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Abstract

The most fundamental emotional systems that show trait control are evolutionarily old and
extensively conserved. Psychology in general has benefited from non-human neuroscience
and from the analytical simplicity of behaviour in those with simpler nervous systems. It
has been argued that integration between personality, psychopathology, and neuroscience is
particularly promising if we are to understand the neurobiology of human experience. Here,
we provide some general arguments for a non-human approach being at least as productive
in relation to personality, psychopathology, and their interface. Some early personality theories
were directly linked to psychopathology (e.g., Eysenck, Panksepp, and Cloninger). They shared
a common interest in brain systems that naturally led to the use of non-human data; behav-
ioural, neural, and pharmacological. In Eysenck’s case, this also led to the selective breeding, at
the Maudsley Institute, of emotionally reactive and non-reactive strains of rat as models of trait
neuroticism or trait emotionality. Dimensional personality research and categorical approaches
to clinical disorder then drifted apart from each other, from neuropsychology, and from non-
human data. Recently, the conceptualizations of both healthy personality and psychopathology
have moved towards a common hierarchical trait perspective. Indeed, the proposed two sets of
trait dimensions appear similar and may even be eventually the same. We provide, here, an
introduction to this special issue of Personality Neuroscience, where the authors provide over-
views of detailed areas where non-human data inform human personality and its psychopathol-
ogy or provide explicit models for translation to human neuroscience. Once all the papers in the
issue have appeared, we will also provide a concluding summary of them.

This paper provides background for focussed reviews that will make up a Special Issue, Non-
human contributions to personality neuroscience - from fish through primates. It also invites pre-
submission enquiries.!

The Special Issue aims to make clear: (1) that non-human work of all types allows compar-
ative analysis (from fish through primates) important for theories of personality in general and
personality neuroscience in particular; (2) how strain derivation and neural manipulations gen-
erate non-human results that inform traits, particularly those of interest in human psychopa-
thology (where Eysenck’s 3-factor model is still held in high regard, albeit with a need to rename
his factors); (3) that observational non-human work, particularly in primates, can link to and
inform the Big 5, HEXACO, etc; (4) that the different forms of non-human work can be nat-
urally linked through study of the conserved brain systems involved - and so provide a basis for
the integration of current hierarchical trait models of psychopathology (e.g., MMPI and HiTOP)
with hierarchical trait models of healthy personality; (5) that, particularly between species, neu-
ral variation can help us link personality to brain systems. In sum, the Special Issue aims to show
that, because of phylogenetic conservation of fundamental traits, even organisms as simple as
fish can provide an architectural bedrock on which we can progressively build our understand-
ing of the more elaborate superstructures on which personality depends in more complex
organisms.

We believe that direct contact with neurobiology, both for derivation of measures and their
validation (see Section 6), is crucial for more mechanistic, explanatory, theory in personality
research. “Personality is an abstraction used to explain consistency and coherency in an
individual’s pattern of affects, cognitions, desires and behaviors. ... The task of the personality
researcher is to identify the consistencies and differences within and between individuals ...
and ... to explain them” (Revelle, 2007, p. 37, our emphasis). Where the explanation is neural,
all current theories must align with a single set of known neuropsychological facts — with the
brain (and phylogenetically conserved functions) providing a Rosetta stone to translate between

1Guidelines and a style example can be obtained by emailing the authors of this introduction - to whom a title and brief
abstract should then be sent as a presubmission enquiry in order to receive a formal invitation for submission.
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the theoretical systems. Neurobiology should help us unite the Big-
5, HiTOP, and Eysenck/Gray/RST approaches. Since these
approaches originate in different top-down and bottom-up per-
spectives, integrating them across all the different motivational
brain networks and levels of explanation should hit home in the
heartlands of mainstream personality psychology. But first, we
provide some background to this approach.

1. Darwin and the conservation of emotions

“On the Origin of Species by Means of Natural Selection” (Darwin,
1859) focused on non-human animals and plants to reduce
opposition. It, nonetheless, implied that humans had been subject
to natural selection. Ten years later, “The Descent of Man” and
“Expression of the emotions in man and animals” (Darwin,
1871, 1872) treated humans as just another animal - with evolved,
often phylogenetically conserved, emotions as well as morphology.

Based on his observation of facial expressions in humans,
Darwin identified a few core emotions (e.g., happiness, sadness,
fear, and surprise) that would have common features across cul-
tures (Snyder, Kaufman, Harrison, & Maruff, 2010) and be based
on emotional systems that are evolutionarily old and largely con-
served. The importance of facial expressions for social communi-
cation in primates (Altschul, Robinson, Coleman, Capitanio, &
Wilson, 2019; Wilson et al., 2020) is consistent with Darwin’s origi-
nal hypothesis.

“Emotion” clearly encompasses states of affect, behaviour, cog-
nition, and desire that sustain life using fundamental “survival cir-
cuits” (Ekman, 1992; Ledoux, 2012). However, “What is an
emotion?” (James, 1884) is still answered in different ways by dif-
ferent people, and we have argued (McNaughton, 1989) that an
emotion is most easily characterized by the “goals” (“teleonomy”,
Pittendrigh, 1958) of its phylogenetic history.

If a change in state is adaptive, trait sensitivity must also depend
on adaptive value (Blanchard & Blanchard, 1989). The long-term
trait control of emotions and its linkage to neurological and psy-
chiatric illness (Greene et al., 2020; McNaughton, 2020) make non-
human models of emotional behaviour a valuable platform to
study the conserved fundamental states and traits contributing
to human emotions. According to Darwin, comparative work is
less “liable to confound conventional or artificial gestures and
expressions with those which are innate or universal” (Darwin,
1872, p. 50).

2. Conservation of brain systems

If trait patterns of emotion-related behaviour are conserved, so
must be their brain mechanisms, which will be central to under-
standing the neural basis of personality. Subcortical structures
are the primary responders to, and organisers of, responses to emo-
tionally relevant stimuli (Barrett, 2017; Ledoux, 1991, 1996; Lopes
da Silva, Witter, Boeijinga, & Lohman, 1990; MacLean, 1949,
1952). Thus, the subcortex is where we must first look for the
long-term sensitivities that underlie personality; it is also impor-
tant for cognition (Janacsek et al., 2022).

The periaqueductal grey (PAG) is the lowest level of the inte-
grated control of emotions and has highly conserved structure
and gene and protein expression across vertebrates (O’Connell
& Hofmann, 2012). The PAG, hypothalamus, and amygdala are
inter-connected in ancient systems that provide the most basic
organised control of responses directed to appetitive and aversive
goals, and to conflicts between appetite and aversion — with each of
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Figure 1. The organization of goal control within the PAG/DR and in relation to hier-
archically organized afferents. From Silva and McNaughton (2019) with permission.

these 3 types of process controlled by a different part of the PAG
(Figure 1). Posterior/dorsal PAG organises basic aversion, ante-
rior/lateral PAG organises appetite and courtship (Comoli,
Ribeiro-Barbosa, & Canteras, 2003; Kyuhou & Gemba, 1998;
Mota-Ortiz, Sukikara, Felicio, & Canteras, 2009); and dorsolateral
PAG and dorsal raphe organise responses to conflict between pos-
itive and negative goals (Figure 1). Separate PAG areas control
active versus passive coping strategies (Keay & Bandler, 2015).

From PAG, through hypothalamus, to amygdala, neural control
is well conserved relative to basal vertebrates. The PAG also
receives descending input from the habenula, which is essentially
unchanged from the lamprey through vertebrates (Loonen &
Ivanova, 2015, 2016), despite involvement in many higher order
processes (Hones & Mizumori, 2022; Loonen & Ivanova, 2019;
Rolls, 2017). Further, “the habenula ... plays an essential role
in regulating the intensity of reward-seeking and adversity-avoid-
ing behavior ... by regulating the activity of ascending midbrain
monoaminergic tracts” (Loonen & Ivanova, 2019, p. 233), which
are also highly conserved with their diffuse collateral projections
retained as the telencephalon expands. In zebrafish, responses to
predictive and factual threats involve brain structures that, despite
inverted morphology,? control the same responses as in humans.
These zebrafish reactions can be linked to anxiety (Mathuru &
Jesuthasan, 2013). Likewise, the zebrafish can be used as a
“reduced” model of a range of human emotional and cognitive dis-
orders (de Abreu et al.,, 2020; Fontana et al., 2019; Gerlai, 2020;
Soares, Gerlai & Maximino, 2018) .

PAG is a key structure for emotion generation. Even after hypo-
thalamic and amygdala lesions, electrical stimulation of posterior/
dorsal PAG in rats elicits escape reactions in the absence of external
threat (de Molina & Hunsperger, 1962; Schreiner & Kling, 1953) -
producing panic-like responses (Ballesteros, de Oliveira Galvao,
Maisonette, & Landeira-Fernandez, 2014). This panic response
to PAG stimulation is conserved in humans (Del-Ben & Graeff,
2009) and, similarly, depressed patients show irregular PAG func-
tional connectivity (Truini et al., 2016).

PAG remains involved with more complex emotions. In
healthy humans, social rejection increases activity in the dorsal
anterior cingulate, amygdala, and PAG (Eisenberger, Gable, &
Lieberman, 2007). In this hierarchy, higher levels control response
production by interacting with the lower (Figure 1). Clearly, the
PAG is where we should look for a neural sensitivity that gives rise

2Fish dorsal telencephalon is considered a homologue of the mammalian amygdala
(Jesuthasan, 2012; Lal et al., 2018; Yamaguchi, Danjo, Pastan, Hikida, & Nakanishi,
2013).
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to a panic-prone facet of personality or for basic panic psychopa-
thology (that would couple with neuroticism to deliver panic
disorder).

Above the PAG are the hypothalamus (archetypally associated
with detailed motivational control), and the amygdala (Figure 1).
The amygdala is complex, spans the subcortex and cortex, and is
critical for the control of arousal with all motivations (Murray,
2007). Roughly one third of its neurons respond selectively to
motivationally relevant stimuli in primates (Fuster & Uyeda,
1971). In all mammals, cortex and subcortex send positive and neg-
ative valence signals that the amygdala integrates to elicit adaptive
behaviours via downstream targets (Correia & Goosens, 2016;
McDonald, 1998; Smith & Torregrossa, 2021; Stefanacci &
Amaral, 2002). Disruption in valence encoding is linked to the
development of mood disorders in non-human models (Perusini &
Fanselow, 2015) and humans (Brock, Harp, & Neta, 2022;
Sequeira, Forbes, Hanson, & Silk, 2022).

In sum, fundamental aspects of emotional traits and of psycho-
pathology are controlled in humans by conserved systems includ-
ing diffuse ascending components that terminate throughout the
neocortex (Dubois, Galdi, Han, Paul, & Adolphs, 2018; Dubois
etal,, 2020). This allows non-humans, from fish through primates,
to provide meaningful models (with true homologies) of the core
emotion production systems through which the complex sensory
filters of more recently evolved cortical systems (Falcone et al.,
2020; Miller, Hof, Sherwood, & Hopkins, 2021) change affect,
behaviour, cognition, and desire. Both between and within species,
trait aspects of these systems depend on genes and their interaction
with the developmental environment of the organism. Here, in
particular, non-human models are useful.

3. Genes, environment, and personality

Genes are a scaffold that constrains the external factors that mould
emotion-processing circuits and so shape personality and psycho-
pathology. Parental socioeconomic status, parenting practices,
peer relationships, romantic relationships, and work experiences
all affect personality traits (Ayoub & Roberts, 2017) and their sta-
bility into adulthood (Hopwood et al., 2011; Roberts &
DelVecchio, 2000). Early-life adversity is a strong determinant
of maladaptive personality in adults (de Carvalho et al., 2015;
Perna, Vanni, Di Chiaro, Cavedini, & Caldirola, 2014;
Rademaker, Vermetten, Geuze, Muilwijk, & Kleber, 2008;
Schouw, Verkes, Schene & Schellekens, 2020). These trait effects
depend on physiological alterations that include epigenetic modula-
tion (Alshaya, 2022), HPA axis dysfunctionality (Lopez et al., 2021),
and interruption of normal brain development (Marshall, Fox, &
Group, 2004). Neither such environmental effects, related genes,
nor their interaction can be thoroughly studied experimentally in
humans. Here, non-human models are an important tool.

For example, chronic stress is thought to interact with genes to
generate mood disorders in humans. “Carioca” rats, selectively
bred to have high or low inherent anxiety responses allow us to
assess the direction of the stress-anxiety association. Chronic
unpredictable mild stress during development produces a greater
increase in later reactions to threat in the high responding rats than
in the low (Lages et al., 2021).

Environmental effects can also be studied in depth. For exam-
ple, maternal separation in rodents and primates produces effects
homologous to separation in humans. Macaques show that social
factors are important (Kaufman & Rosenblum, 1969). Pigtail mac-
aques live in small groups and their infants show strong separation
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reactions, easily characterised as grief and severe depression.
Bonnet macaques cluster in larger groups and their infants’ sepa-
ration reaction, rather than strong distress, is to interact with other
adults, generating solicitous behaviours including adoption.
Rodents show that early adversity leads later in life to anxiety-like
behaviours and increased stress responsiveness (Hegde & Mitra,
2020) in a sex- and age-dependent manner (Réus et al., 2021;
Zanta, Suchecki, & Girardi, 2021) that can be enhanced by acute
stress (Zanta et al., 2021) and ameliorated by an enriched environ-
ment (Réus et al., 2021).

Importantly for personality neuroscience, the amygdala, hippo-
campus, and endocrine system are substrates of these responses to
early adversity (Ellis & Honeycutt, 2021; Qin et al., 2021) with similar
brain changes apparent in humans (Pollok et al., 2022). The compari-
son of strain selection and environmental experiments in non-
humans with confirmatory, albeit correlational, human imaging is
a powerful solution to the problems facing each approach separately.

4. Cognition and personality

But what of more complex cognitive processes? While subcortex is
substantially conserved between basal insectivores and humans,
and archicortex (hippocampus) retains its basic structure and
expands only moderately (X4), neocortex is greatly expanded
(x150) and elaborated (Stephan & Andy, 1969). How far can
rodent neocortex (and traits it controls) be seen as homologous
to human?

The cortical elaboration of basic emotional traits operates to
some extent through, and retains much of, primordial emotion
control (the expansion of isocortex is functionally peripheral, with
older allocortex in the deeper functional zones). Phylogeny layers
fine-grain facet detail onto this primordium; elaborating species-
specific expression of the same fundamental phenomena.
Different triggers (via different sensory modalities and schemae)
support innate simple phobias: the mouse fears the (smell of
the) rat; the rat fears the (smell of the) cat; the human fears the
(number of legs of the) spider. There are also species-specific
responses (rats do not spray predators; while skunks do so with
glands, and humans with cans of insecticide) but these trigger
and effector differences are superficial. Prefrontal and cingulate
cortex simply add the capacity for more complex, e.g., social,
stimuli to generate clinically problematic panic that is nonetheless
primitive. The fundamental internal reactions and control are
much the same across all these species; with panicolytic drugs hav-
ing the same functional effect, including with human social anxiety
and obsessive-compulsive disorder (De Oliveira Sergio et al., 2020;
Piccinelli, Pini, Bellantuono, & Wilkinson, 1995).

But when reflexive survival circuits or habitual reactions are
insufficient to maintain goal-directed behaviour, they must
be stopped, and more complex prefrontal control put in their place.
For example, anterior cingulate cortex overcomes reflexive
action generation and allocation of attention via processes that
can be measured in simple behavioural tasks such as the
stop-signal (SST), go/no-go, Stroop, and Eriksen flanker
(Shackman et al., 2011). The SST is the simplest, designed to
assess pure stopping (Logan, Cowan, & Davis, 1984). This sim-
ple “ability to suppress unwanted or inappropriate actions and
impulses (‘response inhibition’) is a crucial component of flex-
ible and goal-directed behavior ... Its derailment is considered
integral to numerous neurological and psychiatric disorders,
and more generally, to a wide range of behavioral and health
problems.” (Verbruggen et al., 2019, p. 2 ... p. 1).
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The neural basis of stopping is well studied and involves, in par-
ticular, the right inferior frontal gyrus in humans — homologous to
the orbital frontal area in rats (Aron, Robbins, & Poldrack, 2014).
Interestingly, in humans in the SST, a distinct goal-conflict-related
right frontal activation (Shadli, Glue, McIntosh, & McNaughton,
2015; Shadli et al., 2020) is a biomarker for anxiety disorder
(Shadli et al., 2021) and is inversely linked to Attention Deficit
Hyperactivity Disorder (ADHD; Sadeghi et al., 2018). In rats in
the SST (a case of inverse translation), the same goal conflict acti-
vation involves homologous circuitry including the orbital frontal
area, hippocampus, and subthalamus (Banstola, Young, Parr-
Brownlie, & McNaughton, 2022). Thus, in stimulus terms, why
a human chooses to stop differs across occasions and may differ
from why a rat does; but how rats and humans stop appears to
be the same; and stop-go conflict engages homologous parallel cir-
cuits that are involved in trait psychopathologies that are occasion-
general.

Likewise, rat models of ADHD (with attentional and inhibition
deficits across multiple tests) have elucidated dopaminergic and nor-
adrenergic mechanisms (Bayless, Perez, & Daniel, 2015; Li et al,, 2021;
Russell, Allie, & Wiggins, 2000; Sable et al., 2021). Comparison of two
such models (the Spontaneously Hypertensive rat and the New
Zealand Genetically Hypertensive rat) in a modified child delayed
reinforcement “marshmallow” test allowed a nuanced test of
the likely control of immediate reinforcement in ADHD
(Sutherland et al., 2009).

Cortical involvement is not all top-down. Emotions impact cog-
nitive control. Emotional stimuli disrupt inhibition in humans
(Kalanthroff, Cohen, & Henik, 2013; Pessoa, Padmala, Kenzer,
& Bauer, 2012) and non-humans (Kambali, Anshu, Kutty,
Muddashetty, & Laxmi, 2019; Klein et al., 2014; Weimar et al,,
2020) and disrupt working memory (Bishop, 2007; Bishop &
Forster, 2013; Etkin, 2012; Etkin, Gyurak, & O'Hara, 2013;
Okon-Singer et al., 2014; van Ast et al., 2016). Emotionally relevant
distractors impact task performance via (1) increased activity of
ventral brain structures associated with emotional processing, such
as the amygdala and ventral prefrontal cortex and (2) decreased
activity of dorsal regions involved with executive processing, such
as the dorsolateral prefrontal cortex and lateral parietal cortex
(Iordan, Dolcos, & Dolcos, 2013). Emotional recovery, neuroti-
cism, and chronic stress are intermingled and associated with dis-
ruption in these systems (Blackford, Avery, Shelton, & Zald, 2009;
Lapate et al., 2014; Schuyler et al., 2014).

Again, non-human translational models are available. For
example, Yee, Leng, Shenhav and Braver (2022) showed how the
manipulation of reward and punishment in different rodent mod-
els of conditioning tasks may demonstrate whether the presence of
the aversive stimulus strengthens or weakens behaviour. Similar
tasks in primates confirmed the importance of different regions
of the frontal, parietal, and cingulate cortex (Amemori,
Amemori, & Graybiel, 2015, Amemori & Graybiel, 2012;
Leathers & Olson, 2012) in emotional-motivated decision making
(Roesch & Olson, 2004).

Despite all these homologies, there are likely to be some who
question the idea of non-human cognition, in and of itself. We
have argued against the

“claim that emotion and personality, nonetheless, remain distinct from the
rest of biology; that with them it is still the case that ‘the only proper study of
mankind is man’ ... [with] the role of ‘pure cognition’ as so central to
human psychology as to make biology irrelevant, or at least a second-best
level of analysis. We suspect that [a range of essentially
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anthropocentric] fallacies underlie the separation of biological and cognitive
constructs in psychology in general and personality psychology in particular.
... The [counter] arguments adhere to two fundamental beliefs in biology:
the continuity of species implied by Darwinian evolution; and the mapping of
mind to brain as different levels of description of the same fundamental
entity. Mind is not here identical to brain. It is a property of brain processes.
... The human species is, of course, unique. ... But no character sets us
apart from other animals in a way that other characters do not set each spe-
cies apart from all others.” (McNaughton & Corr, 2008, pp. 95-101)

There are strong reasons, here, to reject radical behaviourism, pri-
mary anthropocentrism, cognitive anthropocentrism; and the
ideas that cognitions are: language-dependent; emotionally neu-
tral; unconstrained; hardware-free; silent; and seated in the cortex
(McNaughton & Corr, 2008).

5. Personality and psychopathology

Latzman, Krueger, DeYoung and Michelini (2021) describe dis-
tinct approaches to personality and psychopathology.
Personality is viewed dimensionally; but psychopathology is often
viewed categorically. However, critical limitations exist in the cat-
egorical models of psychopathology (Cuthbert, 2015; Krueger
et al., 2018). Instead, empirical evidence favours continuous/
dimensional perspectives, such as the MMPI/Minnesota
Multiphasic Personality Inventory (Ben-Porath & Tellegen,
2008/2011). “The MMPI has evolved from an innovation that
was developed via state-of-the-art procedures in the 1930s into
the current MMPI-2-RF that is psychometrically up to date and
aligns well with contemporary models of psychopathology. ...
The MMPI-2-RF substantive scales operationalize psychological
constructs that are dimensional and transdiagnostic in nature.
The MMPI-2-RF scales map onto the promising HITOP model,
which represents a recent, comprehensive effort to organize
psychopathology in a hierarchical and dimensional manner”
(Sellbom, 2019, p. 169-170). HiTOP/The Hierarchical
Taxonomy of Psychopathology initiative “constructs psycho-
pathological syndromes and their components/subtypes based
on the observed covariation of symptoms, [and] combines co-
occurring syndromes into spectra, thereby mapping out comorbid-
ity” (Kotov et al., 2017, 2021). Thus, “quantitatively derived, inte-
grative models of personality—psychopathology represent a
particularly promising conduit for advancing our understanding
of the neurobiological foundation of human experience, both func-
tional and dysfunctional” (Latzman et al,, 2021, p. 1).

According to Widiger (2011), the relationship of personality
and psychopathology can be approached in three different ways:
(1) personality and psychopathology can influence the presenta-
tion or appearance of one another; (2) they can share a common,
underlying aetiology; or (3) they can have a causal role in the devel-
opment or aetiology of one another. Empirical evidence in support
of the first approach shows, for example, the presence of person-
ality traits of perfectionism and compulsivity in persons with ano-
rexia and impulsivity in those with bulimic symptomatology
(Cassin & von Ranson, 2005). On the other hand, while persons
high in neuroticism will respond to stress with clinically significant
levels of depression, this following depression would lead the
patients to provide a distorted description of their usual way of
thinking, feeling, behaving, and relating to others, i.e., dimensions
of personality (Gunderson et al., 2003). This change in self-report
following a mood disorder can be argued to pose as an actual
change in personality (Costa, Bagby, Herbst, & McCrae, 2005;
Widiger, 2011).
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The difficulty of isolating or manipulating the relevant variables
in human studies limits understanding of the relationship between
personality and psychopathology. Non-human models, then, pro-
vide a tool for the analysis of the various genetic, environmental, or
pharmacological influences underlying the behavioural expression
and physiological functions homologous in non-humans and
humans (Kumar, Bhat, & Kumar, 2013). Based on face, predictive,
and construct validities, these models have contributed to elucidat-
ing different aspects of various psychiatric disorders, such as anxi-
ety, depression, and PTSD (Abelaira, Réus, & Quevedo, 2013;
Buenhombre, Daza-Cardona, Sousa, & Gouveia, 2021; Campos,
Fogaga, Aguiar, & Guimarées, 2013; Dunsmoor, Cisler, Fonzo,
Creech, & Nemeroff, 2022; Gomes Vitor de Castro et al., 2013),
autism (Chadman, 2017; Varghese et al., 2017), compulsive eating
(Di Segni, Patrono, Patella, Puglisi-Allegra, & Ventura, 2014;
Turton, Chami, & Treasure, 2017), and schizophrenia (Jones,
Watson, & Fone, 2011; Winship et al., 2018).

6. Conclusions

In sum, there is good reason to see non-human models as provid-
ing a range of “reduced” examples of the fundamental neural con-
trol of emotional (and other psychological) traits. Importantly,
these fundamental systems are highly conserved functionally
and neurally; with neocortical expansion simply adding superficial
complexity to their trigger stimuli and effector outputs. Selection of
non-human strains provides an experimental means to answer
questions about genes, environment, and their interactions in
shaping personality. Non-human models also clearly apply to cog-
nitive as well as emotional traits provided care is taken to deter-
mine the relevant neural and behavioural homologies. Finally, in
an era where personality and psychopathology are moving to a
common integration, non-human models (particularly of psychi-
atric disorders) provide a means of mapping out the neural bed-
rock that must be common to both healthy and disordered
personality.

We hope this Special Issue will help convince those who con-
struct human personality questionnaires to look to non-human
work (particularly neuroscience) as a basis for both construction
and validation. There will also always be those who think that their
non-human studies cannot, even should not, be used to develop
human personality questionnaires. But our main goal is human
personality psychology! This raises the issue of how we translate
between animal experimental studies and human personality
questionnaires.

Such translation is not a new idea. For example, Eysenck’s early
human work led to development of the Maudsley rat strains as a
model of emotionality or neuroticism (Blizard & Adams, 2002). In
the reverse direction, non-human work, via the idea of a
Conceptual Nervous System (Gray, 1972a; Hebb, 1955), provided
the impetus for the Reinforcement Sensitivity Theory of
Personality (Corr, 2008; Gray, 1972b).

But we suggest that such translational work can be deeper. Only
a partial connection with non-human and neural bedrock was
made, primarily at the scale-construction stage, in development
of RST scales (Carver & White, 1994; Wilson, Barrett, & Gray,
1989; Wilson, Gray, & Barrett, 1990), Affective Neuroscience
Personality Scales (Davis & Panksepp, 2018; Davis, Panksepp, &
Normansell, 2003; Montag, Elhai, & Davis, 2021), and the
Tridimensional Personality Questionnaire (Cloninger, 1987;
Cloninger, Przybeck, & Svrakic, 1991). These scales used funda-
mental neurobiology for the theoretical model stage of scale
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development but used conventional item pool generation and
structural validation (Clark & Watson, 2019) to generate linguis-
tically complex items. In some cases, this led to malleable con-
structs — PANIC in one version of the Affective Neuroscience
Personality Scales was later changed to SADNESS on purely
semantic grounds (Davis et al., 2003). However, such question-
naires (derived from and interpreted through non-human data)
have seldom been directly validated against homologous behaviou-
ral or neural measures to those of the original base theories.

With modern developments in genetics, imaging, and transla-
tional biomarker development (Shadli et al., 2021), there is now
scope for deeper connections to be made and for questionnaire
constructs to be validated via neurobiology. Tests using virtual
worlds with real-world consequences can link human trait mea-
sures to essentially the same behaviours as those measured in
non-human tests (Bach et al,, 2014; Fung, Qi, Hassabis, Daw, &
Mobbs, 2019; Korn & Bach, 2019). Importantly, imaging in these
virtual world human tests demonstrates essentially the same neural
architecture as detailed in a mass of previous non-human work
(McNaughton, 2019). We expect the papers in this Special Issue
to open up many such avenues, with traffic flowing in both
directions.
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