
J. Fluid Mech. (2021), vol. 916, F1, doi:10.1017/jfm.2021.175

Lagrangian turbulence in the woods
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A recent statistical analysis, proposed by Shnapp (J. Fluid Mech., vol. 913, 2021, R2),
of Lagrangian velocity measurements in a wind tunnel in the presence of a canopy
(a forest or urban morphology), using three-dimensional particle tracking velocimetry
(Shnapp et al., Sci. Rep., vol. 9, issue 1, 2019, pp. 1–13), is a great read. In this strongly
anisotropic situation, despite the additional roughness induced by the canopy, it is shown
that fluctuations of Lagrangian velocity increments over small time scales display very
similar behaviour as those observed in homogeneous and isotropic turbulent flows. This
is all the more true when focussing on the non-Gaussian and intermittent nature of these
fluctuations. At much larger time scales, of the order and greater than the characteristic
turnover time scale of the flow, anisotropies implied by the presence of the canopy are
quantified using averages of the fluctuating kinetic energy conditioned upon the direction
of Lagrangian velocity with respect to the mean Eulerian flow. Shnapp (2021) evidences
that, indeed, the canopy modifies the velocity along the trajectories at large scales, in
particular its variance, but leaves unchanged its local regularity, as it is pinpointed by the
power-law exponents of the structure functions.
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1. Introduction

The Lagrangian investigation of laboratory and numerical turbulent flows has been
intensively developed over the last thirty years, as reviewed in Yeung (2002), Toschi
& Bodenschatz (2009) and Pinton & Sawford (2012), following an intense and vast
effort aimed at characterizing with precision the statistical behaviour of the Eulerian
velocity field (Frisch 1995). Following velocity along the path of fluid particles is not only
important from a fundamental point of view (Monin & Yaglom 1971; Tennekes & Lumley
1972), it is also an appropriate way to describe the mixing and dispersion properties of
emitted tracers in geophysical situations (LaCasce 2008).

Fluctuations of velocity along trajectories were initially observed in direct numerical
simulations (DNSs) of the Navier–Stokes equations in controlled situations aimed at
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investigating some aspects of homogeneous and isotropic turbulence (Yeung & Pope 1989;
Chevillard et al. 2003; Biferale et al. 2004; Bentkamp, Lalescu & Wilczek 2019), and soon
after in von Kármán swirling flows (Voth, Satyanarayan & Bodenschatz 1998; Mordant
et al. 2001). Despite the artificial nature of the boundary conditions of DNSs, and the
strong anisotropy of the experimental realisation of such flows driven by propellers, a
remarkable agreement was observed in the statistical properties of the Lagrangian velocity
in both situations (Arneodo et al. 2008). The Johns Hopkins Turbulence Database (Yu
et al. 2012) could, for instance, be used to further confirm the picture which follows.

We recall in a few words some of the key ingredients of the phenomenology of
homogeneous and isotropic turbulence in the Lagrangian framework, as reviewed by
Chevillard et al. (2012). Using the notation of Shnapp (2021), the statistical and multiscale
nature of a Lagrangian velocity component vi(t), with i ∈ {1, 2, 3}, is well captured by the
following probabilistic ansatz:

�τvi = B
(

τ

TL

)
�TLvi, (1.1)

where the velocity increment �τvi(t) = vi(t + τ) − v(t) is introduced. Equation (1.1)
relates an equality in probability law between the random variable �τvi, made up of the
instances of the increments along the trajectories at a given time scale τ , and its instances
�TLvi, at the large integral time scale of the flow TL at which velocity decorrelates,
weighted by a random scale-dependent multiplier B. At large scales τ � TL, B tends
to the deterministic value 1, meaning that the increment is statistically equal to �TLvi,
usually taken to be a Gaussian random variable of zero average and of variance 2〈v2

i 〉, as
dictated by observations. In the inertial range τη � τ � TL, where τη is the Kolmogorov
dissipative time scale, B fluctuates in the same way as (τ/TL)h, the randomness being
encoded in the exponent h. Dimensional arguments, mostly based on the irrelevance of
viscosity at these scales (Tennekes & Lumley 1972), suggest that 〈h〉 ≈ 1/2, at any scale
τ . Using the language of the multifractal formalism (Frisch 1995), in this statistically
averaged sense, we can say that the Lagrangian velocity shares the same local regularity
as that of the Brownian motion. Further analyses of experimental and numerical data
(Chevillard et al. 2003; Arneodo et al. 2008) indicate that, indeed, h fluctuates around
its mean value, independently of both the Reynolds number and the geometry of the flow,
which is known as intermittency. The level of Lagrangian intermittency is observed in the
right proportion compared to that measured in the Eulerian framework, consistently with
the elegant theory of Borgas (1993).

2. Overview

Much more could be said on the statistical behaviour of the multiplier B entering in (1.1),
in particular on the rich and predictive physics that has been developed to include the
differential action of viscosity at small scales τ � τη, where fluctuations of the velocity
increment are similar to those of acceleration. Let us keep in mind that this ansatz is well
posed and closed from a probabilistic point of view if we furthermore assume that h and
�TLvi are statistically independent. It is then possible to derive explicit predictions for the
probability density function (p.d.f.) of �τvi and its moments (i.e. the structure functions),
at any scale τ , for a given Reynolds number and a prescribed level of intermittency.

The novelty of the analysis of Shnapp (2021) is to show that this aforementioned
Lagrangian phenomenology, initially designed for isotropic turbulent flows, gives a fair
account of the fluctuations of velocity along the trajectories obtained in his wind tunnel
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(Shnapp et al. 2019). Despite the presence of a strong mean flow, and a model canopy laid
out on the bottom of the tunnel, Shnapp (2021) evidences that the subset of particles flying
just above this rough surface exhibits a statistical behaviour in quantitative agreement
with the theoretical predictions for the velocity increment p.d.f.s and moments obtained
within this formalism, with furthermore the same level of intermittency. Noticing that the
characteristic height of the canopy is of the order of U∞TL, where U∞ is the wind mean
velocity, this important observation further illustrates that Lagrangian fluctuations at small
scales are universal and decoupled from the large scale flow. Nonetheless, signatures of
the anisotropic nature of the canopy are evidenced when comparing the variance and
correlation time scales of the different components vi, which impact �TLvi, changing
weakly the distribution of B, similarly to what was observed by Ouellette et al. (2006)
and Huck, Machicoane & Volk (2019).

To characterize more precisely the anisotropic nature of the large scale flow from a
Lagrangian perspective, Shnapp (2021) decomposes the set of the trajectories according
to four quadrants which represent different directions of Lagrangian velocity with respect
to the mean Eulerian flow. This original method of classification allows him to analyse the
distribution of kinetic energy depending of the amplitude of the streamwise component,
and makes some connections with the fluctuating nature of the drag induced by the canopy.

3. Future

The results of Shnapp (2021) remarkably show that Lagrangian tracking experiments
are an original and fertile characterization of realistic turbulent flows, such as wind
tunnels (Ayyalasomayajula et al. 2006; Shnapp et al. 2019), jets (Poulain et al. 2004;
Viggiano et al. 2021) and channel flows (Stelzenmuller et al. 2017). These newly developed
techniques shed new light on Eulerian measurements and simulations of modelled
canopies (Bai, Katz & Meneveau 2015; Glick et al. 2020), and their consequences for
the intermittency phenomenon (Katul et al. 2006; Dupont et al. 2020).

From a theoretical perspective, the Lagrangian framework naturally calls for the
stochastic modelling of the trajectories using random walks, as they were developed for
isotropic flows (Sawford 1991; Pope 2002; Viggiano et al. 2020). In the spirit of recent
propositions made by Innocenti et al. (2020) and Shnapp et al. (2020), generalizing these
approaches to anisotropic situations sounds like a fantastic perspective.

Declaration of interests. The author reports no conflict of interest.
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