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Rank One Reducibility for Metaplectic
Groups via Theta Correspondence

Marcela Hanzer and Goran Muić

Abstract. We calculate reducibility for the representations of metaplectic groups induced from cuspi-

dal representations of maximal parabolic subgroups via theta correspondence, in terms of the analo-

gous representations of the odd orthogonal groups. We also describe the lifts of all relevant subquo-

tients.

1 Introduction

In this paper we study rank-one reducibility for the non-trivial double S̃p(n) cover of

symplectic group Sp(n) over a non-Archimedean local field of characteristic different

than two using theta correspondence. This paper combined with [8] is a fundamental

step in a systematic study of smooth complex representations of metaplectic groups.

We expect to see applications in the theory of automorphic forms where metaplectic

groups play a prominent role.

We recall that the group S̃p(n) is not a linear algebraic group. Thus, it is not

in the framework of the usual theory for p-adic groups. Nevertheless, some ba-

sic algebraic facts ([8]) are true here. More precisely, based on the fundamental

work of Bernstein and Zelevinsky ([2, 3, 25]) we checked that the basic notions of

the representation theory of p-adic groups hold for metaplectic groups (some of

that is already well known from the previous works of Kudla [9, 10] and Mœglin et

al. [14]). As usual, a parabolic subgroup of S̃p(n) is the preimage P̃ of a parabolic

subgroup P of Sp(n). If we write P = MN for a Levi decomposition, then the

unipotent radical N lifts to S̃p(n). So, we have a decomposition P̃ = M̃N. In

[8, (1.2)] we describe the parametrization of irreducible smooth complex represen-

tations of the Levi factor M̃ of a maximal proper parabolic subgroup P̃ of S̃p(n).

Roughly speaking, to M̃ is attached an integer j, 0 < j ≤ n, and an epimorphism

G̃L( j) × ˜Sp(n − j) → M̃ such that irreducible representations of M̃ can be seen as

ρ ⊗ σ, where ρ is an irreducible representation of G̃L( j, F), and σ is an irreducible

representation of ˜Sp(n − j). The goal of this paper is to understand the reducibility

and composition series of Ind
S̃p(n)
eP

(ρ⊗σ) where ρ and σ are cuspidal representations.

This is a hard problem for linear groups, and it has not yet been completely solved

(the case of generic representaions is covered by Shahidi [20, 21], and some conjec-

tural description is known for classical groups due to many people (see for example

[13])). One possible approach is to develop the theory for metaplectic groups from
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scratch. The other one (i.e., the one adopted in this paper) is to use the theta corre-

spondence for the dual pair ˜Sp(n − j) × O(2(r − j) + 1), where O(2(r − j) + 1) is

a F-split (full) odd orthogonal group. The approach is based on refining and further

developing methods of [15, 16]. To simplify the notation and precisely describe our

results, we shift indices. Let σ be an irreducible cuspidal representation of S̃p(n). So,

we fix a non-trivial additive character ψ of F and let ωn,r be the Weil representations

attached to the dual pair S̃p(n)×O(2r + 1). We write Θ(σ, r) for the smooth isotypic

component of σ in ωn,r . Since σ is cuspidal, for the smallest r such that Θ(σ, r) 6= 0

we have that Θ(σ, r) is an irreducible cuspidal representation of O(2r +1). We denote

it by τ . Let ρ be a self-contragredient irreducible cuspidal representation of G̃L( j, F).

Finally, let χV,ψ be a character of G̃L(1) defined at the end of Subsection 2.2.

We determine the reducibility point in this situation, and also the lifts of all irre-

ducible subquotients of

Ind
S̃p(n+ j)
eP

(ρ ⊗ σ) and Ind
O(2(r+ j)+1)
P (χ−1

V,ψρ ⊗ τ ).

This is accomplished in Theorem 3.5 (non-exceptional case), Theorem 4.1 (excep-

tional case–reducibility) and Propositions 4.2, 4.3, and Theorem 4.4 (exceptional

case–theta lifts).

For the reader’s convenience, we give some of the main theorems here. First, we

recall the following non-exceptional case (see Theorem 3.5).

Theorem 1.1 Let mr =
1
2
dim Vr, where Vr is a quadratic space on which O(2r + 1)

acts. Let P j be a maximal standard parabolic subgroup of O(2(r + j) + 1) (i.e., contain-

ing the upper triangular Borel subgroup of O(2(r + j) + 1)) that has a Levi subgroup

isomorphic to GL( j, F) × O(2r + 1). We define a parabolic subgroup P̃ j of ˜Sp(n + j)

analogously.

Let ρ be an irreducible, cuspidal, genuine representation of G̃L( j, F), where

ρ /∈ {χV,ψ| · |
±(n−mr), χV,ψ| · |

±(mr−n−1)}.

Then, the representation Ind
S̃p(n+ j)
eP j

(ρ ⊗ σ) reduces if and only if the representation

Ind
O(2(r+ j)+1)
P j

(χ−1
V,ψρ ⊗ τ ) reduces. In the case of irreducibility, we have

Θ

(
Ind

S̃p(n+ j)
eP j

(ρ ⊗ σ), r + j
)

= Ind
O(2(r+ j)+1)
P j

(χ−1
V,ψρ ⊗ τ ).

If the representation Ind
S̃p(n+ j)
eP j

(ρ⊗ σ) reduces, then it has two irreducible subquotients,

say π1 and π2, such that the following holds:

0 −→ π1 −→ Ind
S̃p(n+ j)
eP j

(ρ ⊗ σ) −→ π2 −→ 0.

Then Θ(πi , r + j) 6= 0 is irreducible for i = 1, 2, and the following holds:

0 −→ Θ(π1, r + j) −→ Ind
O(2(r+ j)+1)
P j

(χ−1
V,ψρ ⊗ τ ) −→ Θ(π2, r + j) −→ 0.

https://doi.org/10.4153/CJM-2011-015-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-015-6


Rank One Reducibility for Metaplectic Groups via Theta Correspondence 593

The non-exceptional case just described is a fairly straightforward generalization

of [16]; the exceptional case is rather different than the appropriate case in [16], and

it requires some arguments that are specific for the dual pair S̃p(n)×O(2r + 1). Most

of the paper is about that case. We recall the following (see Theorem 4.1).

Theorem The representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
s ⊗ σ)

reduces for a unique s ≥ 0 (which is |mr − n − 1|). This means that

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ)

is irreducible unless mr − n = −(mr − n − 1), i.e., mr − n =
1
2
.

In Section 5 we give some examples of reducibility. Section 5.1 describes the Siegel

case n = 0, and Section 5.2 describes the first non-Siegel case i.e., when n = 1.

2 Preliminaries

2.1 Symplectic and Orthogonal Groups

Let F be a non-Archimedean field of characteristic different from 2. For n ∈ Z≥0, let

Wn be a symplectic vector space of dimension 2n. We fix a complete polarization as

follows

Wn = W ′
n ⊕W ′ ′

n , W ′
n = spanF{e1, . . . en}, W ′ ′

n = spanF{e ′1, . . . e ′n},

where ei , e ′i , i = 1, . . . , n are basis vectors of Wn, and the skew-symmetric form on

Wn is described by the relations

〈ei , e j〉 = 0, i, j = 1, 2, . . . , n, 〈ei , e ′j〉 = δi j .

The group Sp(Wn) fixes this form. Let P j denote a maximal parabolic subgroup of

Sp(n) = Sp(Wn) stabilizing the isotropic space W
′ j
n = spanF{e1, . . . e j}. Then there

is a Levi decomposition P j = M jN j , where M j = GL(W
′ j
n ). By adding, in each

step, a hyperbolic plane to the previous symplectic vector space, we obtain a tower of

symplectic spaces and corresponding symplectic groups.

Now we describe the orthogonal groups that we consider. Let V0 be an anisotropic

quadratic space over F of odd dimension; then dimV0 ∈ {1, 3}. For a description of

the invariants of this quadratic space, including the quadratic character χV0
describ-

ing the quadratic form on V0, we refer the reader to [9]. In each step, as for the

symplectic situation, we add a hyperbolic plane and obtain an enlarged quadratic

space and, consequently, a tower of quadratic spaces and a tower of correspond-

ing orthogonal groups. In the case in which r hyperbolic planes are added to the

anisotropic space, a corresponding orthogonal group will be denoted O(Vr), where

Vr = V ′
r + V0 + V ′ ′

r and V ′
r and V ′ ′

r are defined analogously as in the symplectic

space. Again, P j will be a maximal parabolic subgroup stabilizing spanF{e1, . . . e j}.
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2.2 The Metaplectic Group

The metaplectic group S̃p(n) (or M p(n)) is given as the central extension

1 // µ2
Â

Ä

i
// S̃p(n)

p
// // Sp(n) // 1,

where µ2 = {1,−1} and the cocyle involved is Rao’s cocycle ([19]). For a more thor-

ough description of the structural theory of the metaplectic group we refer the reader

to [7–9, 19]. Specifically, for every subgroup G of Sp(n) we denote by G̃ its preimage

in S̃p(n). In this way, the standard parabolic subgroups of S̃p(n) are defined. Then

we have P̃ j = M̃ jN
′
j , where N ′

j is the image in S̃p(n) of the unique monomorphism

from N j (the unipotent radical of P j) to S̃p(n) ([14, Chapter 2, II.9]). We emphasise

that M̃ j is not a product of GL factors and a metaplectic group of smaller rank, but

there is an epimorphism (this is the case of maximal parabolic subgroup)

φ : G̃L( j, F) × ˜Sp(n − j) → M̃ j .

Here, we can view G̃L( j, F) as a two fold cover of GL( j, F) in its own right, where the

multiplication is given by

(g1, ǫ1)(g2, ǫ2) = (g1g2, ǫ1ǫ2(detg1, detg2)F),

where ( · , · )F denotes the Hilbert symbol (of course, this cocoycle for G̃L( j, F) is just

the restriction of the Rao’s cocoycle to GL( j, F)×GL( j, F)). Then, φ((g, ǫ1), (h, ǫ)) =

(diag(g, h), ǫ1ǫ(x(h), det g)F). The function x(h) is defined in [19] or [9, p. 19].

In this way, an irreducible representation π of M̃ j can be considered as a repre-

sentation ρ ⊗ σ of G̃L( j, F) × S̃p(n), where ρ and σ are irreducible representations,

provided they are both trivial or both non-trivial when restricted to µ2.
The pair (Sp(n), O(Vr)) constitutes a dual pair in Sp(n · dimVr) ([9],[10]). Since

dim(Vr) is odd, the group Sp(n) does not split in S̃p(n · dimVr), so the theta corre-

spondence relates the representations of S̃p(n) and of O(Vr), or more generally, the

representations of the metaplectic groups (as two-fold coverings of symplectic groups

attached to the symplectic towers) with the representations of the orthogonal groups

attached to the orthogonal tower ([9, Section 5]).

From now on, we fix an additive non-trivial character ψ of F related to theta

correspondence ([9, 10]) and a character χV,ψ on G̃L(n, F) given by χV,ψ(g, ǫ) =

χV (detg)ǫγ(detg, 1
2
ψ)−1. Here γ denotes the Weil index ([9, p. 13, 17]) and χV is

a quadratic character related to the orthogonal tower. We denote by α = χ2
V,ψ. α is a

quadratic character on GL(n, F) given by α(g) = (detg,−1)F ([9, p. 17]).

3 The First Reducibility Result

We emphasise that the results in this section are valid for every F of characteristic

different from 2; i.e., we do not need the validity of Howe’s conjecture.
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To prove the main reducibility result (Theorem 3.5), which also describes the

structure of the lift of the subquotients of the induced representation, we need the

following lemmas, which are simple extension of known results for linear groups to

the case of metaplectic groups.

Recall that M̃ j is a Levi subgroup of a maximal parabolic subgroup of S̃p(n). As

such, it has a character ν = |det|F coming from the usual character of that form

on GL( j, F). We call a representation π of some covering group (in our case, of the

metaplectic, or of the covering of general linear group, or of the Levi subgroup of the

metaplectic group) genuine if it is non-trivial on µ2.

Lemma 3.1 Let π be an irreducible genuine cuspidal representation of M̃ j , and let

V be a smooth representation of M̃ j . Then there exist two subrepresentations of V, say

V (π) and V (π)⊥, such that we have

V = V (π) ⊕V (π)⊥,

and all the subquotients of V (π) are isomorphic to πνs for some s ∈ C, and V (π)⊥ does

not have an irreducible subquotient isomorphic to some πνs; s ∈ C.

Proof This claim is slightly weaker than the Bernstein center decomposition. If M̃ j

is Levi subgroup of S̃p(n), then there is an epimorphism from G̃L( j, F) × ˜Sp(n − j)

to M̃ j . Now, it is not difficult to see that, using the notation from [4], the group M̃ j

◦

(the intersection of all the kernels of the unramified characters of M̃ j

◦
) corresponds

to GL( j, F)◦, so the unramified characters on M̃ j indeed look as described in the

statement of the lemma. We note that the center Z(M̃ j) equals Z̃(M j). This means

that because Z(M j)M◦
j is of finite index in M j , Z(M̃ j)M̃◦

j is of finite index in M̃ j .
Because of this, when we restrict an irreducible cuspidal representation (π,V ) of

M̃ j to Z(M̃ j)M̃◦
j we get a finite direct sum of irreducible cuspidal representations of

M̃◦
j in the same way as in [4, Proposition 25, p. 43] (this notion makes sense since

M̃◦
j contains all the unipotent radicals of its parabolic subgroups, and also, there is a

splitting of unipotent radicals of M j in M̃ j). Every irreducible cuspidal representation

of M̃◦
j is compact (Harish–Chandra’s theorem, p. 36). Indeed, we can repeat the

arguments of that theorem since (the M◦
j -version of ) Cartan decomposition M◦

j =

KΛ+◦K holds (p. 36 there); we also have M̃◦
j = K̃Λ+◦K̃, where Λ+◦ is embedded (this

does not have to be a homomorphism) in M̃◦
j as λ 7→ (λ, 1). Since we deal with the

cover of a maximal compact subgroup, we do not need that it splits in S̃p(n), and

so this works for any residual characteristic. We continue to use the notation from

[4, pp. 35, 36]. It is now enough to show that matrix coefficients, i.e., the functions

π(a(λ))ξ have compact support in Λ+◦. Here we may take that ξ is K ′-invariant,

where K ′ is a sufficiently small congruence subgroup that splits in S̃p(n). Now we

obtain the upper and the lower bound of π(a(λ))ξ in the same way as on pp. 35 and

36 (we actually get a finite support on Λ+◦). Then, with all the ingredients at hand, we

can apply [4, Proposition 26], since it relays on the fact that compact representations
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split the category of smooth representations, which was proved in the fifth section

of the first chapter of [4], in a greater generality (than for just reductive algebraic

groups), so it holds for M̃ j

◦
.

Lemma 3.2 Let G̃ be S̃p(n) or O(Vr). Let P̃ = M̃N ′ be a standard parabolic subgroup

of G̃, and let P̃ = M̃N ′ be the opposite parabolic subgroup. Assume π is a smooth

representation of M̃ and Π is a smooth representation of G̃. Then the following holds:

HomeG

(
Ind

eG
eP

(π),Π
)
∼= Hom eM

(
π, ReP

(Π)
)
.

Proof First, note that the opposite unipotent subgroup N also lifts in the metaplectic

group ([14, p. 43]). Then, following the original Bernstein argument ([5], we use

that, topologically, P̃ \ G̃ ∼= P \ G), the claim follows (in the case of metaplectic

group). The case of non-connected O(Vr) is similar ([16]). There is an alternative

proof of this fact (for reductive algebraic groups) due to Bushnell ([6]).

Remark We refer to the isomorphism of the previous lemma as “the second Frobe-

nius reciprocity.” Keeping the same notation as in the above lemma, it is obvious that

it can also be expressed in the following way:

HomeG

(
Ind

eG
eP

(π),Π
)
∼= Hom eM

(
π, (ReP(Πˇ))ˇ

)
.

For any positive integer n and positive integer r, let (Sp(n), O(Vr)) be a reductive

dual pair in Sp(n · dimVr), and let n ′ = n · dimVr (with dimVr odd). Let ωn ′,ψ

be the Weil representation of S̃p(n ′) depending on the non-trivial additive character

ψ ([9, 10]), and let ωn,r = ωψ
n,r be the pull-back of that representation to the pair

(S̃p(n), O(Vr)). Let χV,ψ be as defined in the previous section. For an irreducible,

genuine, smooth representation π1 of S̃p(n1), let Θ(π1, l) be a smooth representation

of O(Vl), given as the full lift of π1 to the l-level of the orthogonal tower, i.e., the

biggest quotient of ωn1,l on which S̃p(n1) acts as a multiple of π1. It is of the form

π1 ⊗ Θ(π1, l) as a representation of S̃p(n1) × O(Vl) ([9, p. 33] and [14, p. 45]).

We fix some notation throughout this section. Let σ be an irreducible, cuspidal,

smooth, and genuine representation of S̃p(Wn) = S̃p(n), and let Θ(σ, r) be the first

(full) nontrivial lift of σ in the orthogonal tower. Then, Θ(σ, r) is an irreducible

cuspidal representation of O(Vr), and we will denote it by τ . Let ρ denote a genuine

irreducible cuspidal representation of G̃L( j, F).
The proof of Theorem 3.5 relies on the careful analysis of the Jacquet modules of

the oscillatory representations due to Kudla ([10]).

Because of the completeness of the argument, we write down Kudla’s filtration (we

also want to emphasise a slight difference between our version and Kudla’s original

expression for the filtration, due to the difference between the choice of the isotropic

spaces invariant under the action of the parabolic subgroup). From now on, we fix a

non-trivial additive character ψ of F. Also, from now on, mr =
1
2
dim Vr.
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Proposition 3.3 ([10]) Let ωn+ j,r+ j be the oscillatory representation of ˜Sp(n + j) ×
O(Vr+ j) corresponding to the character ψ.

(i) The Jacquet module (with respect to the parabolic subgroup P j of O(Vr+ j))

RP j
(ωn+ j,r+ j) has the following M j × ˜Sp(n + j)-invariant filtration by I jk, 0 ≤ k ≤ j :

I jk
∼= Ind

M j×S̃p(n+ j)

P jk×ePk×O(Vr)
(γ jkΣ

′
k ⊗ ωn+ j−k,r).

Here, P jk is a standard parabolic subgroup of GL( j, F) corresponding to the partition

( j − k, k), P̃k is a maximal Levi of ˜Sp(n + j), Σ ′
k is a twist of a usual representation of

GL(k, F) × GL(k, F) on Schwartz space C∞
c (GL(k, F)) and is given by

Σ
′
k(g1, g2) f (g) = ν−(mr+ k−1

2
)(g1)νmr+ k−1

2 (g2) f (g−1
1 gg2),

and γ jk is a character on GL j−k × G̃L(k, F) given by

γ jk(g1, g2) = ν−(mr−n− j−k+1
2

)(g1)χV,ψ(g2).

Specifically, a quotient I j0 equals ν−(mr−n− j+1
2

) ⊗ ωn+ j,r, and a subrepresentation I j j

equals

Ind
M j×S̃p(n+ j)

GL( j,F)×eP j×O(Vr)
(χV,ψΣ

′
j ⊗ ωn,r).

(ii) The Jacquet module (with respect to the parabolic subgroup P̃ j of ˜Sp(n + j))

R eP j
(ωn+ j,r+ j) has the following M̃ j × O(Vr+ j)-invariant filtration by J jk, 0 ≤ k ≤ j :

J jk
∼= Ind

fM j×O(Vr+ j )

fP jk×Pk×S̃p(n)
(β jkΣ

′
k ⊗ ωn,r+ j−k).

Here P̃ jk is a standard parabolic subgroup of M̃ j corresponding to the partition ( j−k, k),

and β jk is a character on ˜GL( j − k) × G̃L(k) given by

β jk((g1, g2) = (χV,ψνmr−n+
j−k−1

2 )(g1)χV,ψ(g2).

The representation Σ ′
k is, as before, a representation of GL(k, F)×GL(k, F) on Schwartz

space C∞
c (GL(k, F)) given by

Σ
′
k(g1, g2) f (g) = νmr+ j− k+1

2 (g1)ν−(mr+ j− k+1
2

)(g2) f (g−1
1 gg2).

Specifically, the quotient J j0 of the filtration is isomorphic to χV,ψνmr−n+
j−1

2 ⊗ ωn,r+ j ,

and the subrepresentation J j j is isomorphic to

Ind
fM j×O(Vr+ j )

G̃L( j)×P j×S̃p(n)
(χV,ψΣ

′
j ⊗ ωn,r).
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The following proposition describes certain isotypic components in the filtration

above and is crucial for the proof of Theorem 3.5 (for the basic facts about isotypic

components, we refer the reader to [14, pp. 45–47]). In general, if π is an irreducible

smooth representation of some group G1, and Π a smooth representation of G1×G2,
then the isotypic component (a smooth representation of G2) of π in Π is denoted by

Θ(π,Π) (if it is understood what G1 and G2 are).

Proposition 3.4 (i) Assume that j > 1 and s ∈ C. Then

Hom
G̃L( j,F)×S̃p(n)

(R eP j
(ωn+ j,r+ j)/ J j j , ρνs ⊗ σ) = 0

and

HomGL( j,F)×O(Vr)(RP j
(ωn+ j,r+ j)/I j j , χ

−1
V,ψρνs ⊗ τ ) = 0.

(ii) For cuspidal representation ρ ⊗ σ ( j can be equal to 1) we have

Θ(ρ ⊗ σ, J j j) ∼= Ind
O(Vr+ j )
P j

(χV,ψρ̌ ⊗ τ ),

and

Θ(χ−1
V,ψρ ⊗ τ , I j j) ∼= Ind

S̃p(n+ j)
eP j

(αρ̌ ⊗ σ).

(iii) If ρ 6= χV,ψ| · |
mr−n, then

Θ(ρ ⊗ σ, R eP j
(ωn+ j,r+ j)) ∼= Ind

O(Vr+ j )
P j

(χV,ψρ̌ ⊗ τ ),

and if ρ 6= χV,ψ| · |
n−mr+1, then

Θ(χ−1
V,ψρ ⊗ τ , RP j

(ωn+ j,r+ j)) ∼= Ind
S̃p(n+ j)
eP j

(αρ̌ ⊗ σ).

Proof (i) For 0 < k < j, the G̃L( j, F)-part of the induced representation J jk is in-

duced from the representation of G̃L(k, F)× ˜GL( j − k, F) and cannot have a cuspidal

component. For k = 0, the G̃L( j, F)-part is just χV,ψνmr−n+ j−1/2, and we use the

assumption that j > 1.
(ii) Again, let us comment just on the first case. Having in mind that the isotypic

component of any irreducible representation π of GL( j, F) in the “non-twisted” rep-

resentation of GL( j, F) × GL( j, F) appearing in the Jacquet module filtration is π̌,

there is an obvious G̃L( j, F) × P j × S̃p(n)-invariant epimorphism

χV,ψΣ
′
j ⊗ ωn,r → ρ ⊗ χV,ψρ̌ ⊗ σ ⊗ τ .

We immediately get an M̃ j × O(Vr+ j)-invariant epimorphism

J j j → ρ ⊗ σ ⊗ Ind
O(Vr+ j )
P j

(χV,ψρ̌ ⊗ τ ),
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so we conclude that Ind
O(Vr+ j )
P j

(χV,ψρ̌ ⊗ τ ) is a quotient of Θ(ρ ⊗ σ, J j j). We prove

that Θ(ρ⊗σ, J j j) is also a quotient of Ind
O(Vr+ j )
P j

(χV,ψρ̌⊗ τ ). Now, by Lemma 3.2, we

have

HomfM j×O(Vr+ j )
( J j j , ρ ⊗ σ ⊗ Θ(ρ ⊗ σ, J j j)) ∼=

HomfM j×GL( j,F)×O(Vr)(χV,ψΣ
′
j ⊗ ωn,r, ρ ⊗ σ ⊗ RP j

(Θ(ρ ⊗ σ, J j j))).

For every intertwining map T from the first space, let T0 be the corresponding

intertwining map from the second space. Let φ be a natural epimorphism of

M̃ j × O(Vr+ j)-modules belonging to the first space. Having in mind that all the rel-

evant isotypic components are irreducible, we get that the image of φ0 is isomorphic

to ρ ⊗ σ ⊗ χV,ψρ̌ ⊗ τ . Now, we write down φ0 = φ ′ ′ ◦ φ ′, where φ ′ is just the pro-

jection with respect the kernel of φ0, and φ ′ ′ is the isomorphism from that quotient

to the image of φ0. Let φ1 be an operator belonging to

HomfM j×O(Vr+ j )
(Ind(χV,ψΣ

′
j ⊗ ωn,r/Ker φ0), ρ ⊗ σ ⊗ Θ(ρ ⊗ σ, J j j))

such that (φ1)0 = φ ′ ′. Then (φ1 ◦ Ind(φ ′))0 = φ0, which forces φ1 ◦ Ind(φ ′) = φ.

Since the image of Ind(φ ′) a quotient of ρ⊗σ⊗ Ind
O(Vr+ j )
P j

(χV,ψρ̌⊗τ ), so is the image

of φ, i.e., ρ ⊗ σ ⊗ Θ(ρ ⊗ σ, J j j) is a quotient of ρ ⊗ σ ⊗ Ind
O(Vr+ j )
P j

(χV,ψρ̌ ⊗ τ ).
(iii) We explain in more detail only the first part of the statement; the second

is quite analogous. As it is obvious from the statement (ii) of this proposition, we

must prove that, essentially, isotypic component corresponding to ρ⊗σ in the whole

Jacquet module R eP j
(ωn+ j,r+ j) actually depends only on the J j j-part in the filtration

of that module.

We use the part of the Bernstein decomposition from Lemma 3.1 for the represen-

tation R eP j
(ωn+ j,r+ j) (and the notation is the same as there). If j > 1, from the first

part of this proposition it follows that

R eP j
(ωn+ j,r+ j/ J j j)(ρ ⊗ σ) = 0.

Since J j j is a subrepresentation, we have R eP j
(ωn+ j,r+ j)(ρ ⊗ σ) = J j j(ρ ⊗ σ), so that

(3.1) HomfM j
(R eP j

(ωn+ j,r+ j), ρ ⊗ σ) ∼= HomfM j
( J j j , ρ ⊗ σ)

(as the restriction gives rise to an isomorphism, which is also O(Vr+ j)-equivariant).

But, since there is a usual relation between taking a (smooth) part of the isotypic

component of a representation and the homomorphism functor ([17]), we have the

following

Θ(R eP j
(ωn+ j,r+ j), ρ ⊗ σ)ˇ ∼= HomfM j

(R eP j
(ωn+ j,r+ j), ρ ⊗ σ)∞.

Now, the relation (3.1) completes the proof of the claim 3 in the case j > 1.
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If j = 1, the filtration of R eP1
(ωn+1,r+1) is of length two, and, in this case, J10 =

χV,ψ| · |
mr−n ⊗ ωn,r+1 (we emphasise that ρ 6= χV,ψ| · |

mr−n). On the other hand, J11

has a quotient ρ⊗σ⊗Θ(ρ⊗σ, J11). Using the decomposition along the generalized

central characters, we see that ρ⊗σ⊗Θ(ρ⊗σ, J11)⊕ J10 is a quotient of R eP1
(ωn+1,r+1)

(the sum is direct precisely when ρ 6= χV,ψ| · |
mr−n), and we again obtain that (3.1)

holds.

Theorem 3.5 Let mr =
1
2
dim Vr, where Vr is a quadratic space on which O(Vr) acts.

Let P j be a maximal standard parabolic subgroup of O(Vr+ j) that has a Levi subgroup

isomorphic to GL( j, F) × O(Vr), P̃ j is a standard parabolic subgroup of ˜Sp(n + j) de-

fined analogously. Let ρ be an irreducible, cuspidal, genuine representation of G̃L( j, F),
where

ρ /∈
{

χV,ψ| · |
±(n−mr), χV,ψ| · |

±(mr−n−1)
}

.

Then the representation Ind
S̃p(n+ j)
eP j

(ρ ⊗ σ) reduces if and only if the representation

Ind
O(Vr+ j )
P j

(χ−1
V,ψρ ⊗ τ )

reduces. In the case of irreducibility, we have

Θ(Ind
S̃p(n+ j)
eP j

(ρ ⊗ σ), r + j) = Ind
O(Vr+ j )
P j

(χ−1
V,ψρ ⊗ τ ).

If the representation Ind
S̃p(n+ j)
eP j

(ρ⊗ σ) reduces, then it has two irreducible subquotients,

say π1 and π2, such that the following holds:

0 −→ π1 −→ Ind
S̃p(n+ j)
eP j

(ρ ⊗ σ) −→ π2 −→ 0.

Then Θ(πi , r + j) 6= 0 is irreducible for i = 1, 2, and the following holds:

0 −→ Θ(π1, r + j) −→ Ind
O(Vr+ j )
P j

(χ−1
V,ψρ ⊗ τ ) −→ Θ(π2, r + j) −→ 0.

Proof The main tool in the proof is Proposition 3.4. Now, as soon as this is es-

tablished for the representations of the metaplectic group, we can proceed with the

proof similarly as in the case of the dual pairs consisting of the symplectic and even-

orthogonal groups ([16]).

4 The Exceptional Case

We continue with the notation from the previous section. We now discuss the case

ρ ∈ {χV,ψ| · |
±(mr−n), χV,ψ| · |

±(mr−n−1)}. The discussion is more subtle than in the

case of “the split dual pair” (i.e., symplectic, even-orthogonal group [16]) due to the

fact that the result about the unique reducibility point in the case of the parabolic in-

duction from a maximal parabolic subgroup and cuspidal data ([22]) is not available

for the metaplectic group.
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We retain the notation from the previous section. For

ρ /∈
{

χV,ψ| · |
±(mr−n), χV,ψ| · |

±(mr−n−1)
}

,

the uniqueness of the reducibility point for the representation (we introduce a shorter

notation)

ρνs ⋊ σ := Ind
S̃p(n+ j)

fM j
(ρνs ⊗ σ)

follows from Theorem 3.5 and the uniqueness of the reducibility point s = s0 ≥ 0 for

the representation Ind
O(Vr+ j )
M j

(ρνs ⊗ τ ) ([22]). In the exceptional cases that we study

in this section, we will determine the reducibility point and the structure of the lift of

all the subquotients, again using theta correspondence.

We recall that σ and τ are irreducible cuspidal representations of S̃p(n) and O(Vr),
respectively, such that Θ(σ, r) = τ .

From [14, p. 69 Théorème principal] we know that

Θ(σ, r + 1) →֒ IndO(Vr+1)
P1

(| · |n−mr ⊗ τ ), RP1
(Θ(σ, r + 1)) = | · |n−mr ⊗ τ .

We conclude that the representation IndO(Vr+1)
P1

(| · |n−mr ⊗ τ ) is reducible. Also, note

that mr ∈
1
2

+ Z, so n − mr ∈
1
2

+ Z. In the same way we have

Θ(τ , n + 1)) →֒ Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n−1 ⊗ σ),

R eP1
(Θ(τ , n + 1)) = χV,ψ| · |

mr−n−1 ⊗ σ,

and the representation Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n−1 ⊗ σ) is reducible. So, Theorem 3.5

guarantees that the only point of reducibility of the representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
s ⊗ σ), s ∈ R

is s = ±(mr − n − 1) provided we show that the representations we obtain for

s = ±(n − mr) are irreducible.

Remark In the situation where mr −n =
1
2

we have n−mr = mr −n−1; we know

then that the representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
−1/2 ⊗ σ)

is reducible and that s = ± 1
2

is the only point of reducibility. For n = 0, this covers

the case of reducibility in ˜SL(2, F), because if we formally take sgn to be a nontrivial-

character of µ2
∼= ˜Sp(0, F), it lifts in a split orthogonal tower to r = 0-level to a trivial

representation of µ2 = O(V0), so mr =
1
2

and n − mr = − 1
2

is satisfied.

We now describe how to bypass the exceptional cases from Theorem 3.5.
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Theorem 4.1 The representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
s ⊗ σ)

reduces for a unique s ≥ 0 (which is |mr − n − 1|). In particular, this implies

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ)

is irreducible unless mr − n = −(mr − n − 1), i.e., mr − n =
1
2
.

Proof As observed in the discussion prior to the remark above, we only have to check

that

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ)

is irreducible (unless mr − n =
1
2
). Here we use the notion of pairs of orthog-

onal towers with the same quadratic character χV = χV ′ , so that χV,ψ = χV ′,ψ

([9, Chapter V]). So, if our original tower has one-dimensional anisotropic space V0,
then the “dual” tower has a three-dimensional anisotropic space V ′

0 at its bottom and

vice versa. Let r ′ denote the level to which the representation σ lifts in this second

orthogonal tower (the first occurence), and let Θ(σ, r ′) = τ ′ (a cuspidal representa-

tion). Since Dichotomy Conjecture holds for cuspidal representations ([11]), we have

r + r ′ = 2n. But, if we calculate mr ′ −n, we get that mr −n /∈ {mr ′ −n,−(mr ′ −n)},
so we are not in the problematic situation in the second tower, meaning that if

mr − n /∈ {mr ′ − n − 1,−(mr ′ − n − 1)}, the representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ)

is irreducible (since then we can apply Theorem 3.5 on the representations of the

second tower and Ind
O(Vr ′+1)
P1

(| · |mr−n ⊗ τ ′) is irreducible). If mr − n = mr ′ − n − 1

(the possibility mr − n = −(mr ′ − n − 1) leads to contradiction with r + r ′ = 2n),

we get mr − n =
1
2

and this is already covered.

We now describe the lifts of the irreducible subquotients of the representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
s ⊗ σ), s ∈ {±(mr − n),±(mr − n − 1)}.

Proposition 4.2 Assume that mr − n 6= 1
2
. Then

Θ

(
Ind

S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ), r + 1

)

has a unique irreducible quotient isomorphic to Θ(σ, r + 1). Moreover,

Θ(Θ(σ, r + 1), n + 1) = Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n ⊗ σ).

If we denote by π1 the other irreducible subquotient of IndO(Vr+1)
P1

(| · |n−mr ⊗ τ ), then

Θ(π1, n + 1) = 0.
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Proof We denote π = Ind
S̃p(n+1)
eP1

(χV,ψ| · |
n−mr ⊗ σ). We can apply the third part of

Proposition 3.4 to see that

Θ(χV,ψ| · |
n−mr ⊗ σ, R eP1

(ωn+1,r+1)) = IndO(Vr+1)
P1

(| · |mr−n ⊗ τ ).

Now, we can apply the Frobenius reciprocity

Hom
S̃p(n+1)

(ωn+1,r+1, π) ∼= HomfM1
(R eP1

(ωn+1,r+1), χV,ψ| · |
n−mr ⊗ σ).

Observing that the Frobenius isomorphism above is also an isomorphism of

O(Vr+1)-modules, and then taking the smooth part of it, gives us the isomorphism

between the contragredients of the corresponding isotypic components:

Θ(π, r + 1)ˇ ∼= IndO(Vr+1)
P1

(| · |mr−n ⊗ τ )ˇ,

and the first part of the claim follows, since IndO(Vr+1)
P1

(| · |mr−n ⊗ τ ) has a unique

quotient, namely Θ(σ, r + 1).
To prove the second claim, we proceed as follows. Let ξ be some irreducible rep-

resentation of O(Vr+1). Then the Frobenius reciprocity gives

Hom
S̃p(n+1)×O(Vr+1)

(ωn+1,r+1, π ⊗ ξ) ∼=

HomfM1×O(Vr+1)

(
R eP1

(ωn+1,r+1), χV,ψ| · |
n−mr ⊗ σ ⊗ ξ

)
,

and, by the third part of Proposition 3.4, the last part is isomorphic to

HomO(Vr+1)(| · |
mr−n ⊗ τ ), ξ),

and this is non-zero only if ξ ∼= Θ(σ, r + 1). So, we conclude that π is a quotient of

Θ(Θ(σ, r + 1), n + 1). On the other hand, we have an epimorphism

ωn+1,r+1 → Θ(σ, r + 1) ⊗ Θ(Θ(σ, r + 1), n + 1),

which leads to the epimorphism

RP1
(ωn+1,r+1) → | · |n−mr ⊗ τ ⊗ Θ(Θ(σ, r + 1), n + 1).

Now we apply the third part of Proposition 3.4 again (but a different part of the

statement from the one used just above) to get that Θ(Θ(σ, r + 1), n + 1) is a quotient

of π, so, at the end, π ∼= Θ(Θ(σ, r + 1), n + 1).
To prove the last part of this proposition, we note that, if Θ(π1, n + 1) 6= 0,

an irreducible quotient of that full lift would have to have a cuspidal support con-

sisting of σ and | · |±(n−mr) ([9, p. 55]). Then there would exist an epimorphism

ωn+1,r+1 → π⊗π1, but this is impossible by the previous discussion. This guarantees

Θ(π1, n + 1) = 0.
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Proposition 4.3 Assume that mr − n 6= 1
2
. Then the induced representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
mr−n−1 ⊗ σ)

has two irreducible subquotients, Θ(τ , n + 1) and, say π2, which lift as follows:

Θ(Θ(τ , n + 1), r + 1) = IndO(Vr+1)
P1

(| · |mr−n−1 ⊗ τ ),

while Θ(π2, r + 1) = 0. Moreover, the lift Θ(IndO(Vr+1)
P1

(| · |mr−n−1 ⊗ τ ), n + 1) has the

unique irreducible quotient isomorphic to Θ(τ , n + 1).

Proof The situation is completely analogous to Proposition 4.2.

It remains to discuss the most difficult case mr − n =
1
2
.

Theorem 4.4 Assume that mr − n =
1
2
.

(i) The representations IndO(Vr+1)
P1

(| · |1/2 ⊗ τ ) and Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1/2 ⊗ σ) reduce,

and

Θ(τ , n + 1) →֒ Ind
S̃p(n+1)
eP1

(χV,ψ| · |
− 1

2 ⊗ σ), Θ(σ, r + 1) →֒ IndO(Vr+1)
P1

(| · |−
1
2 ⊗ τ ).

Moreover, we have

Θ(Θ(τ , n + 1), r + 1) = IndO(Vr+1)
P1

(| · |
1
2 ⊗ τ )

and

Θ(Θ(σ, r + 1), n + 1) = Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ).

(ii) Let π1 (π2, respectively) be the other irreducible subquotient of the representation

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ)

(
IndO(Vr+1)

P1
(| · |

1
2 ⊗ τ ), respectively

)
.

Then one of the following holds:

• Θ(π1, r + 1) = 0 and Θ(π1, r + 2) 6= 0, moreover, every irreducible quotient

of Θ(π1, r + 2) is a tempered subrepresentation of δ([ν−1/2, ν1/2]) ⋊ τ ,
• Θ(π1, r + 1) 6= 0, then every irreducible quotient of Θ(π1, r + 1) is π2. Every

irreducible quotient of Θ(π1, r+2) is the unique common tempered subquotient

of δ([ν−1/2, ν1/2]) ⋊ τ and ν1/2 ⋊ L(ν1/2; τ ).

Here δ([ν−1/2, ν1/2]) denotes the unique irreducible (and necessarily square-integrable)

subrepresentation of ν1/2 × ν−1/2 (we use the standard notation for the parabolic in-

duction for the general linear groups, [25]). The representation L(ν1/2; τ ) denotes the

Langlands quotient of the representation ν1/2 ⋊ τ .
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Proof We now prove (i). The reducibility of ν−1/2 ⋊ τ and of χV,ψν−1/2 ⋊σ and the

fact that Θ(σ, r + 1) and Θ(τ , n + 1) are the subrepresentations of these representa-

tions, follow from [14, p. 69, Théorème principal]. We can apply Proposition 3.4(iii)

to obtain

(4.1) Θ(| · |−
1
2 ⊗ τ , RP1

(ωn+1,r+1)) ∼= Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ)

and

Θ(χV,ψ| · |
− 1

2 ⊗ σ, R eP1
(ωn+1,r+1)) ∼= IndO(Vr+1)

P1
(| · |

1
2 ⊗ τ ).

Using this and Frobenius reciprocity, we get

Hom
S̃p(n+1)×O(Vr+1)

(
ωn+1,r+1, Ind

S̃p(n+1)
eP1

(
χV,ψ| · |

− 1
2 ⊗ σ

)
⊗ Θ(σ, r + 1)

)

∼= HomfM1×O(Vr+1)

(
R eP1

(ωn+1,r+1), χV,ψ| · |
− 1

2 ⊗ σ ⊗ Θ(σ, r + 1)
)

∼= HomO(Vr+1)

(
IndO(Vr+1)

P1
(| · |

1
2 ⊗ τ ),Θ(σ, r + 1)

)
6= 0.

This means that Θ(Θ(σ, r + 1), n + 1) 6= 0, so we have an epimorphism

ωn+1,r+1 → Θ(Θ(σ, r + 1), n + 1) ⊗ Θ(σ, r + 1),

and, taking Jacquet modules on the orthogonal side, we have the following epimor-

phism

RP1
(ωn+1,r+1) → Θ(Θ(σ, r + 1), n + 1) ⊗ | · |−

1
2 ⊗ τ ,

so, by relation (4.1), we conclude that Θ(Θ(σ, r + 1), n + 1) is a quotient of

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ).

On the other hand, using Kudla’s filtration (Proposition 3.3) and an explicit de-

scription of quotient J j0, we obtain the following chain of epimorphisms:

R eP1
(ωn+1,r+1) → χV,ψ| · |

1
2 ⊗ ωn,r+1 → χV,ψ| · |

1
2 ⊗ σ ⊗ Θ(σ, r + 1),

so that

HomfM1⊗O(Vr+1)

(
R eP1

(ωn+1,r+1), χV,Ψ| · |
1
2 ⊗ σ ⊗ Θ(σ, r + 1)

)
∼=

Hom
S̃p(n+1)×O(Vr+1)

(
ωn+1,r+1, Ind

S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ) ⊗ Θ(σ, r + 1)

)
6= 0.

Take a non-zero intertwining operator from the last space, say T. Then, the image of

this operator is isomorphic to Π ⊗ Θ(σ, r + 1), where Π is a subrepresentation of

Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ)
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([14, p. 45 Lemme III.3]). On the other hand, this Π has to be a quotient of

Θ(Θ(σ, r + 1), n + 1).

From our previous reasoning about Θ(Θ(σ, r + 1), n + 1), the only possibilities are

that Θ(Θ(σ, r + 1), n + 1) is

Θ(τ , n + 1) or Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ).

In the first case, Π is a quotient of Θ(τ , n + 1), so Π = Θ(τ , n + 1), but this cannot

be a subrepresentation of Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1/2 ⊗ σ). We then must have

Θ(Θ(σ, r + 1), n + 1) ∼= Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1
2 ⊗ σ)

and Π = Ind
S̃p(n+1)
eP1

(χV,ψ| · |
1/2 ⊗ σ).

Analogously, one gets

Θ(Θ(τ , n + 1), r + 1) ∼= IndO(Vr+1)
P1

(| · |
1
2 ⊗ τ ).

We now prove (ii). Firstly, we prove that Θ(π1, r) = 0. If Θ(π1, r) 6= 0, then,

examining a cuspidal support of every quotient of this representation ([9, p. 55]), we

see that it would have to be equal to τ . But, then Θ(τ , n) = σ and Θ(τ , n + 1) = π1;

the last relation contradicts the results of the first part of this theorem. Analogously,

we get that Θ(π2, n) = 0.
To proceed further, we prove claim (4.2). We use the idea of descending in the

orthogonal tower, starting from some stable range appearance place, to prove that

the lift does not vanish even lower in the tower. This idea was presented in [15].

Assume that Θ(π1, l) 6= 0, for some l large enough. Then, there exists an epi-

morphism ωn+1,l → π1 ⊗ Θ(π1, l). Using Kudla’s filtration (Proposition 3.3), we get

epimorphisms

RP1
(ωn+1,l+1) → ν−(ml−n−1) ⊗ ωn+1,l → ν−(ml−n−1) ⊗ π1 ⊗ Θ(π1, l).

Using Frobenius reciprocity, from the relation above we get that there exists a non-

zero ˜Sp(n + 1)×O(Vl+1)-intertwining from ωn+1,l+1 to π1 ⊗ IndO(VL+1)
P1

(ν−(ml−n−1) ⊗
Θ(π1, l))). This immediately gives us a non-trivial intertwining between Θ(π1, l + 1)

and IndO(VL+1)
P1

(ν−(ml−n−1) ⊗ Θ(π1, l)), and, consequently, between RP1
(Θ(π1, l + 1))

and ν−(ml−n−1) ⊗ Θ(π1, l). If we denote by π(χ) an isotypic part of part of some

smooth representation π corresponding to a generalized central character χ, we can

write down our conclusion as RP1
(Θ(π1, l + 1))(ν−(ml−n−1)) 6= 0. This proves one

direction of the following claim.

Assume that ml − n − 1 6= − 1
2
. Then

(4.2) Θ(π1, l) 6= 0 ⇔ RP1
(Θ(π1, l + 1))(ν−(ml−n−1)) 6= 0.
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Now, we prove the other direction, so we assume that

RP1
(Θ(π1, l + 1))(ν−(ml−n−1)) 6= 0.

This also means that Θ(π1, l + 1) 6= 0, so there is an epimorphism ωn+1,r+1 → π1 ⊗
Θ(π1, l + 1), and, when we apply Jacquet module,

RP1
(ωn+1,r+1) → π1 ⊗ RP1

(Θ(π1, l + 1)) → π1 ⊗ ν−(ml−n−1) ⊗ τ1

for some representation τ1 of O(Vr) (a non-zero map). Here, the Jacquet module

of Θ(π1, l + 1) is of finite length. Now, if we assume that this map, restricted to a

subrepresentation I11 of RP1
(ωn+1,r+1) (Proposition 3.3) is zero, we get the existence

of a non-zero mapping from I10
∼= ν−(ml−n−1) ⊗ωn+1,l to π1 ⊗ ν−(ml−n−1) ⊗ τ1. This

means that Θ(π1, l) 6= 0. If we assume the opposite, i.e., the restriction of the above

mapping to I11 is non zero, applying the second Frobenius map, we get a non-zero

intertwining map

χV,ψΣ
′
1 ⊗ ωn,l → ν−(ml−n−1) ⊗ τ1 ⊗ RP1

(π̌1)ˇ,

and from this follows that π1 →֒ χV,ψν−(ml−n−1) ⋊σ. Of course, if ml −n−1 6= − 1
2
,

we get that this is impossible, and the claim (4.2) is proved.

Using claim (4.2), we prove that Θ(π1, r + 2) 6= 0 in Lemma 4.6. Assuming that,

we now examine two possibilities: Θ(π1, r + 1) 6= 0 and Θ(π1, r + 1) = 0. First,

assume that Θ(π1, r + 1) = 0. Let Π be an irreducible quotient of Θ(π1, r + 2), so that

there exists an epimorphism ωn+1,r+2 → π1 ⊗ Π and, consequently, an epimorphism

R eP1
(ωn+1,r+2) → R eP1

(π1) ⊗ Π = χV,Ψν1/2 ⊗ σ ⊗ Π. If the last epimorphism is equal

to zero on the subrepresentation J11 of R eP1
(ωn+1,r+2), it gives rise to an epimorphism

χV,ψν3/2 ⊗ωn,r+2 → χV,Ψν1/2 ⊗ σ ⊗Π. This is impossible, so there exists a non-zero

intertwining

Ind
fM1×O(Vr+2)

fGL1×S̃p(n)×P1

(χV,ψΣ
′
1 ⊗ ωn,r+1) → χV,ψν

1
2 ⊗ σ ⊗ Π.

Using the second Frobenius reciprocity as before, we get an embedding Π →֒ ν1/2 ⋊
Θ(σ, r + 1). An intertwining operator induced from the GL-situation acts on the

second representation, so that we have a composition of intertwining operators

Π →֒ ν
1
2 ⋊ Θ(σ, r + 1) →֒ ν

1
2 × ν− 1

2 ⋊ τ → ν− 1
2 × ν

1
2 ⋊ τ .

If we assume that Π is not embedded in the kernel of the last intertwining operator

(i.e., in δ([ν−1/2, ν1/2]) ⋊ τ ), there would exist an embedding

Π →֒ ν− 1
2 × ν

1
2 ⋊ τ ,

and this would force RP1
(Θ(π1, r + 2))(ν−1/2) 6= 0. By plugging l = r + 1 in the

relation (4.2), we get that Θ(π1, r + 1) 6= 0, contrary to our assumption. This means

that Π →֒ δ([ν−1/2, ν1/2]) ⋊ τ , and this case is covered.
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Assume now that Θ(π1, r+1) 6= 0, and let Π be an irreducible quotient of Θ(π1, r+

1). Then, there exists an epimorphism of Jacquet modules

R eP1
(ωn+1,r+1) → χV,ψν

1
2 ⊗ σ ⊗ Π.

Again, by examining the filtration of R eP1
(ωn+1,r+1), we first assume that the epi-

morphism above is zero when restricted to a subrepresentation J11 of R eP1
(ωn+1,r+1).

Then, there exists an epimorphism J10
∼= χV,ψν1/2 ⊗ ωn,r+1 → χV,ψν1/2 ⊗ σ ⊗ Π.

We get Π ∼= Θ(σ, r + 1). Now, by Kudla’s filtration there exists an epimorphism

RP1
(ωn+1,r+2) → ν−1/2 ⊗ ωn+1,r+1 and, consequently, a non-zero map

RP1
(ωn+1,r+2) → ν− 1

2 ⊗ π1 ⊗ Θ(σ, r + 1) →֒ ν− 1
2 ⊗ π1 ⊗ ν− 1

2 ⋊ τ .

By Frobenius reciprocity, we get a non-zero ( ˜Sp(n + 1) × O(Vr+2)-invariant) inter-

twining map ωn+1,r+2 → π1 ⊗ ν−1/2 × ν−1/2 ⋊ τ . So, there exists a non-zero in-

tertwining map RP2
(ωn+1,r+2) → π1 ⊗ ν−1/2 × ν−1/2 ⊗ τ . We now use filtration of

RP2
(ωn+1,r+2) ([9]); note that it has t = min{2, n + 1} members. Here we assume

that n ≥ 1; if not, we are in a simpler situation. As always, we use I jk to denote the

members of filtration of RP2
(ωn+1,r+2). We see that there cannot exist a non-zero in-

tertwining map from I20
∼= 1GL(2) ⊗ ωn+1,r to π1 ⊗ ν−1/2 × ν−1/2 ⊗ τ . Also, there

cannot exist a non-zero intertwining map from I22 to π1 ⊗ ν−1/2 × ν−1/2 ⊗ τ (we

examine a cuspidal support of π1). So, there must exist a non-zero intertwining

I21
∼= Ind

S̃p(n+1)×GL(2)×O(Vr)

G̃l(1)×S̃p(n)×GL(1)×GL(1)
(β21Σ

′
1 ⊗ ωn,r) → π1 ⊗ ν−1/2 × ν−1/2 ⊗ τ .

When we examine the last relation more carefully, applying the second Frobenius

reciprocity, we get a non-zero ˜Sp(n + 1)-intertwining between χV,ψν1/2 ⋊ σ and π1,
which is impossible.

We recall our assumption on R eP1
(ωn+1,r+1); the discussion above shows that there

exists a non-zero intertwining from a subrepresentation J11 to χV,ψν1/2⊗σ⊗Π. After

applying the second Frobenius reciprocity, we get Π = π2.
To determine an irreducible quotient Π ′ of Θ(π1, r + 2) we proceed as follows.

Since there exists an epimorphism T from RP1
(ωn+1,r+2) to π1 ⊗ RP1

(Π ′), we study

the filtration of RP1
(ωn+1,r+2); if T|I11

= 0, employing 2nd Frobenius reciprocity as

before, we get that ν−1/2 ⊗π2 ≤ RP1
(Π ′). If T|I11

6= 0, we get that ν1/2 ⊗L(ν1/2; τ ) ≤
RP1

(Π ′).
Now we calculate RP2

(Π ′). The filtration of RP2
(ωn+1,r+2) has three members; easy

analysis shows that there only I21 can have a non-zero intertwining with π1⊗RP2
(Π ′).

If ξ⊗ τ is an irreducible subquotient of RP2
(Π ′) such that the intertwining space (we

relax the notation since it is obvious which are the inducing subgroups in question)

Hom(Ind(β21Σ
′
1 ⊗ ωn,r), π1 ⊗ ξ ⊗ τ )

is non-zero, we get ξ = δ([ν−1/2, ν1/2]).
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Now, the proof will be complete as soon as we establish Lemma 4.5. Namely,

assuming this lemma, we see that, since δ([ν−1/2, ν1/2]) ⊗ τ ≤ RP2
(Π ′), we must

have Π ′ = T1 or Π ′ = T2. This also means that the possibility ν−1/2 ⊗π2 ≤ RP1
(Π ′)

does not occur, since, in any case, Π ′ is tempered. Now, we refer to the first part of

the proof of Lemma 4.6. This first part is valid if Θ(π1, l + 1) 6= 0 and l ≥ r + 1, and

if we put l = r + 1, we immediately get

Π
′ →֒ ν

1
2 ⋊ Θ(σ, r + 1) = ν

1
2 ⋊ L(ν

1
2 ; τ ),

so we see that Π ′ = T2.

To finish the proof of Theorem 4.4, we need some facts about Jacquet modules of

the representation ν1/2 × ν1/2 ⋊ τ .

Lemma 4.5 The representation ν1/2×ν1/2⋊τ is of length four; the irreducible subquo-

tients are T1, T2, L(ν1/2, ν1/2; τ ), L(ν1/2; π2), where T1 and T2 are irreducible tem-

pered subrepresentations of δ([ν−1/2, ν1/2])⋊τ . The representations δ([ν−1/2, ν1/2])⋊
τ and ν1/2 ⋊ L(ν1/2; τ ) have a unique common irreducible subquotient; we denote it by

T2. The multiplicity of δ([ν−1/2, ν1/2]) ⊗ τ in RP2
(ν1/2 × ν1/2 ⋊ τ ) is two, and each

δ([ν−1/2, ν1/2]) ⊗ τ can only come from a Jacquet module of T1 or T2.

Proof In the appropriate Grothendieck group, we have

ν
1
2 × ν− 1

2 ⋊ τ = δ([ν− 1
2 , ν

1
2 ]) ⋊ τ + L(ν

1
2 , ν− 1

2 ) ⋊ τ

= ν
1
2 ⋊ π2 + ν

1
2 ⋊ L(ν

1
2 ; τ ).

The representation δ([ν− 1
2 , ν1/2]) ⋊ τ is of length two (we see that by taking a re-

striction to the appropriate special odd orthogonal group, and having in mind that,

for an irreducible representation π of a full odd orthogonal group O(Vr), π|SO(Vr) is

irreducible). Also, (π⋊τ ′)|SO(Vr+n)
∼= π⋊(τ ′)|SO(Vr), if τ ′ is a representation of O(Vr)

and π of GL(n, F). Then, using Aubert duality ([1]) for SO(Vr+n) and the fact that,

in our case, we have O(Vr+n) = {±1} · SO(Vr+n), we see that L(ν1/2, ν−1/2) ⋊ τ is of

length two; analogously, we see that both ν1/2 ⋊π2 and ν1/2 ⋊L(ν1/2; τ ) are of length

two. Now the Langlands parameters of all the subquotients are easily determined.

We also see that ν1/2 ⋊ π2 and ν1/2 ⋊ L(ν1/2; τ ) must each contain one tempered

subquotient; we denote the former one by T2. Using Tadić’s formula for the Jacquet

modules of the induced representations ([23]), we get

R2(ν1/2 × ν1/2 ⋊ τ ) =

ν1/2 × ν1/2 ⊗ τ + ν−1/2 × ν−1/2 ⊗ τ + 2δ([ν−1/2, ν1/2])⊗ τ + 2L(ν1/2, ν−1/2)⊗ τ .

Since T1, T2 →֒ δ([ν−1/2, ν1/2])⋊τ and T2 →֒ ν1/2⋊L(ν1/2; τ ), the rest of the claims

now follow.

To complete the proof of Theorem 4.4, we prove the following.
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Lemma 4.6 Let π1 be as before. Then Θ(π1, r + 2) 6= 0.

Proof Let l > r be large enough so Θ(π1, l + 1) 6= 0, and the claim (4.2) holds (this

also means l ≥ r + 1). Let Π ′ be an irreducible quotient of Θ(π1, l + 1). A non-zero

˜Sp(n + 1) × O(Vl+1)-intertwining ωn+1,l+1 → χV,ψν1/2 ⋊ σ ⊗ Π ′ gives rise to a non-

zero intertwining R eP1
(ωn+1,l+1) → χV,ψν1/2 ⊗ σ ⊗ Π ′. Again using Kudla’s filtration

of R eP1
(ωn+1,l+1), we see that either there exists a non-zero intertwining χV,ψνml−n ⊗

ωn,l+1 → χV,ψν1/2 ⊗σ⊗Π ′, which is impossible since ml −n > 1
2
, or (this must be a

case) there exists a non-zero intertwining Ind(χV,ψΣ ′
1 ⊗ ωn,l) → χV,ψν1/2 ⊗ σ ⊗Π ′,

which, by the second Frobenius reciprocity, gives an intertwining χV,ψΣ ′
1 ⊗ ωn,l →

χV,ψν1/2 ⊗ σ ⊗ RP1
(Π̌ ′)ˇ. We conclude that ν−1/2 ⋊ Θ(σ, l) → Π ′, i.e., Π ′ →֒ ν

1
2 ⋊

Θ(σ, l). Since σ is cuspidal, we have more precise information on Θ(σ, l), namely

([9]) Θ(σ, l) →֒ νn−ml+1 ⋊ Θ(σ, l− 1). Note that Θ(σ, l− 1) 6= 0. So, if n−ml + 1 /∈
{ 3

2
,− 1

2
}, by Zelevinsky results for general linear groups, we have

Π
′ →֒ ν

1
2 ⋊ Θ(σ, l) →֒ ν

1
2 × νn−ml+1 ⋊ Θ(σ, l − 1) ∼= νn−ml+1 × ν

1
2 ⋊ Θ(σ, l − 1).

This is satisfied if l ≥ r + 2. In that case

RP1
(Θ(π1, l + 1))(νn−ml+1) ≥ RP1

(Π ′)(νn−ml+1) 6= 0,

and, by claim (4.2), we have Θ(π1, l) 6= 0. Moreover, Θ(π1, r + 2) 6= 0.

Remark At this stage, using our approach we were not able to understand more

thoroughly when each of the possibilities in Theorem 4.4(ii) occurs. But, if we as-

sume that the Dichotomy Conjecture holds for π1, we can easily see that, in that case,

the second possibility should occur.

5 Examples

By Theorem 3.5 and Theorem 4.1, we have completely described reducibility of the

representations of the metaplectic group in the generalized rank one case in terms

of reducibility of the related representations of the odd orthogonal group, assuming

that F has characteristic different from 2. Using known facts about reducibility for

the orthogonal groups, we can make this more explicit. We describe some of the

situations which occur in a few examples. In the following examples we use Shahidi’s

results on reducibility and L-functions, so this requires char F = 0.

We use Shahidi’s machinery to calculate the reducibility point for the representa-

tions of SO(Vr) induced from a maximal parabolic subgroup and the generic repre-

sentations of an appropriate Levi factor. To do so, the odd orthogonal tower must

be split, i.e., dim(V0) = 1. In general, if ρ is a self-contagredient irreducible cuspi-

dal representation of GL( j, F) and τ an irreducible, cuspidal, generic representation

of SO(Vr) in the split tower, the Plancherel measure can be expressed in terms of
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L-functions, and we have up to an ε-factor (for example, [20, 21])

(5.1) µ(s, ρ ⊗ τ ) ≈
L(1 + s, ρ × τ )

L(s, ρ × τ )

L(1 − s, ρ × τ )

L(−s, ρ × τ )

L(1 + 2s, ρ, Sym2 ρ j)

L(2s, ρ, Sym2 ρ j)

L(1 − 2s, ρ, Sym2 ρ j)

L(−2s, ρ, Sym2 ρ j)
.

Here Sym2 ρ j is a symmetric square representation of GL( j, C), and τ is always

self-contragredient ([14]). The zeros and poles of the Plancherel measure completely

describe the reducibility point of the representation IndSO(Vr)
P j

(ρνs ⊗ σ).

5.1 The Siegel Case

We recall that we study genuine representations of S̃p(n). Let ω0 denote the non-

trivial character of S̃p(0) ∼= µ2. Assume ρ is a genuine unitarizable cuspidal repre-

sentation of G̃L( j, F), j ≥ 2 with (χ−1
V,ψρ)ˇ ∼= (χ−1

V,ψρ). Then Ind
S̃p( j)
eP j

(ρ ⊗ ω0) is the

Sigel case for our considerations. We have the following proposition.

Proposition 5.1 Assume ρ is a genuine unitarizable suprecuspidal representation of

G̃L( j, F), j ≥ 2 with (χ−1
V,ψρ)ˇ ∼= (χ−1

V,ψρ). The representation

Ind
S̃p( j)
eP j

(ρνs ⊗ ω0), s ∈ R≥0

reduces for s = 0 if L(s, χ−1
V,ψρ, Sym2 ρ j) does not have a pole for s = 0; otherwise, it

reduces for s = 1/2.

Proof By [10, p. 238] we have ωm,0
∼= 1O(Vm) ⊗ ωdim(Vm)

0 . Now, assume that we study

theta correspondence between the representations of the metaplectic groups with the

representations of groups in the split odd orthogonal tower. In this case dim(V0) = 1

and O(V0) ∼= µ2. This means Θ(ω0, 0) = 1O(V0), and by Theorem 3.5, Ind
S̃p( j)
eP j

(ρνs ⊗

ω0) reduces if and only if

π = Ind
O(V j )
P j

(χ−1
V,ψρνs ⊗ 1O(V0))

reduces. Now, we note that π reduces if and only if π|SO(V j ) reduces. Since we are in

the generic case, we can apply (5.1) and the claim readily follows.

Corollary 5.2 We keep the notation of the previous proposition. Let ρ be an irre-

ducible, genuine, cuspidal representation of G̃L( j, F) with χ−1
V,ψρ self-dual.

(i) If j is odd, the representation Ind
S̃p( j)
eP j

(ρνs ⊗ ω0) reduces for s =
1
2
.

(ii) If j = 2, the representation Ind
S̃p( j)
eP j

(ρνs ⊗ ω0) reduces for s =
1
2

if the central

character of χ−1
V,ψρ is non-trivial.
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Proof The first claim follows from Proposition 5.1 and [21, Theorem 6.2]. The sec-

ond claim follows from the fact that L(s, χ−1
V,ψρ,Λ2ρ2) = L(s, ωχ−1

V,ψρ), where ωχ−1
V,ψρ is

a central character of χ−1
V,ψρ. Since we know the precise form of L-function L(s, χ),

where χ is a character, the claim follows.

5.2 Reducibility of Ind
S̃p( j+1)
eP j

(ρ ⊗ π), where π is an Irreducible Cuspidal

Representation of ˜SL(2, F)

In this situation we use the knowledge about the liftings of cuspidal representations of

˜SL(2, F) to various odd orthogonal groups ([24]). We assume that the characteristic

of F is zero.

To simplify the calculation, we assume that if j = 1, then

ρ /∈ {χV,ψν±(mr−1), χV,ψν±(mr−2)},

where mr(π) =
1
2
dim(Vr), and r denotes the first occurence of non-zero lift of π

in a certain odd orthogonal tower. We will fix a quadratic character χV , as in the

introductory section, so that we have attached to it two odd orthogonal towers, one

with dim(V0) = 1 ((+)-tower) and other with dim(V0) = 3 ((−)-tower) ([9, Chap-

ter V]). Since for the cuspidal representations the conservation principle holds ([11])

for a fixed cuspidal representation π of ˜SL(2, F), having in mind our notation we have

2mr(π)+ + 2mr(π)− = 8.

The cuspidal representations of ˜SL(2, F) lift to 2mr(π)+ ∈ {1, 3, 5} (the stable

range!) (precise description of the lifts is rather subtle ([12, 24])). Now assume that

for a cuspidal π we know where it lifts.

The first case:

If 2mr(π)+ = 1 (i.e., r = 0) (for example, if π is an odd part of the Weil rep-

resentation attached to an appropriate additive character of F([9], pp. 89, 90), then

Θ(π, 0)+ = sgnO(V0) (as for an odd Weil representation). The representation

Ind
S̃p( j+1)
eP j

(ρ ⊗ π) reduces if Ind
O(V j )
P j

(χ−1
V,ψρ ⊗ sgnO(V0))

reduces, and this reduces if and only if Ind
SO(V j )
P j

(χ−1
V,ψρ⊗1) reduces, and we are again

in the Siegel case.

The second case:

If 2mr(π)+ = 3, then Θ(π, 1) is a cuspidal representation of O(V1). The represen-

tation Ind
O(V j+1)
P j

(χ−1
V,ψρ⊗Θ(π, 1)) reduces only if its restriction to SO(V j+1) reduces.

Now, we use Θ(π, 1) to denote a restriction of this representation to SO(V1). So, if

we plug τ = Θ(π, 1) into (5.1), we can draw some conclusions, since SO(V1) ∼=
PGL2(F), so that Θ(π, 1) is necessarily generic. The L-function L(s, χ−1

V,ψρ×Θ(π, 1))

is, essentially, an L-function of pairs, and it has a pole for s = 0 only if Θ(π, 1) ∼=
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χ−1
V,ψρ. Then j = 2 and a central character of χ−1

V,ψρ is necessarily trivial. If this iso-

morphism occurs, the reducibility point is s = 1.
If, on the other hand, L(s, χ−1

V,ψρ × Θ(π, 1)) does not have a pole for s = 0

(Θ(π, 1) ≇ χ−1
V,ψρ; this trivially holds if j 6= 2), then Ind

S̃p( j+1)
eP j

(ρ ⊗ π) reduces if

L(s, χ−1
V,ψρ, Sym2 ρ j) does not have a pole for s = 0. Otherwise this representation

reduces for s =
1
2
. Note that in these cases there is no dependency on π.

The third case:

If 2mr(π)+ = 5, then our knowledge on L-functions appearing in (5.1) is lim-

ited. Also, we would like to avoid the discussion of (non)-genericity of Θ(π, 2)+. To

accomplish that, we will try to use the fact that 2m−
r (π) = 3. The vector space V−

0

is a vector subspace of trace-zero quaternions in a non-split quaternion algebra D

over F. The group SO(V0)− is anisotropic and isomorphic to PD∗, and an inner form

of SO(V0) is the split SO(3) (in the usual notation), isomorphic to PGL(2). Now we

want to use Jacquet–Langlands correspondence to relate representations of SO(V0)−

and split SO(3), and to show that we can use this correspondence to calculate the

Plancherel measure µ(s, χ−1
V,ψρ ⊗ Θ(π, 0)−), so that we can calculate the reducibility

point of Ind
SO(V j )

−

P j
(χ−1

V,ψρ ⊗ Θ(π, 0)−).

To relate µ(s, χ−1
V,ψρ ⊗ Θ(π, 0)−) with µ(s, χ−1

V,ψρ ⊗ JL(Θ(π, 0)−)), where

JL((Θ(π, 0)−) denotes a Jacquet–Langlands lift of Θ(π, 0)−, we use (in this non-

Siegel case) an idea of [18] that they use in the Siegel case.

We briefly describe this idea. Let k be a number field such that there exist two

places of k, say v1 and v2, such that kvi
∼= F, i = 1, 2. Let D be a quaternionic algebra

over k such that it splits for every place kv 6= kvi
, i = 1, 2, and D(kvi

) ∼= D. Let G

be an orthogonal group over k, such that G(kv) ∼= SO(2 j + 3)(kv), v /∈ {v1, v2}, is a

split group, and G(kvi
) ∼= SO(V j)(F)−, i = 1, 2.

Let G ′ be an orthogonal group over k, which is an inner form of G, but split at

every place of k. Let M and M ′ be the appropriate Levi subgroups so that M(kvi
) ∼=

GL( j, kvi
) × SO(V0) and M ′(kvi

) ∼= GL( j, kvi
) × SO(3).

Let τ ∼= ⊗τv be an automorphic cuspidal representation of D∗ with the trivial

central character, such that τvi
∼= Θ(π, 0) (thought of as a representation of PD∗ ∼=

SO(V0)−). Then there exists an automorphic cuspidal representation τ ′ ∼= ⊗τ ′
v of

GL(2) such that τ ′
v
∼= τv, v /∈ {v1, v2}, and τ ′

vi

∼= JL(Θ(π, 0)−), i = 1, 2. The

existence of such representations can be checked using [18]. Let σ ∼= ⊗σv be an

automorphic cuspidal representation of GL( j) such that σvi
∼= χ−1

V,ψρ, i = 1, 2.
Now, using the global functional equation for the global intertwining operators

and choosing the appropriate normalizations of the Haar measures on the unipotent

radicals, one can show that on each split place there is a cancellation of local factors

coming from the local intertwining operators; the only thing that remains is

µ(s, χ−1
V,ψρ ⊗ Θ(π, 0)−)2

= µ(s, χ−1
V,ψρ ⊗ JL(Θ(π, 0)−))2.

The positivity on the imaginary axis of the Plancherel measure guarantees that we

actually have an equality of the Plancherel measures above, not only their squares.
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Now, we can calculate the poles and zeroes of the Plancherel measure on the right

side above in terms of L-functions, since JL(Θ(π, 0)−) is a generic square-integrable

representation of GL(2, F) (with the trivial central character). We have two situations

to consider:

(i) if Θ(π, 0)− is not one-dimensional, JL(Θ(π, 0)−) is a cuspidal generic repre-

sentation of the split SO(3), and we are in the previous case;

(ii) if Θ(π, 0)− is a character of D∗ trivial on F∗, then it is given by χ◦ν, where ν is a

reduced norm on D∗, and χ is a quadratic character of F∗, and JL(Θ(π, 0)−) ∼=
χStGL(2,F) →֒ χν1/2 × χν−1/2.

Here StGL(2,F) denotes the Steinberg representation of GL(2, F). Then, relation (5.1)

still holds, but we use the multiplicativity of the γ-factors to simplify the L-functions

involved. We use

γ(s, χ−1
V,ψρ × χStGL(2,F), ψ) = γ(s, χ−1

V,ψρ × χν1/2, ψ) × γ(s, χ−1
V,ψρ × χν−1/2, ψ).

If χ−1
V,ψρ 6= χ, the reducibility only depends on the poles of L(s, χ−1

V,ψρ, Sym2 ρ j)

and can be described in the same way as in the previous case.

We excluded the case χ−1
V,ψρ = χ = 1 in the beginning. We now only have to

consider the case χ−1
V,ψρ = χ 6= 1. In this case, the non-negative reducibility point

is 3
2
.
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