〈(
open xobj ((xi)i) e

)
, ρ

〉 k+1
==⇒ w

E-Open-Ok

ρ
(
xobj

)
=α prod (vi)i : τobj τobj = Γ

(
xobj

)
τobj = Prod⇑βex (τi↓βi)i

faenv(Γ, ρ) �suff-disj prod (vi)i :τobj Γ, (xi:τi)i �exe 〈e, ρ [xi → vi]i〉
k
=⇒ w

τ = typeof (Γ, e) w �= fault ∧ ¬
(
xa

(
τobj, prod (vi)i

)
fa(τ, w)

)
Γ �exe

〈(
open xobj ((xi)i) e

)
, ρ

〉 k+1
==⇒ fault

E-Open-Fail

The next pair of rules destructure a product. Given a value ρ
(
xobj

)
= prod(

vobj,0, . . . , vobj,n

)
, the open expression chooses an α-variant prod (v0, . . . , vn) and binds

the resulting pieces to the variables xi. The free names in the α-variant must be

distinct both from names in the environment ρ and from each other (to the extent

that they are not actually related by binding). This is tested by a subsidiary judgment

�suff-disj, discussed in Section 4.2.2. Chosing an α-variant that satisfies this requirement

is the subject of Section 5.

As with fresh, we have two rules which branch on whether any of the new names

appear free in the result of the body e. We test for escaped names by comparing

the free atoms in the result with the exportable atoms of the renamed input. This

suffices for safety (α-equivalence preservation) because the set of atoms free in the

environment for e but not in the environment for
(
open xobj ((xi)i) e

)
(the atoms

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 17

that “become free” in this execution step) is equal to the set xa
(
τobj, prod (vi)i

)
.

Γ �exe 〈eval, ρ〉 kval
=⇒ vval

τval = typeof (Γ, eval) Γ, x:τval �exe 〈ebody, ρ [x → vval]〉
kbody

===⇒ w

Γ �exe

〈(
let x where C be eval in ebody

)
, ρ

〉 kval+kbody+1
======⇒ w

E-Let

Γ �exe 〈eval, ρ〉 k
=⇒ fault

Γ �exe

〈(
let x where C be eval in ebody

)
, ρ

〉 k+1
==⇒ fault

E-Let-Fail

There are two evaluation rules for let, depending on whether calculating eval faults.

As noted above, the constraint C is ignored at run-time.

body(f) = e formals(f) =
(
xformal,i:τformal,i

)
i(

xformal,i:τformal,i

)
i

�exe

〈
e,

[
xformal,i → ρi

(
xactual,i

)]
i

〉 k
=⇒ w

Γ �exe

〈(
f

(
xactual,i

)
i

)
, ρ

〉 k+1
==⇒ w

E-Call

As in Pure FreshML (Pottier, 2007b), we assume that our expressions are evaluated

in a context of function definitions, so that from a function name, we can retrieve the

function’s formals and body. Since this context is constant throughout an execution,

it is elided in the evaluation judgment.

ρ(xl) = a ρ(xr) = b a = b Γ �exe 〈e0, ρ〉 k
=⇒ w

Γ �exe 〈(if xl equals xr e0 e1) , ρ〉 k+1
==⇒ w

E-If-Yes

ρ(xl) = a ρ(xr) = b a �= b Γ �exe 〈e1, ρ〉 k
=⇒ w

Γ �exe 〈(if xl equals xr e0 e1) , ρ〉 k+1
==⇒ w

E-If-No

ρ
(
xobj

)
= inj0(v0)

Γ
(
xobj

)
= τ0 + τ1 Γ, x0:τ0 �exe 〈e0, ρ [x0 → v0]〉

k
=⇒ w

Γ �exe

〈(
case xobj (x0 e0) (x1 e1)

)
, ρ

〉 k+1
==⇒ w

E-Case-Left

ρ
(
xobj

)
= inj1(v1)

Γ
(
xobj

)
= τ0 + τ1 Γ, x1:τ1 �exe 〈e1, ρ [x1 → v1]〉

k
=⇒ w

Γ �exe

〈(
case xobj (x0 e0) (x1 e1)

)
, ρ

〉 k+1
==⇒ w

E-Case-Right

The remainder of the rules are routine. For simplicity’s sake, the equality test

construct works only on atoms. But in Romeo, for any type, it is straightforward

to write an equality test out of equals, and that predicate will necessarily be an

α-equivalence.

ε �exe 〈e, ε〉 k
=⇒ v

�exe fD . . . e
k+1
==⇒ v

E-Prog

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

18 P. Stansifer and M. Wand

The E-Prog rule initiates evaluation of a program. It is notionally responsible for

setting up the function context, which we omit from our notation, as it is otherwise

constant.

4.2.1 Quasi-Literals

The last kind of Romeo expression is the quasi-literals, so called because they look

like literal syntax for object-level syntax objects, except that they contain variable

references (which denote values), not literal atoms. Of course, those variables may

refer to atom values generated by fresh. Quasi-literals also contain some type

information to make type synthesis possible.

v = �eqlit�ρ

Γ �exe

〈
eqlit, ρ

〉 1
=⇒ v

E-QLit

Their evaluation is routine, and is specified by the following rules:

� � : QuasiLit × ValEnv → Value

�x�ρ � ρ(x)

�(ref x)�ρ � ρ(x)

�
(
inj0 eqlit τ

)
�ρ � inj0(�eqlit�ρ)

�
(
inj1 τ eqlit

)
�ρ � inj1(�eqlit�ρ)

�
(
prod⇑βexp

(
e
qlit
i ↓βi

)
i

)
�ρ � prod

(
�eqlit

i �ρ

)
i

4.2.2 Sufficient disjointness

The requirement that evaluation be insensitive to α-equivalent inputs leads to strong

requirements on the way that open destructures values. Consider the let* example

from before

(let* ((a 1) (let* ((d 1)

(b (+ a a)) (d (+ d d))

(c (* b 5))) (d (* d 5)))

(display c)) (display d)

These are α-equivalent, but if they were each destructured without renaming, we

would have d = d = d, even though a �= b �= c, violating our goal of being indifferent

to α-conversion. Therefore, E-Open potentially needs to freshen each binder to a

distinct new name, e.g.

(let* ((aa 1)

(bb (+ aa aa))

(cc (* bb 5)))

(display cc))

The rule to ensure this is that, before destructuring, we must α-convert values so

that the binders exposed by destructuring are disjoint from each other and from

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 19

any names that appear in the environment. This gives rise to the hypothesis

faenv(Γ, ρ) �suff-disj prod (vi)i :τobj

in the E-Open-� rules.

To calculate �suff-disj, we need the judgment �bndrs-disj v : τ, which checks that the

exported binders in v (as determined by the type τ) are disjoint from each other.

�bndrs-disj a : BAtom
BD-BAtom

�bndrs-disj a : RAtom
BD-RAtom

∀i, j ∈̂ βex. i �= j ⇒ fb(τi, vi) # fb
(
τj , vj

)
∀i ∈̂ βex. �bndrs-disj vi : τi

�bndrs-disj prod (vi)i : Prod⇑βex (τi↓βi)i
BD-Prod

We can now define �suff-disj, which checks the disjointness of non-exported subterms

(because these are the binders that will become free after destructuring), and also

that those names (calculable by xa) are disjoint from a set A of atoms (in practice,

this is the set of free atoms in the environment).

∀i /̂∈ βex. �bndrs-disj vi : τi ∀i, j /̂∈ βex. i �= j ⇒ fb(τi, vi) # fb
(
τj , vj

)
xa

(
prod (vi)i ,Prod⇑βex (τi↓βi)i

)
A

A �suff-disj prod (vi)i :Prod⇑βex (τi↓βi)i
Suff-Disj

4.3 Examples

4.3.1 Translation of let*

For an example, we write code that translates between two languages: from the

lambda calculus augmented with a let* construct into the plain lambda calculus.

Our code, in Figure 2, mentions types defined in Figure 1. It is written in Romeo-L

(Muehlboeck, 2013), which is a friendlier front-end to Romeo. For our purposes, the

important differences are that the arguments to function calls and the scrutinees of

open and case may be arbitrary expressions (not just variable references), and that

Romeo-L can infer the constraint C of let, so we may omit it. Furthermore, it will

turn out (see Section 8.3) that our example needs no pre- or post-conditions from

convert to show the absence of fault, so those constraints are also omitted.

Additionally, we have written our code using more readable n-way sum types.

This means that our case construct can branch four ways depending on whether

the Expr it examines is a variable reference, an application, a lambda abstraction,

or a let-star statement, and that injections take (as a subscript) a description of the

choice that they are constructing.

Lines 3–5 are straightforward traversal of the existing Expr forms that are already

forms in the core language (but, since their subterms might not be, they still need

to be converted by recursively invoking convert).

Lines 6–11 destructure let* forms and handle the trivial case, where the let*

does not have any arms. In the case where let* has at least one arm, line 12

constructs a smaller let* with one fewer arm, and recursively converts it, calling

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

20 P. Stansifer and M. Wand

the result e-rest . Finally, lines 13–14 construct a beta-redex in the object language

to bind the first arm’s name to its value expression in e-rest .

4.3.2 Translation of let

Consider again the example above. Suppose that we had implemented a normal let

construct (where names from previous arms are not in scope for the later arms),

with the type:

LetClauses ::=Prod ()

| Prod⇑1�0
(
Prod⇑0 (BAtom, Expr) , LetClauses

)
The only difference, besides the name, is that the recursive LetClauses does not

have a ↓0. If we had wanted to change the code in Figure 2 to expand ordinary

lets instead, the above change to the type of Expr is sufficient, and the otherwise

identical code would respect LetClause’s binding behavior and correctly expand the

let construct! This is a consequence of Theorem 7.1, which ensures that programs

cannot observe anything about names except their binding structure, as defined by

their binding specifications.

5 Freshening

Executing the E-Open-� rules in a Romeo implementation requires the ability to

take an arbitrary product value prod (vi)i, and generate a new α-equivalent value

prod
(
v′
i

)
i
such that A �suff-disj prod

(
v′
i

)
i
:τ (for a particular A). We call this process

“freshening”.

5.1 Approach

Conceptually, the �suff-disj predicate (motivated and defined in Section 4.2.2) requires

that all exposable binders in a value be mutually disjoint (and disjoint from A). This

is easy to achieve: simply assign fresh names to each exposable binder. However, in

order to produce a value that is also α-equivalent to the input, we must also rename

all references that refer to those values.

The difficulty in this is best illustrated by an example. Suppose that we have

started freshening, and we’ve chosen to rename the binder y to yy in the following

binding form, and thus, to maintain α-equivalence, must rename all of its references:

(let* ((x (string-length y))

(y 5)

(z (+ y 1)))

(+ y 2))

Because the binder y is both imported (into (z (+ y 1))) and exported (out

to the let* and then imported into (+ y 2)), the substitution {〈y, yy〉} must be

applied to multiple places. However, applying the substitution to the whole value

is unacceptable because the free reference y in (string-length y) must not be

renamed.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 21

Therefore, after generating a fresh replacement for y, we must use ↓ (import)

designations in the type of the value to determine where that particular y is in scope,

and only rename references to y in those locations, in order to keep references in

sync with the changes we made to the binders.

5.2 Reference renaming

While the freshening operation only affects non-free names in the value we are

freshening, we will accomplish it by renaming the free names of its subterms (and

sub-subterms, etc.). This is because those are the non-free names whose meaning is

determined by imports from other subterms. To that end, we need an operation that

applies a renaming only to the free references of a term. It needs to know the type

of its value argument so that it can avoid touching binders and bound names. With

that information, the implementation is straightforward.

|r (:) : Subst × Value × Type → Value

σ|r (a:BAtom) � a

σ|r (a:RAtom) � σ(a)

σ|r
(
prod (vi)i :Prod⇑βex (τi↓βi)i

)
� prod

((
σ \ Ai

)∣∣
r
(vi:τi)

)
i

where ∀i. Ai � �βi�
(
fb

(
vj , τj

))
j

5.3 Implementation of freshening

Let vtop denote the term we are freshening, and v′
top denote the result of freshening.

We begin by defining freshen-subterm, which performs freshening on a subterm

of vtop. It takes a value v (which is assumed to be a subterm of vtop), the type τ

of that value, and a boolean parameter, exported-from-v-top?, which is true iff the

exported binders from v are exported in an unbroken chain all the way out of vtop.

The function freshen-subterm applied to v returns a value v′ and a substitution σ

such that:

• A �suff-disj v
′:τ,3

• v =R v′ : τ (i.e. the structure of bound atoms and the free references are

unchanged),

• σ(v) =B v′ : τ (i.e. the exported binders differ by σ),

• dom(σ) = fb(v, τ),4 and

• if exported-from-v-top? is true, v =B v′ : τ (i.e. the exported binders are identical,

and thus v =α v
′ : τ and σ is a no-op),

3 For the sake of correctness, it is only necessary for v′
top (not all of its subterms, sub-subterms, etc.)

to be sufficiently-disjoint. At the cost of implementation complexity, it is possible to optimize this
algorithm so that it only freshens exposable names.

4 This means that, even when σ is a no-op substitution, it is still not an empty set. This is because
of shadowing: If an import brought a particular name in twice, with a non-freshened version of it
shadowing a freshened version of it, it is necessary that the non-freshened version correctly override
the freshened version when the substitutions are combined by ��.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

22 P. Stansifer and M. Wand

• but if exported-from-v-top? is false, the exported binders of v′ are fresh.

We omit the mechanics of threading environments of names through

freshen-subterm, as they are routine. Informally speaking, “where aa is fresh”

means that all generated names must be distinct from A and from each other.

The base cases of our recursive freshening function are all straightforward.

References do not require any action at this level, but binders are freshened,

provided they are not exported from vtop. This ensures that vtop =B v′
top : τtop.

Either way, we also return a substitution that reflects the change (if any) in the

exported binders of the result.

freshen-subterm (: ,) : Value × Type × Bool → Value × Subst

freshen-subterm (a:RAtom,) � a,�
freshen-subterm (a:BAtom, true) � a, {〈a , a〉}
freshen-subterm (a:BAtom, false) � aa , {〈a , aa〉} , where aa is fresh

Given a wide product prod (vi)i, we first recursively call freshen-subterm on all of

the subterms vi, producing values v′
i whose binders have been renamed according to

σi. Observe that vi exports from vtop iff prod (vi)i does and vtop exports vi.

Then, everywhere subterm j is imported, we rename free references according to

σj . We do this by calculating, for each subterm i, the value �βi�
(
σj

)
j
.

Finally, we have to determine what substitution corresponds to the difference in

exported binders between prod (vi)i and the value we return. This is calculated by

�βex�
(
σj

)
j
.

freshen-subterm
(
prod (vi)i :Prod⇑βex (τi↓βi)i , exported-from-v-top?

)
� prod

(
�βi�

(
σj

)
j

∣∣∣
r

(
v′
i:τi

))
i
, �βex�

(
σj

)
j

where ∀j.
(
v′
j , σj

)
� freshen-subterm

(
vj:τj , exported-from-v-top? ∧

(
i ∈̂ βex

))
Using freshen-subterm to turn vtop to v′

top is now simple. We generate a sufficiently

disjoint yet α-equivalent value to vtop by using freshen-subterm with exported-from-

v-top? set to true, as everything exported from vtop is (tautologically) exported from

vtop. We discard the resulting substitution (but by the invariants above, we know it

to be a no-op whose domain is fb
(
vtop, τtop

)
).

freshen (:) : Value × Type → Value

freshen
(
vtop:τtop

)
� v′

top

where v′
top, � freshen-subterm

(
vtop:τtop, true

)
Thus, by the (conjectured) invariants above (and recalling that the informal

treatment of freshness means that freshening doesn’t explicitly examine A), we have:

Conjecturea 5.1 (Freshening is always possible)

If v′ = freshen (v:τ), then v =α v
′ : τ and A �suff-disj v

′:τ.

This shows that it is possible to construct a value prod (vi)i that satisfies the �suff-disj

and =α premises of E-Open-�, and thus, it is possible to execute Romeo programs.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 23

6 Romeo respects α-equivalence: a guide to the proofs

We are now ready to prove our main theorem: that Romeo respects α-equivalence.

Romeo is non-deterministic in its choice of names in the E-Fresh-� and E-Open-

� rules. This complicates the proof of respecting α-equivalence. In a system with

simpler binding structures, like Pure FreshML, the proof would go as follows:

• Define all the states of the machine in Section 4 to be α-equivalence classes.

• Rely on the freshness condition for binders (Pouillard & Pottier, 2010) to show

that each manipulation on machine states (defined in terms of α-equivalence-

class representatives) respects α-equivalence.

In such a system, we would have needed to prove only Lemma 8.1, as does Pottier

(2007a).

Unfortunately, we were unable to usefully model our complex binding structures,

especially buried bindings, in nominal logic. Therefore, we were forced to proceed

from first principles.

We show two results: First, that if the evaluations of an expression in two α-

equivalent environments both terminate, then their results are α-equivalent, and

second, if the evaluation of an expression in one of two α-equivalent environments

yields a result, then evaluating the expression in the other one must yield at least

one α-equivalent result as well. Since we are using big-step semantics, we cannot

talk directly about non-termination.

For each of these theorems, the vast majority of the complexity is contained in

the cases for E-Fresh-� and E-Open-�.

Since we must account for faulting, we extend the definition of α-equivalence to

assert that fault =α fault.

Complete proofs of all the theorems and lemmas we mention in this paper are

available in the supplementary material. Here, we discuss the most interesting proofs.

It is typical for reasoning of this complexity to be done in a mechanical reasoning

system like Coq, but because we initially underestimated its size and scope, our

proof is entirely handwritten.

6.1 Executions on α-equivalent environments yield α-equivalent results

The first, and hardest, part of proving Romeo’s soundness is Theorem 7.1, which

shows that two terminating executions of α-equivalent environments yield α-

equivalent result values.

The major problem in the proof is that the two executions will potentially

generate different fresh names in E-Fresh-� and E-Open-�. Hence, even though

the environments start out α-equivalent, they will not stay α-equivalent throughout

execution. For example, a fresh statement non-deterministically introduces a new

name into the environment. Therefore, we must generalize our induction hypothesis

to account for the ways in which ρ and ρ′ diverge from α-equivalence.

We account for this divergence with two injective substitutions that unify the

names the two executions introduce. So our induction hypothesis says that if σ◦ρ =α

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

24 P. Stansifer and M. Wand

σ′ ◦ ρ′ : Γ for a pair of injective substitutions σ and σ′, then the results will be α-

equivalent, modulo the same transformation (i.e. σ(w) =α σ
′(w′) : τ).

Consider the case of E-Fresh-�. As we enter the scope of the new name it

generates, σ and σ′ are extended to map the new names to a common fresh

name (lines 7.49–7.50 in the proof in Section 7.3), for the sake of the induction

hypothesis.

The induction hypothesis tells us that the results (of the recursive evaluation of

e) are equivalent modulo the extended substitutions (line 7.55). The result of the

fresh evaluation step is either the same as that of the recursive step, or fault. We

first show that the original substitutions suffice to α-equate those two values (lines

7.61–7.62), and then that one side faults if and only if the other side does (lines

7.57–7.58).

The E-Open-� case proceeds with a similar structure.5 However, in this case, we

are not generating a single pair of new names, but unpacking a pair of values,

which potentially contain many names. The crucial lemma to handle this (Lemma

7.42, used on lines 7.74–7.77, described in Section 6.1.1) states that the �suff-disj

predicate in Romeo’s execution rules is strong enough that the technique from the

E-Fresh-� rules works for open, even though the various subterms of the value

being destructured have potentially different scopes. In a sense, the lemma is where

the complex binding structures meet the binding-safe programming in our system,

and it is discussed in more detail in Section 6.1.1. After the induction hypothesis,

E-Open-� proceeds like E-Fresh-�.

The E-If-� case, though simple, is crucial, because it shows that our induction

hypothesis is strong enough to guarantee that a comparison between two names in

ρ will always have the same result as a comparison between two names in ρ′. This

is where the injectivity of the substitutions σ and σ′ is used.

6.1.1 One substitution, not one per subterm, suffices for opening

Lemma 7.42 is a crucial part of our project to extend binding-safe programming to

support complex binding structures. A binding form in our system may possess many

scopes, with different meanings for the same names. However, to programmatically

manipulate such a binding form, it must be destructured, which dumps all of those

differently scoped subterms into the same execution environment.

This lemma is our most interesting technical trick, showing that, if A �suff-disj

prod (vi)i :τ holds (where A is the set of atoms in the environment), destructuring

is safe. For the purposes of Theorem 7.1, “destructuring is safe” means that

a single pair of substitutions suffices to bring all the subterms “back” into α-

equivalence (in other words, it will not lose information by causing a name

collision).

5 In fact, open can be used to replace fresh (whenever at least one binding form exists in the environment).
We keep both constructs because we found it easiest to understand the E-Open-� cases of our proofs
a generalization of the E-Fresh-� cases.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 25

The proof of this lemma starts on line 7.13, which generates, not a single pair of

substitutions, but one pair for each subterm of the pair of values. Lines 7.16–7.17

adjust those substitutions to avoid free names in the environment, and lines 7.18–

7.26 restrict those substitutions by removing any exported names, and show that the

resulting substitutions (interpreted by βi) still can achieve =R of pairs of subterms

of the values.

Lines 7.27–7.29 show that all those substitutions can be combined to form a single

pair of substitutions. Examining one side of that pair, lines 7.30–7.37 show that that

single substitution is an adequate replacement for any of the substitutions generated

on line 7.22.

Lines 7.40–7.41 show that, for exported subterms, their exclusion from the

substitutions means that they remain =B even after being substituted.

Lines 7.42–7.43 show that, for subterms that are not exported, the overall pair of

substitutions makes them =B.

6.1.2 α-equivalence and free names are connected

Lemma 7.30 (along with its cases Lemmas 7.28 and 7.29, and its corollary, Lemma

7.31) is used extensively in our proof, as it links the concepts of free names and

α-equivalence. It states that a name is free if and only if a (naive) substitution of

that name leads to a non-α-equivalent value.

The case for binders (Lemma 7.29) is straightforward, but the case for references

(Lemma 7.28) is much more complex. Its sublemma, lines 7.1–7.6, applies the

induction hypothesis in the case where the name being substituted is not imported

by the overall wide product in the current subterm. The rest of it is a case analysis

between (a) a being a free reference in the value, and therefore also a free reference

in one of its subterms (lines 7.7–7.8) , (b) a being non-free, which turns into a case

analysis for each subterm: (b.i) a not being imported (lines 7.11–7.12), and (b.ii) a

being imported. This final sub-case does not use the sublemma, but instead shows

that the substitutions we generated in line 7.10 prove reference-equivalence of the

whole value.

6.2 Termination is representation-oblivious

Theorem 7.1 leaves open the possibility that for a ρ whose execution leads to

a result w, execution of some α-variant ρ′ on the same program might fail to

terminate. However, Theorem 7.2 says that if one α-variant terminates (either with

a value or fault), then the execution of every α-variant will terminate (and, by

Theorem 7.1, when it does, the value will be α-equivalent to the result of the

original). Recall that we cannot talk directly about non-termination in our big-step

semantics.

Broadly speaking, our approach to proving Theorem 7.2 is that, for every

choice of fresh name in the original computation, we choose the same name

in the other one. This preserves α-equivalence of ρ and ρ′ for the induction

hypothesis.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

26 P. Stansifer and M. Wand

7 Soundness of execution for α-equivalence: lemmas and key proofs

7.1 General definitions

7.1.1 Naive operations

First, we show some basic properties regarding our näıve operations. These follow

from straightforward inductive arguments.

Lemma 7.1 (Substitutions never increase disjointness)
If σ(A) # σ

(
A′), then A # A′.

supp() : Value → AtomSet

supp(a) � {a}
supp(inj0(v)) � supp(v)

supp(inj1(v)) � supp(v)

supp(prod (vi)i) �
⋃
i

supp(vi)

supp() : Subst → AtomSet

supp(σ) � dom(σ) ∪ rng(σ)

supp() : ValEnv → AtomSet

supp(ρ) �
⋃
x∈ρ

supp(ρ(x))

Lemma 7.2 (Support contains all relevant atoms)

∀v, τ. fa(τ, v) ⊆ supp(v) and fb(τ, v) ⊆ supp(v)

and fr(τ, v) ⊆ supp(v) and xa(τ, v) ⊆ supp(v)

As noted in Section 2.3, we represent a substitution as a set of ordered pairs.

Lemma 7.3 (Substitutions can sometimes commute)
If dom(σ) # dom

(
σ′) and dom(σ) # rng

(
σ′) and dom

(
σ′) # rng(σ), then σ

(
σ′(v)

)
=

σ′(σ(v)).

7.1.2 Semantics of β

Here, we list some properties of our �β� () operation, especially the way that it

relates to the substitutions or sets of atoms that it takes as input. All of these proofs

are easy inductive arguments on β.

Lemma 7.4 (β of σ is consistent with its inputs)
dom

(
�β� (σi)i

)
=

⋃
i ∈̂ β

dom(σi) and �β� (σi)i ⊆
⋃

i ∈̂ β

σi

Lemma 7.5 (β of A is consistent with its inputs)
�β� (Ai)i =

⋃
i ∈̂ β

Ai

Lemma 7.6 (β of σ with disjoint domains does not shadow anything.)(
∀i, j ∈̂ β. i �= j ⇒ dom(σi) # dom

(
σj

))
iff �β� (σi)i =

⋃
i ∈̂ β

σi

Lemma 7.7 (β of σ ignores the σs not mentioned by β)
If ∀i ∈̂ β. σi = σ′

i , then �β� (σi)i = �β�
(
σ′
i

)
i

Lemma 7.8 (β of injective, mutually-range-disjoint σs has an injective result)
If ∀i. inj(σi), and ∀i �= j. rng(σi) # rng

(
σj

)
, then inj

(
�β� (σi)i

)
.

Lemma 7.9 (β of a set respects renamings of that set)
�β�

(
Ai

[
a′/a

])
i
= �β� (Ai)i

[
a′/a

]
Lemma 7.10 (β commutes with dom)
dom

(
�β� (σi)i

)
= �β� (dom(σi))i

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 27

7.2 Basic α-equivalence lemmas

Now, we show some basic properties related to α-equivalence and �
. First, we

need to define =shape. Attempting to compare two values for α-equivalence is only

interesting if they have the same shape.

v =shape v
′ ⊆ Value × Value

a =shape a
′

v =shape v
′

inj0(v) =shape inj0(v′)

v =shape v
′

inj1(v) =shape inj1(v′)

∀i. vi =shape v
′
i

prod (vi)i =shape prod
(
v′
i

)
i

Lemma 7.11 (=shape is reflexive, preserved under renaming, and implied by =α)

∀v. v =shape v and ∀v, a, a′. v =shape v
[
a′/a

]
and ∀τ. ∀v =α v

′ : τ. v =shape v
′

The �
 operator helps us relate exported binders in corresponding positions in

different values. It is often applied to the respective subterms of two values whose

α-equivalence is in question.

Lemma 7.12 (�
 cannot fail, and outputs arbitrary σs)

If v =shape v
′ and v : τ and A is finite, then ∃σ, σ′. v �
 v′ : τ → σ �
 σ′ and inj(σ) and

inj
(
σ′) and rng(σ) # A and rng

(
σ′) # A

Lemma 7.13 (�
 is about binders)

If v �
 v′ : τ → σ �
 σ′, then dom(σ) = fb(τ, v) and dom
(
σ′) = fb

(
τ, v′)

Next, we show that α-equivalence is an equivalence. Showing transitivity is most

complex because it depends on properties of substitutions, but even it is relatively

straightforward.

Lemma 7.14 (Reflexivity of α-equivalence)

v =R v : τ and v =B v : τ and v =α v : τ

Lemma 7.15 (Symmetry of α-equivalence)

v =α v
′ : τ implies v′ =α v : τ.

Lemma 7.16 (Transitivity of α-equivalence)

v =α v
′ : τ and v′ =α v

′′ : τ implies v =α v
′′ : τ.

We need an operation on substitutions that can cancel out single-atom renamings

on values (see Lemma 7.18). We call it “⊗”:

If a′ /∈ dom(σ) , σ ⊗
[
a′/a

]
�

{〈
ad-old

[
a′/a

]
, ar-old

〉 ∣∣∣∣ 〈ad-old, ar-old〉 ∈ σ

}

Lemma 7.17 (⊗ can be a no-op)

If a /∈ dom(σ), then σ ⊗
[
a′/a

]
= σ.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

28 P. Stansifer and M. Wand

Lemma 7.18 (⊗ can undo substitutions)

If a ∈ dom(σ) and a′ # v, then σ ⊗
[
a′/a

](
v
[
a′/a

])
= σ(v).

Lemma 7.19 (⊗ adjusts domains)

ad

[
a′/a

]
∈ dom

(
σ ⊗

[
a′/a

])
iff ad ∈ dom(σ)

Lemma 7.20 (⊗ can distribute over �)

If a′ /∈ dom(σ) ∪ dom
(
σ′), then

(
σ � σ′) ⊗

[
a′/a

]
=

(
σ ⊗

[
a′/a

])
�

(
σ′ ⊗

[
a′/a

])
Lemma 7.21 (⊗ commutes with β)

�β�
(
σi ⊗

[
a′/ai

])
i
= �β� (σi)i ⊗

[
a′/a

]
Lemma 7.22 (�
 reflects substitutions)

If v
[
a′/a

]
�
 v : τ → σ �
 σ′ and rng(σ) # v

[
a′/a

]
, v, then σ = σ′ ⊗

[
a′/a

]
Lemma 7.23 (�
 reflects substitution, generalized)

If v �
 v′ : τ → σ �
 σ′, then v
[
a′/a

]
�
 v′ : τ → σ ⊗

[
a′/a

]
�
 σ′

Lemma 7.24 (Substitution commutes with free binders)

fb(τ, σ(v)) = σ(fb(τ, v))

Lemma 7.25 (Substitution commutes with free references)

If rng(σ) # v and inj(σ), then fr(τ, σ(v)) = σ(fr(τ, v))

Lemma 7.26 (Subsitution commutes with free atoms)

If rng(σ) # v and inj(σ), then fa(τ, σ(v)) = σ(fa(τ, v))

Lemma 7.27 (Substitution commutes with exposable atoms)

If rng(σ) # prod (vi)i and inj(σ), then

xa
(
Prod⇑βex (τi↓vi)i , σ(prod (vi)i)

)
= σ

(
xa

(
Prod⇑βex (τi↓vi)i , prod (vi)i

))
Now, we need to relate free atoms and α-equivalence. This proof is more involved,

so we set it out in more detail:

Lemma 7.28 (Renaming references respects reference-equivalence iff they are not free)

Suppose a′ # v. Then, a /∈ fr(τ, v) if and only if v
[
a′/a

]
=R v : τ.

Proof

By induction on the size of v (all cases are trivial except for products and

atoms):

1. Suppose v = av and τ = RAtom.

fr(RAtom, av) = {av} By def. of fr.

a /∈ fr(RAtom, av) iff v
[
a′/a

]
=R av : RAtom By Rα-RAtom.

2. Suppose v = av and τ = BAtom.

fr(BAtom, av) = � By def. of fr.

a /∈ fr(BAtom, av) iff v
[
a′/a

]
=R av : BAtom

Trivially, by

Rα-BAtom.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 29

3. Suppose v = prod (vi)i and τ = Prod⇑βex (τi↓βi)i.

First, we define (motivated by Rα-Prod):

P
(
(σi)i ,

(
σ′
i

)
i

)
� ∀i.

vsub

[
a′/a

]
�
 vsub,i : τsub,i → σi �
 σ′

i

and rng(σi) , rng
(
σ′
i

)
v

[
a′/a

]
, v

First, we prove a sub-lemma that applies the induction hypothesis in the cases

where a is not imported into a particular subterm.

Assume for the sake of argument:

P
(
(σi)i ,

(
σ′
i

)
i

)
(7.1)

Fix an i. We know,

σi = σ′
i ⊗

[
a′/a

]
By Lemma 7.22.

�βi�
(
σj

)
j
= �βi�

(
σ′
j

)
j

⊗
[
a′/a

]
By Lemma 7.21.

(7.2)

And

fb
(
τsub,i, vsub,i

)
= dom

(
σ′
i

)
By Lemma 7.13.

Further, assume for the sake of argument:

a /∈ �βi�
(
fb

(
τsub,j , vsub,j

))
j

(7.3)

a /∈ �βi�
(
dom

(
σ′
j

))
j

By Lemma 7.13.

a /∈ dom
(
�βi�

(
σ′
j

)
j

)
By Lemma 7.10.

�βi�
(
σj

)
j
= �βi�

(
σ′
j

)
j

By 7.2 and Lemma

7.17.(
�βi�

(
σj

)
j

)
(vi) =

(
�βi�

(
σ′
j

)
j

)
(vi) Trivially.(

�βi�
(
σj

)
j
(vi)

) [
a′/a

]
=R �βi�

(
σ′
j

)
j
(vi) : τi

iff a /∈ fr(τi, vi)
By IH.

(7.4)

a # v or a /∈ rng(σi) By 7.1.

(7.5)

a′ /∈ dom(σi) Because a′ # v.(
�βi�

(
σj

)
j
(vi)

) [
a′/a

]
= �βi�

(
σj

)
j

(
vi

[
a′/a

])
By 7.5.

�βi�
(
σj

)
j

(
vi

[
a′/a

])
=R �βi�

(
σ′
j

)
j
(vi) : τi

iff a /∈ fr(τi, vi)
By 7.4.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

30 P. Stansifer and M. Wand

So

∀i.

⎛
⎜⎜⎜⎜⎝

P
((

σj
)
j
,
(
σ′
j

)
j

)
and a /∈ �βi�

(
fb

(
τsub,j , vsub,j

))
j

⇒ �βi�
(
σj

)
j

(
vi

[
a′/a

])
=R �βi�

(
σ′
j

)
j
(vi) : τi

iff a /∈ fr(τi, vi)

⎞
⎟⎟⎟⎟⎠

Unassuming 7.1 and

7.3.

(7.6)

Now, we actually show the product case, which has another two layers of case

analysis:

a. Suppose that: a ∈ fr(τ, v)

∃i. a ∈ fr(τi, vi) and a /∈ �βi�
(
fb

(
τsub,j , vsub,j

))
j

By def. of fr. (7.7)

P
((

σj
)
j
,
(
σ′
j

)
j

)
By Lemma 7.12.

But

∃i. �βi�
(
σj

)
j

(
vi

[
a′/a

])
�=R �βi�

(
σ′
j

)
j
(vi) : τi By 7.6 and 7.7.

So

a ∈ fr(τ, v) ⇒ v
[
a′/a

]
�=R v : τ

By Rα-Prod and

supposition.
(7.8)

b. Suppose that: a /∈ fr(τ, v)

∀i. a /∈ fr(τi, vi) or a ∈ �βi�
(
fb

(
τsub,j , vsub,j

))
j

By def. of fr. (7.9)

We can have ∀j. ∃σj ,σ′
j . :

P
((

σj
)
j
,
(
σ′
j

)
j

)
By Lemmas 7.12 and

7.11.
(7.10)

Fix an i.

i. Suppose that a /∈ �βi�
(
fb

(
τsub,j , vsub,j

))
j
:

a /∈ fr(τi, vi) By definition of fr. (7.11)

�βi�
(
σj

)
j

(
vi

[
a′/a

])
=R �βi�

(
σ′
j

)
j
(vi) : τi By 7.6 and 7.10. (7.12)

ii. Suppose that a ∈ �βi�
(
fb

(
τsub,j , vsub,j

))
j
.

In this case, we do not need the IH, because the substitutions generated

by �
 already account for the renaming:

�βi�
(
σj

)
j
= �βi�

(
σ′
j

)
j

⊗
[
a′/a

] By 7.10 and Lemmas

7.22 and 7.21.

�βi�
(
σj

)
j

(
vi

[
a′/a

])
= �βi�

(
σ′
j

)
j
(vi) By Lemma 7.18.

�βi�
(
σj

)
j

(
vi

[
a′/a

])
=R �βi�

(
σ′
j

)
j
(vi) : τi By Lemma 7.14.

So

a /∈ fr(τ, v) ⇒ v
[
a′/a

]
=R v : τ By 7.12.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 31

And so

a ∈ fr(τ, v) iff v
[
av/a

]
=α av : τ By 7.8.

�

Lemma 7.29 (Renaming binders respects binder equivalence iff they are not free)

Suppose a′ # v. Then, a /∈ fb(τ, v) iff v
[
a′/a

]
=B v : τ.

Proof

By induction on v (all cases are trivial except for products and atoms):

1. Suppose v = av and τ = BAtom:

fb(BAtom, v) = {av} By def. of fb.

a ∈ {av} iff v
[
a′/a

]
=B v : τ By Bα-BAtom.

2. Suppose v = av and τ = RAtom:

fb(BAtom, av) = � By def. of fb.

a /∈ fb(BAtom, av) iff v
[
a′/a

]
=B av : BAtom

Trivially, by

Bα-BAtom.

3. Suppose v = prod (vi)i and τ = Prod⇑βex (τi↓βi)i:

a ∈ fb(τ, v) iff a ∈ �βex� (fb(τi, vi))i By def. of fb.

iff ∃i ∈̂ βex. a ∈ fb(τi, vi)
By a straightforward

induction on β.

iff ∃i ∈̂ βex. vi
[
a′/a

]
�=B vi : τi By IH.

iff v
[
a′/a

]
�=B v : τ By Bα-Prod.

�

Lemma 7.30 (Renaming atoms respect α-equivalence iff they are not free)

Suppose a′ # v. Then, a /∈ fa(τ, v) if and only if v
[
a′/a

]
=α v : τ.

Proof

Follows from Lemmas 7.28 and 7.29 and αEq. �

Now, we prove some corollaries of those lemmas.

Lemma 7.31 (Non-free atoms can be mass-renamed)

Suppose inj(σ) and rng(σ) # v and dom(σ) # rng(σ).
dom(σ) # fb(τ, v) ⇒ σ(v) =B v : τ

dom(σ) # fr(τ, v) ⇒ σ(v) =R v : τ

dom(σ) # fa(τ, v) ⇒ σ(v) =α v : τ

Lemma 7.32 (Good renamings preserve binder equivalence)

Suppose a′ # v, v′. Then, v =B v′ : τ ⇒ v
[
a′/a

]
=B v′ [a′/a

]
: τ

Lemma 7.33 (Good renamings preserve reference equivalence)

Suppose a′ # v, v′. Then, v =R v′ : τ ⇒ v
[
a′/a

]
=R v′ [a′/a

]
: τ

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

32 P. Stansifer and M. Wand

Lemma 7.34 (Good renamings preserve α-equivalence)

Suppose a′ # v, v′. Then, v =α v
′ : τ ⇒ v

[
a′/a

]
=α v

′ [a′/a
]

: τ

Lemma 7.35 (Good substitutions preserve α-equivalence)

Suppose rng(σ) # v, v′ and dom(σ) # rng(σ) and inj(σ).
v =B v′ : τ ⇒ σ(v) =B σ

(
v′) : τ

v =R v′ : τ ⇒ σ(v) =R σ
(
v′) : τ

v =α v
′ : τ ⇒ σ(v) =α σ

(
v′) : τ

Lemma 7.36 (Free atoms are the same for α-equivalent values)

v =B v′ : τ ⇒ fb(τ, v) = fb
(
τ, v′)

v =R v′ : τ ⇒ fr(τ, v) = fr
(
τ, v′)

v =α v
′ : τ ⇒ fa(τ, v) = fa

(
τ, v′)

The following are helper lemmas for Lemma 7.42.

Lemma 7.37 (Binder-equivalent values don’t need their free binders renamed)

Suppose v �
 v′ : τ → σ �
 σ′. If v =B v′ : τ, then σ = σ′.

Lemma 7.38 (Identical renamings can be removed, retaining reference equality)

If σ(v) =R σ′(v′) : τ and σ(a) = a′ = σ′(a) and a′ # v, v′,

then
(
σ \ {a}

)
(v) =R

(
σ′ \ {a}

)(
v′) : τ

Lemma 7.39 (Identical renamings can be removed, retaining binder equality)

If σ(v) =B σ′(v′) : τ and σ(a) = a′ = σ′(a) and a′ # v, v′,

then
(
σ \ {a}

)
(v) =B

(
σ′ \ {a}

)(
v′) : τ

Lemma 7.40 (Disjointness of unrelated binders)

Let v = prod (vi)i and τ = Prod⇑βex (τi↓βi)i and σall =
⋃
i

σ′
i .

Suppose the following: ∀i. σ′
i ⊆ σi and dom(σall) # fr(τ, v) and ∀i �= j. dom(σi) #

dom
(
σj

)
and ∀i. fb(τi, vi) = dom(σi).

Then, ∀i. dom(σall) \ dom
(
�βi�

(
σ′
j

)
j

)
fr(τi, vi).

Lemma 7.41 (�
 makes pairs of binder-disjoint values binder-equal)

If �bndrs-disj v : τ and �bndrs-disj v
′ : τ, then

v �
 v′ : τ → σ �
 σ′ ⇒ σ(v) =B σ′(v′) : τ.

The purpose of the following lemma is to show that any pair of α-equivalent,

sufficiently disjoint values are suitable for unpacking into a pair of environments

that contain the free names A. By this, we mean that a single pair of substitutions

can make their subterms α-equivalent, not one pair per pair of subterms.

Lemma 7.42 (Sufficiently disjoint α-equivalent values can be opened)

Let τobj = Prod⇑βex (τi↓βi)i and v = prod (vi)i and v′ = prod
(
v′
i

)
i
.

Suppose fa
(
τobj, v

)
�suff-disj v:τobj and fa

(
τobj, v

′) �suff-disj v
′:τobj and A is finite.

If v =α v
′ : τobj, then ∃σ, σ′. dom(σ) ⊆ xa

(
τobj, v

)
and dom

(
σ′) ⊆ xa

(
τobj, v

′) and

∀i. σ(vi) =α σ
′(v′

i

)
: τi and rng(σ) # A and rng

(
σ′) # A and inj(σ) and inj

(
σ′)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 33

Proof

∀i. vi �
 v′
i : τi → σorig,i �
 σ′

orig,i By Rα-Prod. (7.13)

∀i, j. rng
(
σorig,i

)
, rng

(
σ′

orig,i

)
vj , v

′
j Likewise. (7.14)

∀i. �βi�
(
σorig,j

)
j
(vi) =R �βi�

(
σ′

orig,j

)
j

(
v′
i

)
: τi Likewise. (7.15)

To avoid collisions, choose σdisj:

dom
(
σdisj

)
=

⋃
i

rng
(
σorig,i

)
∪ rng

(
σ′

orig,i

)
inj

(
σdisj

)
and ∀i. rng

(
σdisj

)
vi, v

′
i and rng

(
σdisj

)
A

(7.16)

To keep exported binders fixed, define

∀i. σi � σdisj ◦ σorig,i and ∀i. σ′
i � σdisj ◦ σ′

orig,i (7.17)

Define

σlocal,i �

{
� i ∈̂ βex

σi i /̂∈ βex

and σ′
local,i �

{
� i ∈̂ βex

σ′
i i /̂∈ βex

(7.18)

(7.19)

Now,

∀i, j. rng
(
σlocal,i

)
, rng

(
σ′

local,i

)
vj , v

′
j , A

and inj
(
σlocal,i

) By 7.14 and 7.16. (7.20)

(7.21)

For convenience, define

σimp,i � �βi�
(
σlocal,j

)
j

and σ′
imp,i � �βi�

(
σ′

local,j

)
j

(7.22)

∀i /̂∈ βex. σimp,i(vi) =R σ′
imp,i

(
v′
i

)
: τi By 7.15. (7.23)

dom
(
σlocal,i

)
⊆ fb(τi, vi) and dom

(
σ′

local,i

)
⊆ fb

(
τi, v

′
i

) By 7.13 and Lemma

7.13.
(7.24)

But

v =B v′ : τobj Because v =α v
′ : τobj.

∀i ∈̂ βex. vi =B v′
i : τi By def. of =B.

∀i ∈̂ βex. σi = σ′
i By Lemma 7.37. (7.25)

So it doesn’t matter whether a subterm is exported:

∀i. σimp,i(vi) =R σ′
imp,i

(
v′
i

)
: τi

By 7.23, 7.18, and 7.20

and using Lemma 7.38

once for each

a ∈ dom(σi), where
i ∈̂ βex.

(7.26)

Now,

∀i, j ∈ βex. i �= j ⇒ dom
(
σlocal,i

)
dom

(
σlocal,j

) By def. of �suff-disj and

7.24.
(7.27)

And

∀i �= j. dom
(
σlocal,i

)
dom

(
σlocal,j

)
By 7.18. (7.28)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

34 P. Stansifer and M. Wand

So, define a single substitution:

σ �
⊎
i

σlocal,i (7.29)

dom(σ) # rng(σ) By 7.20. (7.30)

But:

dom(σ) # fb
(
τobj, v

)
By def. of fb. (7.31)

dom(σ) ⊆ xa
(
τobj, v

)
By def. of xa. (7.32)

dom(σ) # fa
(
τobj, v

)
By def. of �suff-disj.

dom(σ) # fr
(
τobj, v

)
By def. of fa.

∀i. dom(σ) \ dom
(
σimp,i

)
fr(τi, vi)

By 7.28 on Lemma

7.40.
(7.33)

And,

∀i. dom(σ) \ dom
(
σimp,i

)
#

⋃
i

rng(σi)
By 7.20 and 7.24 and

Lemma 7.2.
(7.34)

But

∀i. fr
(
τi, σimp,i(vi)

)
= σimp,i(fr(τi, vi))

By 7.20 and Lemma

7.25.

⊆
(
fr(τi, vi) \ dom

(
σimp,i

))
∪ rng

(
σimp,i

)
By set arithmetic.

⊆ fr(τi, vi) ∪ rng
(
σimp,i

)
By set arithmetic.

⊆ fr(τi, vi) ∪
⋃
j

rng
(
σj

)
By Lemma 7.5.

dom(σ) \ dom
(
σimp,i

)
By 7.33 and 7.34.

fr
(
τi, σimp,i(vi)

)
dom

(
σ \ σimp,i

)
By set arithmetic. (7.35)

(7.36)

σimp,i ⊆ σ By Lemma 7.4.

∀i. σimp,i(vi) =R

(
σ \ σimp,i

)(
σimp,i(vi)

)
: τi

By 7.35 and 7.30 on

Lemma 7.31.

∀i. = σ(vi) By 7.30. (7.37)

(7.38)

And,

σ′ �
⊎
i

σ′
local,i and ∀i. σ′

imp,i

(
v′
i

)
=R σ′(v′

i

)
: τi By a similar argument.

∀i. σ(vi) =R σ′(v′
i

)
: τi

By 7.37 and 7.26 and

Lemmas 7.28 and 7.16.
(7.39)

Also,

∀i ∈̂ βex. dom(σ) # fb(τi, vi) and dom
(
σ′) # fb

(
τi, v

′
i

) By 7.31 and def. of fb

and Lemma 7.5.
(7.40)

∀i ∈̂ βex. σ(vi) =B σ′(v′
i

)
: τi

By 7.20 and 7.30 on

Lemma 7.31.
(7.41)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 35

And,

∀i /̂∈ βex. σorig,i(vi) =B σ′
orig,i

(
v′
i

)
: τi

By def. of �suff-disj and

7.13 on Lemma 7.41.
(7.42)

∀i /̂∈ βex. σi(vi) =B σ′
i

(
v′
i

)
: τi

By 7.16 on Lemma

7.31.

∀i /̂∈ βex. σlocal,i(vi) =B σ′
local,i

(
v′
i

)
: τi

Because
∀i /̂∈ βex.σlocal,i = σi
and σ′

local,i = σ′
i .

∀i /̂∈ βex. σ(vi) =B σ′(v′
i

)
: τi

By 7.16 on Lemma

7.31.
(7.43)

Finally,

∀i. σ(vi) =α σ
′(v′

i

)
: τi By 7.39 and 7.41.

Furthermore, we have:

dom(σ) ⊆ xa
(
τobj, v

)
and dom

(
σ′) ⊆ xa

(
τobj, v

′) By 7.32.

rng(σ) # A and rng
(
σ′) # A By 7.16.

inj(σ) and inj
(
σ′) By 7.13 and 7.16.

�

Lemma 7.43 (New, disjoint, binders can be generated)

Given prod (vi)i : Prod (τi↓βi)i, and finite A: ∀ i. ∃ σi. such that vi �
 vi : τi → σi �
 σi
and inj(σi) and rng(σi) # A and ∀j �= i. rng(σi) # rng

(
σj

)
and ∀j. rng(σi) # dom

(
σj

)
.

Lemma 7.44 (Products with binder-equivalent components are binder-equivalent)

If ∀i. vi =B v′
i : τi, then prod (vi)i =B prod

(
v′
i

)
i
: Prod⇑βex (τi↓βi)i.

Lemma 7.45 (Products with α-equivalent components are α-equivalent)

If ∀i. vi =α v
′
i : τi, then prod (vi)i =α prod

(
v′
i

)
i
: Prod⇑βex (τi↓βi)i.

Lemma 7.46 (Substitutions don’t affect fault’s uniqueness)

σ(w) = fault iff w = fault

Lemma 7.47 (Good substitutions are undoable)

If inj(σ) and rng(σ) # v, then v = inv(σ)(σ(v)) and inj(inv(σ)) and rng(inv(σ)) # σ(v).

Lemma 7.48 (Good substitutions reflect �suff-disj)

If inj(σ) and rng(σ) # v and σ(A) �suff-disj σ(v) :τ, then A �suff-disj v:τ

Lemma 7.49 (Good substitutions preserve �suff-disj)

If inj(σ) and rng(σ) # A, v and A �suff-disj v:τ, then σ(A) �suff-disj σ(v) :τ.

Lemma 7.50 (Range update can be expressed in terms of composition)

If rng(σ) # v, then for all σavoid, we have{〈a, σavoid(a
′)〉 | 〈a, a′〉 ∈ σ}(v) = σavoid(σ(v))

Lemma 7.51 (Simultaneous range updates respect α-equivalence)

If rng(σ) # v and rng
(
σ′) # v′ and inj(σavoid) and rng(σavoid) # σ(v) , σ′(v′) and

dom(σavoid) # rng(σavoid), then{〈
a, σavoid

(
a′)〉 ∣∣∣∣ 〈a, a′〉 ∈ σ

}
(v) =α

{〈
a, σavoid

(
a′)〉 ∣∣∣∣ 〈a, a′〉 ∈ σ′

}(
v′)

: τ iff σ(v) =α σ
′(v′) : τ

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

36 P. Stansifer and M. Wand

7.3 Execution soundness itself

Theorem 7.1 (Determinism up to α-equivalence, termination-insensitive version)

If τ = typeof (Γ, e)

and ρ =α ρ
′ : Γ

and Γ �exe 〈e, ρ〉 k
=⇒ w

and Γ �exe 〈e, ρ′〉 k′

=⇒ w′

then w =α w
′ : τ

Proof

By induction on k, and case analysis on e in

If Γ �type e : τ

and σ(ρ) =α σ
′(ρ′) : Γ

and Γ �exe 〈e, ρ〉 k
=⇒ w

and Γ �exe 〈e, ρ′〉 k′

=⇒ w′

and inj(σ) and rng(σ) # ρ, w

and inj
(
σ′) and rng

(
σ′) # ρ′, w′

then σ(w) =α σ
′(w′) : τ

• Case E-Fresh-�:

First,

Γ �exe 〈(fresh x in e) , ρ〉 k+1
==⇒ wout

Γ �exe 〈(fresh x in e) , ρ′〉 k′+1
==⇒ w′

out

By hypothesis. (7.44)

Define

ΓIH � Γ, x:BAtom

We know,

∃a. ΓIH �exe 〈e, ρ [x → a]〉 k
=⇒ w By inv. of E-Fresh-�. (7.45)

∃a′. ΓIH �exe

〈
e, ρ′ [x → a′]〉 k′

=⇒ w′ By inv. of E-Fresh-�. (7.46)

inj(σ) and inj
(
σ′)

rng(σ) # ρ, w, a

rng
(
σ′) # ρ′, w′, a′

By hypothesis and inv.

of E-Fresh-�.
(7.47)

σ(ρ) =α σ
′(ρ′) : Γ By hypothesis. (7.48)

Choose

afr # σ, σ′, w, w′, ρ, ρ′, a, a′ (7.49)

Define

σIH � {〈σ(a) , afr〉} ◦ σ

σ′
IH �

{〈
σ′(a′) , afr

〉}
◦ σ′ (7.50)

σIH(a) = σ′
IH

(
a′) By straightforward

substitution.
(7.51)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 37

And,

a /∈ faenv(Γ, ρ) and a′ /∈ faenv

(
Γ, ρ′) By inv. of E-Fresh-�.

σ(a) /∈ faenv(Γ, σ(ρ))

σ′(a′) /∈ faenv

(
Γ, σ

(
ρ′)) By 7.47 and Lemma

7.26.

σIH(ρ) =α σ
′
IH

(
ρ′) : Γ

By 7.49 on Lemma

7.30.

σIH(ρ [x → a]) =α σ
′
IH

(
ρ′ [x → a′]) : ΓIH By 7.51. (7.52)

And,

inj(σIH) and inj
(
σ′

IH

)
By 7.47 and 7.49. (7.53)

rng(σIH) # ρ [x → a] , w

rng
(
σ′

IH

)
ρ′ [x → a′] , w′ By 7.47 and 7.49. (7.54)

So

σIH(w) =α σ
′
IH

(
w′) : τ

By 7.52 and 7.53 on

IH.
(7.55)

Now, we need to show that the results are α-equivalent under the original

substitution.

1. Suppose that w = fault or w′ = fault:

w = w′ = fault
By 7.55 on Lemma

7.46.
(7.56)

wout = fault and w′
out = fault

By 7.45 and 7.46 and

E-Fresh-�.

2. Suppose that w �= fault and w′ �= fault:

fa(τ, σIH(w)) = fa
(
τ, σ′

IH

(
w′)) By 7.55 on Lemma

7.36.
(7.57)

σIH(fa(τ, w)) = σ′
IH

(
fa

(
τ, w′)) By 7.53 and 7.54 on

Lemma 7.26.

σIH(a) /∈ fa(τ, σIH(w))

iff σ′
IH

(
a′) /∈ fa

(
τ, σ′

IH

(
w′)) By 7.51 and 7.53.

a /∈ fa(τ, w) iff a′ /∈ fa
(
τ, w′) By 7.53. (7.58)

a. So, suppose that both names are not free:

a /∈ fa(τ, w) and a′ /∈ fa
(
τ, w′) (7.59)

wout = w and w′
out = w′ By 7.45 and 7.46 and

E-Fresh-�.
(7.60)

And also,

σ#(a) /∈ fa
(
τ, σ#(w)

)
and σ′

#

(
a′) /∈ fa

(
τ, σ′

#

(
w′)) By 7.59 and 7.47 and

Lemma 7.26.
(7.61)

σ#(w) =α σ
′
#

(
w′) : τ

By 7.55 and 7.49 on

Lemma 7.30.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

38 P. Stansifer and M. Wand

σ(w) =α σ
′(w′) : τ

By 7.49 on Lemma

7.51.

σ(wout) =α σ
′(w′

out

)
: τ By 7.60. (7.62)

b. Alternatively, suppose a ∈ fa(τ, w) and a′ ∈ fa
(
τ, w′):

wout = fault and w′
out = fault

By 7.45 and 7.46 and

E-Fresh-�.

• Case E-Open-�: Let vobj � prod (vi)i and v′
obj � prod

(
v′
i

)
i

and eall �(
open xobj ((xi)i) e

)
.

First,

Γ �exe 〈eall, ρ〉 k+1
==⇒ wout

and Γ �exe 〈eall, ρ
′〉 k′+1

==⇒ w′
out

By hypothesis. (7.63)

Define

ΓIH � Γ, (xi:τi)i

Now,

∀i. ∃vi. ΓIH �exe 〈e, ρ [xi → vi]i〉
k
=⇒ w

By inv. of E-Open-�

on 7.63.
(7.64)

faenv(Γ, ρ) �suff-disj vobj:τobj Likewise. (7.65)

∀i. ∃vi. ΓIH �exe

〈
e, ρ′ [xi → v′

i

]
i

〉 k′

=⇒ w′
Likewise. (7.66)

faenv

(
Γ, ρ′) �suff-disj v

′
obj:τobj Likewise. (7.67)

vobj � prod (vi)i =α ρ
(
xobj

)
: τobj

v′
obj � prod

(
v′
i

)
i
=α ρ

′(xobj

)
: τobj

Likewise. (7.68)

σ(ρ) =α σ
′(ρ′) : Γ By hypothesis . (7.69)

And,

σ
(
vobj

)
=α σ

(
ρ
(
xobj

))
: τobj

By 7.68 and Lemma

7.35.
(7.70)

=α σ
′(ρ′(xobj

))
: τobj By 7.69.

=α σ
′(v′

obj

)
: τobj

By 7.68 and Lemma

7.35.
(7.71)

σ
(
vobj

)
=α σ

′(v′
obj

)
: τobj

By 7.70–7.71 and

Lemma 7.16.
(7.72)

And,

σ(faenv(Γ, ρ)) �suff-disj σ
(
vobj

)
:τobj

σ′(faenv

(
Γ, ρ′)) �suff-disj σ

′
(
v′
obj

)
:τobj

By 7.65 and 7.67 and

Lemma 7.49.
(7.73)

σ
(
fa

(
τobj, vobj

))
�suff-disj σ

(
vobj

)
:τobj

σ′(fa(
τobj, vobj

))
�suff-disj σ

′
(
v′
obj

)
:τobj

By 7.70 and 7.71 and

Lemma 7.36.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 39

∃σop, σ
′
op.

dom
(
σop

)
⊆ xa

(
τobj, σ

(
vobj

))
dom

(
σ′

op

)
⊆ xa

(
τobj, σ

′
(
v′
obj

)) By 7.65 on Lemma

7.42.
(7.74)

Such that

∀i. σop(σ(vi)) =α σ
′
op

(
σ′(v′

i

))
: τ Likewise. (7.75)

rng
(
σop

)
, rng

(
σ′

op

)
σ, σ′, ρ, ρ′, w, w′, vobj, v

′
obj Likewise. (7.76)

inj
(
σop

)
and inj

(
σ′

op

)
Likewise. (7.77)

And,

dom
(
σop

)
rng

(
σop

)
dom

(
σ′

op

)
rng

(
σ′

op

) By 7.74 and 7.76 and

Lemma 7.2.
(7.78)

Define

σIH � σop ◦ σ and σ′
IH � σ′

op ◦ σ′

Now,

xa
(
τobj, σ

(
vobj

))
faenv(Γ, σ(ρ))

xa
(
τobj, σ

′
(
v′
obj

))
faenv

(
Γ, σ′(ρ′)) By 7.73 and def. of

�suff-disj and Lemma

7.26.

(7.79)

σIH(ρ) =α σ
′
IH

(
ρ′) : Γ

By 7.69, 7.74, and 7.78

on Lemma 7.31.

σIH(ρ [xi → vi]i) =α σ
′
IH

(
ρ′ [xi → v′

i

]
i

)
: ΓIH By 7.75. (7.80)

And,

inj(σIH) and inj
(
σ′

IH

) Because inj(σ) and
inj

(
σ′) and by 7.76

and 7.77.

(7.81)

And,

rng(σIH) # ρ [xi → vi]i
rng

(
σ′

IH

)
ρ′ [xi → v′

i

]
i

Because rng(σ) # ρ
and rng

(
σ′) # ρ′ and

by 7.76.

So:

σIH(w) =α σ
′
IH

(
w′) : τ

By 7.80 and 7.81 on

IH.
(7.82)

Case 1:

w = fault or w′ = fault

w = w′ = fault
By 7.82 on Lemma

7.46.
(7.83)

wout = w′
out = fault

By 7.64 and 7.66 and

E-Open-�.

Case 2:

w �= fault and w′ �= fault (7.84)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

40 P. Stansifer and M. Wand

We know,

σIH

(
vobj

)
=α σIH

(
v′
obj

)
: τobj

By 7.75 on Lemma

7.45.

xa
(
τobj, σIH

(
vobj

))
= xa

(
τobj, σ

′
IH

(
v′
obj

)) By def. of xa and 7.75

and Lemma 7.36.
(7.85)

σIH

(
xa

(
τobj, vobj

))
= σ′

IH

(
xa

(
τobj, v

′
obj

)) By 7.76 and 7.81 and

Lemma 7.27.
(7.86)

And,

fa(τ, σIH(w)) = fa
(
τ, σ′

IH

(
w′)) By 7.82 on Lemma

7.36.

σIH(fa(τ, w)) = σ′
IH

(
fa

(
τ, w′)) By 7.81 on Lemma

7.26.

σIH

(
xa

(
τobj, vobj

))
σIH(fa(τ, w))

iff σ′
IH

(
xa

(
τobj, v

′
obj

))
σ′

IH

(
fa

(
τ, w′)) By 7.86.

xa
(
τobj, vobj

)
fa(τ, w)

iff xa
(
τobj, v

′
obj

)
fa

(
τ, w′) By Lemma 7.1.

So, case 2.1:

xa
(
τobj, vobj

)
fa(τ, w)

and xa
(
τobj, v

′
obj

)
fa

(
τ, w′) (7.87)

wout = w and w′
out = w′ By 7.64 and 7.66 and

E-Open-Ok.
(7.88)

And also,

σ
(
xa

(
τobj, vobj

))
σ(fa(τ, w))

σ′
(
xa

(
τobj, v

′
obj

))
σ′(fa(

τ, w′)) By 7.87 and because

inj(σ).

dom
(
σop

)
σ(fa(τ, w))

dom
(
σ′

op

)
σ′(fa(

τ, w′)) By 7.74 and Lemma

7.27.

dom
(
σop

)
fa(τ, σ(w))

dom
(
σ′

op

)
fa

(
τ, σ′(w′)) By Lemma 7.26.

σIH(w) =α σ(w) : τ

σ′
IH

(
w′) =α σ

′(w′) : τ
By 7.77 and 7.78 on

Lemma 7.31.

σ(w) =α σ
′(w′) : τ

By 7.82 and Lemma

7.16.

σ(wout) =α σ
′(w′

out

)
: τ By 7.88.

Or, case 2.2:

wout = fault and w′
out = fault

By 7.64 and 7.66 and

E-Open-Ok.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 41

• Case E-If-�:

First,

ρ(x0) = a and ρ′(x0) = a′

ρ(x0) = b and ρ′(x0) = b′ By inv. of E-If-�.

σ(a) =α σ
′(a′) : τ′ and σ(b) =α σ

′(b′) : τ′ Because

σ(ρ) =α σ
′(ρ′) : Γ..

σ(a) = σ′(a′) and σ(b) = σ′(b′) By Rα-RAtom or

Bα-BAtom.

σ(a) = σ(b) iff σ′(a′) = σ′(b′) Trivially.

a = b iff a′ = b′ Because inj(σ).

Without loss of generality, assume

a = b (7.89)

Now,

Γ �exe 〈e0, ρ〉 k
=⇒ w By inv. of E-If-�. (7.90)

Γ �exe 〈e0, ρ
′〉 k′

=⇒ w′
Likewise.

w =α w
′ : τ

By 7.89 and 7.90 and

because

σ(ρ) =α σ
′(ρ′) : Γ on

IH.

The cases for E-Call, E-Let-�, E-Case-�, and E-QLit are available in the supple-

mentary material. �

Theorem 7.2 (α-equivalent environments have equivalent termination behavior)

If τ = typeof (Γ, e)

and ρ =α ρ
′ : Γ

and Γ �exe 〈e, ρ〉 k
=⇒ w

then ∃w′. Γ �exe 〈e, ρ′〉 k
=⇒ w′ and w =α w

′ : τ

Proof

By induction on k, and case analysis on e:

• Case E-Fresh-Ok: (fresh x in e)

It suffices to show lines 7.95 and 7.94.

First,

Γ, x:BAtom �exe 〈e, ρ [x → a]〉 k
=⇒ w

By inv. of

E-Fresh-Ok.
(7.91)

a /∈ faenv(Γ, ρ) and w = fault ∨ a /∈ fa(τ, w) Likewise. (7.92)

But

ρ [x → a] =α ρ
′ [x → a] : Γ, x:BAtom Because ρ =α ρ

′ : Γ.

∃w′. Γ, x:BAtom �exe 〈e, ρ′ [x → a]〉 k
=⇒ w′ By 7.91 and IH. (7.93)

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

42 P. Stansifer and M. Wand

w =α w
′ : τ Likewise. (7.94)

But

a /∈ faenv

(
Γ, ρ′) and w′ = fault ∨ a /∈ fa

(
τ, w′) By 7.92 on Lemma

7.36.

Γ �exe 〈(fresh x in e) , ρ′〉 k+1
==⇒ w′ By E-Fresh-Ok. (7.95)

• Case E-Fresh-Fail: This case proceeds almost identically to E-Fresh-Ok.

• Case E-Open-Ok: (open x ((xi)i) e)

It suffices to show lines 7.102 and 7.100.

First,

Γ, (xi:τi)i �exe 〈e, ρ [xi → wi]i〉
k
=⇒ w By inv. of E-Open-Ok. (7.96)

faenv(Γ, ρ) �suff-disj prod (wi)i :τobj Likewise. (7.97)

w = fault ∨ xa
(
τobj, prod (wi)i

)
fa(τ, w) Likewise. (7.98)

But

ρ [xi → wi]i =α ρ
′ [xi → wi]i : Γ, (xi:τi)i

Because ρ =α ρ
′ : Γ

and by Lemma 7.14.

∃w′. Γ′, (xi:τi)i �exe 〈e, ρ′ [xi → wi]i〉
k
=⇒ w′ By 7.96 and IH. (7.99)

w =α w
′ : τ Likewise. (7.100)

But

faenv(Γ, ρ) = faenv

(
Γ, ρ′) Because ρ =α ρ

′ : Γ

and by Lemma 7.36.

faenv

(
Γ, ρ′) �suff-disj prod (wi)i :τobj By 7.97. (7.101)

And,

fa(τ, w) = fa
(
τ, w′) By 7.100 on Lemma

7.36.

And,

w′ = fault ∨ xa
(
τobj, prod

(
w′
i

)
i

)
fa

(
τ, w′) By 7.98 and 7.100.

Γ �exe 〈(open x ((xi)i) e) , ρ′〉 k+1
==⇒ w′ By E-Open-Ok on

7.101 and 7.99.
(7.102)

• Case E-Open-Fail: This case proceeds almost identically to E-Open-Ok.

The cases for E-Call, E-If-�, E-QLit, E-Case-�, and E-QLit are available in the

supplementary material. �

8 Checking binding safety statically

This section describes the Romeo deduction system. The purpose of this deduction

system is to generate constraints (proof obligations) which, if satisfied, guarantee

that escape, and therefore fault, will never occur (see Theorem 8.1).

The proof system’s judgment is of the form Γ �proof {H} e {P }. Like the execution

semantics, it is type-dependent, and for a similar reason: types control which atoms

will be bound or free, and thus whether operations are valid or not.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 43

We use H , P , and C to range over constraints. Typically, H , the hypothesis,

contains facts (about the atoms in the environment) that are true by construction.

P , the post-condition, contains predicates that describe the connection between

atoms in the environment and atoms in the output. C is used for other constraints.

The obligations emitted by the deduction system must be satisfied by showing

them true for all ρ compatible with Γ; in practice, we do this with an SMT

(satisfiability modulo theories) Solver. (For example, Romeo-L (Muehlboeck, 2013)

uses Z3 (de Moura & Bjørner, 2008). We discuss this in more detail in Section 9.8.)

We begin by giving the syntax of constraints.

z ∈ ConstrSetVar ::= x | ·
s ∈ SetDesc ::= �

| s ∪ s

| s ∩ s

| sf (z)

| Fe(Γ)

| Xτ(xi)i
sf ∈ SetFn ::= F | Fr | Fb

H, P , C ∈ Constraint ::= C ∧ C

| s = s

| s �= s

| s # s

| s ⊆ s

| z ∼= eqlit

| true

Γdot ∈ TypeEnvWithDot ::= ε | Γdot, z:τ

Formulas are constructed from variables z, which range over program variables x,

and · (which refers to the output value of the current expression). Set-valued terms

are constructed from the free names (F), free references (Fr), free binders (Fb), and

exposable names (X) of values (here, the corresponding types can be retrieved from

the environment), and the free names (Fe) of environments (which is syntax sugar

for a union of Fs), and then by the standard set constructors (∪ and ∩). Atomic

formulas denote equality, inequality, etc., of sets, and ∼= denotes that two values

have the same free binders and references. Finally, constraints are conjunctions of

atomic formulas.

The syntax for the X set function is unusal; it consumes the subterms of its

“argument” instead of the argument itself, and also a type indicating its binding

structure. (The set functions that take a single variable as an argument do not need

this, because a type environment is available.) This is because, unlike F, Fr , and

Fb, the result of X depends on bound names of its argument. However, it only

depends on the free names of the subterms of its argument. This way, two values

that are ∼= have identical behavior under all the set functions. Furthermore, this

syntax fits the way that X is used in P-Open.

We use quasi-literals to describe values with variable interpolation. Because the

type environment Γ is present, the type annotations of quasi-literals are redundant,

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

44 P. Stansifer and M. Wand

Fig. 6. Verification rules for the deduction system.

but for economy of abstraction, we elected to reuse an existing concept instead of

creating a new one.

In general, our rules, in Figure 6, are patterned after those in Pottier (2007b),

using the type information in Γ to collect information about values. This subsumes

Pottier’s Δ. Most rules discharge their proof obligations by delegating them to proof

obligations on subexpressions. The base cases of this recursion are P-Call and

P-QLit, which describe proof obligations of the form Γdot |= H ⇒ P . P-QLit has

only one obligation, which is to ensure that the result it produces obeys whatever

constraints were imposed in P , given that the environment satisfies the assumptions

in H . P-Call has two obligations; first, that the invoked function’s pre-condition

is true (given H), and second that the resulting value satisfies the constraints in P

(given H and the post-condition of the function).

As one might expect, the key rules are P-Fresh and P-Open, whose definitions

are closely connected to E-Fresh-Ok and E-Open-Ok.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 45

Proving the theorems in Section 6 required our language to have two important

properties: that (a) no name can escape the context that exposed it, except as a

bound name, and (b) no name is exposed from two different binding relationships

in the same environment (thereby purporting to show equality between two names

that are not related by binding). For the purposes of dynamically respecting α-

equivalence, property (a) was enforced by detecting such a situation and emitting

fault instead, and property (b) was established by the constraints imposed on the

names exposed in E-Fresh-� and E-Open-�.

Now, for the purposes of the deduction system, property (a) appears in the

post-condition of both P-Fresh and P-Open, as an obligation to prove that the

exposed free names are disjoint from the free names of the result value (spelled

“·”), because the purpose of the deduction system is to prevent faults. On the

other hand, property (b) is a guarantee provided by the language dynamics, and

therefore appears in the hypothesis of both rules, saying that the exposed names are

guaranteed to be disjoint from the environment so far.

The rules P-Open and P-Case each add additional information to their hypotheses

using ∼=. This information conveys the relationship between the atoms in the scrutinee

(xobj and x0, respectively) and the atoms in its component(s).

8.1 Odds and ends

In the let expression, the body subexpression has the same result as the expression as

a whole, but the value subexpression does not. Therefore, in P-Let, the condition C

(whose · refers to the value subexpression) must be adjusted for use as a hypothesis

for the body subexpression. Fortunately, the name x refers to the value subexpression

in question, so a simple [x/·] substitution suffices. H may be used unchanged by

both subexpressions because it will contain no references to ·.
A similar issue occurs in P-Call. The pre- and post-conditions of the function

(not to be confused with the expression’s logical post-condition P) are expressed

relative to the formal parameters, which are meaningless out of context. Because the

actual arguments to a function invocation are all required to be variable references

(rather than allowing them to be whole subexpressions), the solution is again simple:

A simultaneous substitution from the formals to the actuals suffices to make the

pre- and post-conditions meaningful in the caller’s context.

Shadowing among Romeo program variables is incompatible with the deduction

system, because obligations must be able to refer to (and distinguish) everything in

Γ by name. This gives rise to the requirement that certain x’s be fresh for Γ, H , and

P ; this requirement is easily satisfied by a simple renaming pass prior to type and

proof checking.

P-Call’s body hypothesis contains F(·) ⊆ Fe

((
xactual,i:τformal,i

)
i

)
, a term repre-

senting extra information as a consequence of Lemma 8.1, which states that the

free atoms in the result of any expression are a subset of the free atoms in the

environment in which it is evaluated. A similar term appears in the hypothesis for

P-Let’s body subexpression.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

46 P. Stansifer and M. Wand

Finally, in P-IfEq, the information resulting from the comparison can be expressed

in our predicate language; in the branch in which the two atoms are equal, we note

that their free atom sets (known to be singletons) are equal, and in the other branch,

we note that their free atoms sets are disjoint.

8.2 Soundness of the deduction system

The soundness of the deduction system is expressed in the following theorem.

Theorem 8.1 (Soundness of the deduction system)

If τ = typeof (Γ, e)

and Γ �proof {H} e {P }
and Γ �type-env ρ

and Γ �exe 〈e, ρ〉 k
=⇒ w

then w �= fault and Γ, ·:τ; ρ [· → w] |= H ⇒ P

Proof

By induction on k. �

The most important lemma for proving Theorem 8.1 is “No Names Made Up”,

which is similar to Pottier’s No Atoms Made Up lemma (2007a).

Lemma 8.1 (No names made up)

If τ = typeof (Γ, e)

and Γ �type-env ρ

and Γ �exe 〈e, ρ〉 k
=⇒ v

then fa(τ, v) ⊆ faenv(Γ, ρ)

Proof

By induction on k. �

The proofs of Lemma 8.1 and Theorem 8.1 can be found in the supplementary

material.

8.3 Example

The Romeo-L code in Figure 2 contains a number of opens, each of which potentially

can produce a fault. However, our deduction shows that fault will never happen.

A complete derivation is too large to include here, but we will informally look at

two examples.

First, on line 5, we are opening up a lambda abstraction. This “exposes” the

lambda’s binder (binding it to the variable bv). Fortunately,

(injlambda(prod bv , convert(e-body) ↓0)), the body of the open, does not have bv free:

its left-hand child, bv , is an unexported binder, and its right-hand child imports it,

meaning that bv can’t be free in it either, regardless of what convert returns.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 47

Second, on line 7, we open up the whole let* form, exposing all of the names

that lsc exports. We must show that those names do not escape this context as free

variables. When lsc-some is destructured, we know from its type that bv and lsc-rest ,

together, export that same set of names.

The value returned from the open is an application, constructed on lines 13–14.

We first examine its left-hand side, which is a lambda binding bv in e-rest . Therefore,

by a similar argument to the one above, bv is no problem, and we only need to show

that the names exported by lsc-rest are bound in e-rest . Fortunately, e-rest is a let*

construct (line 12), defined to bind the names exported by lsc-rest in e-body , which

is exactly what we needed. Therefore, the left-hand side of the function application

contains no free references that could cause a fault.

Now, we look at the right-hand-side of that application, which we generate by call-

ing convert(val-expr). By Lemma 8.1, we know that convert produces a value whose

free names are a subset of its argument. How do we know what names are free in val-

expr? We know that, as an expression, it exports nothing, and so has no free binders.

Any free references in it would have also been free in lsc-some (because it binds no

names in the scope of its value expression), and therefore free in let-star itself. But let-

star is part of the environment in which it was opened (on line 7), so, by the freshness

of newly exposed names, the names we are worried about must be fresh for val-expr .

A similar argument can be used to verify the safety of the other opens. In this

example, the programmer didn’t need to supply any constraints to justify the function

calls. In general, constraints are necessary for the same reasons as in Pure FreshML

(Pottier, 2007b), and the same examples apply.

9 Related work

9.1 Statically specified binding in template macros

The work of Herman and Wand (Herman & Wand, 2008; Herman, 2010) introduced

the idea of a static binding specification for a template-based macro system (like

Scheme’s syntax-rules). Herman defined a language for binding specifications,

and gave an algorithm for deciding whether a pattern-and-template macro was

consistent with its binding specification. In practice, however, the complex macros

in a language like Scheme are often not expressible in a pattern-matching system.

Romeo provides a path for extending this macro system to a procedurally based

one, like Scheme’s syntax-case.

Although our binding annotation system is very similar in power to Herman’s, we

have made some changes in representation. The most noticeable of these is that where

Herman and Wand use addresses into binary trees of values, we use indices into wide

products. However, this does not affect the representational power of the system.

9.2 Pure FreshML

The second key source for this work is Pure FreshML (Pottier, 2007b). Both Pure

FreshML and Romeo are first-order, side-effect-free languages in which a runtime

system ensures that introduced names do not escape their scope, and both provide a

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

48 P. Stansifer and M. Wand

proof system that generates proof obligations which, if true, guarantee statically that

no faults will occur. One difference, important for application to macro-expanders,

is that Romeo manipulates plain S-expression-like data, guided by types, whereas

Pure FreshML saves type information in values. Our presentation of the language

and semantics are somewhat different: for example, we have separate constructs for

destructuring products (open) and destructuring sum types (case).

Pure FreshML leaves the actual language of binding specifications underdeter-

mined. All the formal development is done in a simple system, roughly equivalent

to the λ-calculus, but one of the key examples, normalization by evaluation, is

done using the more expressive system of Cαml (Pottier, 2006). Still, both of these

systems are too weak to express complex binding constructs. For example, neither

can express the natural syntax of the let* construct.

Pure FreshML’s safety guarantees are proved true in a nominal logic in which

values are entire α-equivalence classes. However, we know of no nominal logic

powerful enough to represent the complex binding structures available in Romeo,

so our proof of correctness must do the work of a nominal logic “by hand”.

9.3 Ott

Ott (Sewell et al., 2010) is a system for metaprogramming that accepts binding

specifications with a syntax and semantics similar to ours. However, Ott’s goals are

significantly different. Instead of providing a complete, name-aware programming

system, Ott generates code for use in a theorem-prover, including definitions of types

and a capture-avoiding substitution function. Ott supports a number of theorem-

provers and a number of representations for the terms in them. Additionally, it can

export boilerplate code for capture-avoiding substitution in OCaml.

Ott’s binding specifications are strictly more expressive than ours: Effectively, they

allow for a single value to export multiple sets of names (these sets are designated

by “auxiliary functions”), which can be bound separately.

In order to support theorem-provers, Ott includes a definition for α-equivalence

between its “concrete abstract syntax trees” (the equivalent of our values v). This

definition is based on a partial equivalence relation which relates two tree positions

in a term if they are connected by binding (i.e. they would have to be renamed

together). From this intra-tree relation, it is fairly straightforward to extract a

notion of α-equivalence: two trees are α-equivalent if both (1) their free names

match, and (2) the partial equivalence relations representing their bound names are

identical. It is not clear whether this definition would lead to simpler proofs of

Theorems like 7.1 and 7.2.

9.4 Hygienic macro systems in Scheme

The goals of our work have a great deal in common with the goals of hygienic

macro systems, like those used in Scheme.

Despite extensive use of hygienic macro systems, what it meant for them to be

“hygienic” has resisted definition until recently. The algorithm described by Dybvig

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 49

(1992), which is the basis for hygienic macro expansion in Scheme, seems “correct”

in the sense that it tends to behave consistently with the intuition of its users.

More recently, a reformulation by Matthew Flatt (2016) called “sets of scopes”

provides largely the same behavior with a simpler semantics and in an easier-to-use

fashion.

The original attempts at specification, given by Clinger (1991) and Dybvig (1992),

are phrased in terms of the bindings inserted or introduced by the macro. However,

given a macro definition (say, in template style), there is no obvious way to tell

what those bindings should be without reference to the expansion algorithm. So

this specification is circular. Recent work by Adams (2015) presents a plausible

definition that examines the support of unexpanded code, while being agnostic as to

its binding structure. However, we feel that the use of static binding specifications

(introduced for this purpose by Herman (2010)) provides a more straightforward

rigorous basis for hygiene, at least in situations in which binding specifications are

appropriate.

Secondly, the Dybvig algorithm offers no static guarantees. If the macro designer

makes a mistake, it will only be discovered after the macro is expanded (and probably

after it is used, perhaps by an innocent end-user). By contrast, our system offers a

static guarantee: If the macro definition binds a name incorrectly, the error will be

detected at macro-definition time by the deduction system, not as a runtime fault.

9.5 Binding in theorem-proving systems

Ever since the POPLMark Challenge (Aydemir et al., 2005), there has been a large

interest in coding terms with bindings in various proof assistants (Urban, 2008;

Pouillard & Pottier, 2010; Pollack et al., 2012). These works have differing goals

than ours; they are primarily concerned with proving facts about programs, while

we are aiming at a usable meta-programming system. They also generally depend

on representing abstract syntax trees in a pre-existing theorem-proving framework

like Coq or Agda, whereas we are concerned with the complications of concrete

syntax (even in an S-expression based language).

9.6 Unbound

Unbound (Weirich et al., 2011) is a Haskell library for safely manipulating syntax

that operates on many of the same principles as the FreshML family that Romeo

comes from. In particular, Unbound’s unbind function corresponds roughly to our

open form, and bind p e corresponds to a quasiliteral of the form
(
prod e

qlit
p , e

qlit
e ↓0

)
.

Although it has a number of internal differences (such as the locally nameless

representation of syntax), the programming model is fairly similar. The primary

difference noticeable by the user is Unbound’s binding specification system, which is

similar to Cαml (Pottier, 2006), but extended to the point that it supports constructs

like let*. Like Cαml, it is oriented toward abstract syntax, not concrete syntax like

Romeo.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

50 P. Stansifer and M. Wand

9.7 SoundX

In general, it is impossible to typecheck an expression without knowing its type

environment. Historically, this has been the reason that languages with both a

type system and a macro system perform typechecking after macro expansion. The

unfortunate consequence of this is that the user is presented type errors in terms of

code that they didn’t even write.

SoundX (Lorenzen & Erdweg, 2016) is a step toward a solution to this problem,

demonstrating extensions to language syntax which are less powerful than macros,

but whose expansions are guaranteed to be type-safe. We believe that the major

remaining steps between SoundX and true typed macros are:

• Extensions defined by arbitrary code, instead of pattern matching. This is

essentially the difference between λm (Herman, 2010) and Romeo. Proof that

syntax extensions preserve the validity of type judgments must be providable

by the typesystem, which might be very complex.

• Locally scoped extensions. This is potentially complex, but it may be able to

at least follow the example from hygienic locally scoped macros in Scheme.

• User-friendly binding safety. SoundX extensions are statically rejected if they

might perform accidental capture, requiring manual freshening and contortions

around capturing constructs, and restricting what names the extension’s user

may choose.6 We have shown that it is instead possible to automatically

rename to avoid collisions, which is far more convenient to the user.

We believe that typed macros will be a major user-friendliness improvement for the

interaction between types and macros.

9.8 Romeo-L

As we have described it, writing programs in Romeo is tedious. Programs must be

written in an ANF-like style. For example, the arguments to function calls must be

variables, not more complicated expressions.

A second problem is that we have not yet described how the truth of Γ |= H ⇒ P

is to be determined, and, if it fails, how the programmer is supposed to figure out

how to fix it.

These problems are addressed in Muehlboeck’s master’s thesis (2013), which

presents a more usable front-end for Romeo, called Romeo-L. Romeo-L programs

are written in a more natural dialect, and are automatically translated into the core

Romeo we have described here. This translation introduces let expressions to avoid

the need to program in A-normal form, and for each let it infers a constraint C .

Therefore, the user need only supply constraints for function definitions. In practice,

this means a vastly reduced annotation burden.

6 Although it is not immediately obvious, SoundX does posess binding specifications. This is by virtue
of its type rules. For example, typing a λ expression in the environment Γ requires typing its body in
the environment Γ, x : τ, where x is the name bound by the lambda, and τ is its type. This indicates
that x is bound in the λ’s body.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

Romeo: A system for more flexible binding-safe programming 51

Romeo-L also includes a connection to the Z3 SMT solver (de Moura & Bjørner,

2008), which is able to check statements of the form Γ |= H ⇒ P , completing the

automated checking of the deduction system. The translation takes the constraints

H and P , and (in a sense) partially evaluates them until they are expressed only in

terms of the free binders and free references of program variables that are never

destructured (if a variable is destructured, the sets of atoms relevant to it can be

expressed in terms of the variables it is destructured into). The sets of atoms that

remain are uninterpreted, except to add size constraint approximations (when it is

possible to determine that the number of elements of a set is 0, 1, �1, or �1). At that

point, the constraints are directly expressible as SMT problems using combinatory

array logic as the concrete theory.

Furthermore, Romeo-L can translate counterexamples provided by Z3 into sets

of names, so that the user can understand them, and it can explain how they violate

a constraint either written by the user, or implicit in the rules for fresh or open.

Acknowledgments

We would like to thank Fabian Muehlboeck for his work in testing and validating

Romeo, and Dionna Glaze for her collaboration in hammering out the formal

properties of our binding system. We would also like to thank the anonymous

reviewers for their comments to improve this paper.

References

Adams, M. D. (2015) Towards the essence of hygiene. In Proceedings of the 42Nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New

York, NY, USA: ACM, pp. 457–469.

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell, P., Vytiniotis,

D., Washburn, G., Weirich, S. & Zdancewic, S. (2005). Mechanized metatheory for the

masses: The PoplMark challenge. In Proceedings of the 18th International Conference on

Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer-Verlag, pp. 50–65.

Clinger, W. & Rees, J. (1991). Macros that work. In Proceedings of the 18th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. New York, NY, USA:

ACM, pp. 155–162.

de Moura, L. & Bjørner, N. (2008). Z3: An efficient SMT solver. In Tools and Algorithms for

the Construction and Analysis of Systems. Lecture Notes in Computer Science, vol. 4963,

pp. 337–340. Berlin Heidelberg: Springer.

Dybvig, R. K., Hieb, R. & Bruggeman, C. (1992). Syntactic abstraction in scheme. LISP

Symb. Comput. 5(4), 295–326.

Erdweg, S., van der Storm, T. & Dai, Y. (2014). Capture-avoiding and hygienic program

transformations. In ECOOP 2014 Object-Oriented Programming, Jones, R. (ed), Lecture

Notes in Computer Science, vol. 8586, pp. 489–514. Berlin Heidelberg: Springer.

Flatt, M. (2016). Binding as sets of scopes. SIGPLAN Not. 51(1), 705–717.

Hendriks, D. & van Oostrom, V. (2003). Adbmal. In Automated Deduction CADE-19, Baader,

F. (ed), Lecture Notes in Computer Science, vol. 2741. Berlin Heidelberg: Springer, pp.

136–150.

Herman, D. (2010). A Theory of Typed Hygienic Macros. PhD Thesis, Boston, MA, USA:

Northeastern University.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

52 P. Stansifer and M. Wand

Herman, D. & Wand, M. (2008). A theory of hygienic macros. In Proceedings of the Theory

and Practice of Software, 17th European Conference on Programming Languages and

Systems. Berlin, Heidelberg: Springer-Verlag, pp. 48–62.

Kohlbecker, E., Friedman, D. P., Felleisen, M. & Duba, B. (1986). Hygienic macro expansion.

In Proceedings of the 1986 ACM Conference on Lisp and Functional Programming, LFP

’86. New York, NY, USA: ACM, pp. 151–161.

Lorenzen, F. & Erdweg, S. (2016). Sound type-dependent syntactic language extension. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2016. New York, NY, USA: ACM.

Muehlboeck, F. (2013). Checking Binding Hygiene Statically. Master’s Thesis, Boston, MA,

USA: Northeastern University.

Pollack, R., Sato, M. & Ricciotti, W. (2012). A canonical locally named representation of

binding. J. Autom. Reason. 49(2), 185–207.

Pottier, F. (2006). An overview of Cαml. Electron. Notes Theor. Comput. Sci. 148(2), 27–52.

Pottier, F. (2007a). Static Name Control for FreshML. Available at:

http://gallium.inria.fr/∼fpottier/publis/fpottier-pure-freshml-long.pdf. [4

July, 2016]

Pottier, F. (2007b). Static name control for FreshML. In Proceedings of the 22nd Annual

IEEE Symposium on Logic in Computer Science. Washington, DC, USA: IEEE Computer

Society, pp. 356–365.

Pouillard, N. & Pottier, F. (2010). A fresh look at programming with names and binders.

In Proceedings of the 15th ACM SIGPLAN International Conference on Functional

Programming. New York, NY, USA: ACM, pp. 217–228.

Sewell, P., Nardelli, F. Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S. & Strnia, R. (2010).

Ott: Effective tool support for the working semanticist. J. Funct. Program. 20, 71–122.

Shinwell, M. R., Pitts, A. M. & Gabbay, M. J. (2003). FreshML: Programming with binders

made simple. In Proceedings of the 8th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’03, pp. 263–274. New York, NY, USA: ACM.

Urban, C. (2008). Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356.

Weirich, S., Yorgey, B. A. & Sheard, T. (2011). Binders unbound. In Proceedings of the 16th

ACM SIGPLAN International Conference on Functional Programming. New York, NY,

USA: ACM, pp. 333–345.

https://doi.org/10.1017/S0956796816000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000137

