AN ADDENDUM TO IDEALS AND HIGHER DERIVATIONS IN COMMUTATIVE RINGS

WEI-EIHN KUAN

Let $A = k[x_1, \ldots, x_n]$ be a finitely generated ring over a field k, and let $\mathfrak{F}_k(A)$ be the set of all k-higher derivations of A. In [1], we obtained some results on prime ideals in A which are differential under $\mathfrak{F}_k(A)$. In this Addendum similar results are proved for a complete local ring $k[[x_1, \ldots, x_n]]$, a homomorphic image of the formal power series ring over a field k; that is, algebraic varieties in [1] are replaced by algebroid varieties. We start with some technical remarks.

Remark 1. Let A' be a ring and $A \subset A'$ be a subring. Let A'[[t]] be the ring of formal power series in t over A'. Let $d \in \operatorname{Hom}(A, A'[[t]])$ such that for each $a \in A$, $d(a) = a + d_1(a)t + d_2(a)t^2 + d_3(a)t^3 + \ldots + d_n(a)t^n + \ldots$. Then $\{d_i\}_{i=0}^{\infty}$, where $d_0 = \operatorname{id}_A$, is a higher derivation in $\mathfrak{F}(A, A')$. Conversely every higher derivation $\{d_i\}_{i=0}^{\infty} \in \mathfrak{F}(A, A')$ defines a ring homomorphism $d \in \operatorname{Hom}(A, A'[[t]])$ such that $d(a) = a + d_1(a)t + \ldots + d_n(a)t^n + \ldots$ for each $a \in A$. Let $\mathfrak{A} \subset A$, $\mathfrak{A}' \subset A'$ be ideals such that $\mathfrak{A}A' \subset \mathfrak{A}'$. Consider A, A' as topological rings with the \mathfrak{A} -adic and \mathfrak{A}' -adic topologies respectively. It follows from [3, Lemma 1, p. 334] that $\{d_i\}_{i=0}^{\infty} \in \mathfrak{F}(A, A')$ is continuous, i.e., every d_i is a continuous map.

Remark 2. Let $k[[x_1, \ldots, x_n]]$ be a formal power series ring over a field k. Let $\{\Delta_i\}_{i=0}^{\infty}$ be a higher derivation in $\mathfrak{H}_k(k[[x_1, \ldots, x_n]])$. Let $f(x_1, \ldots, x_n) \in k[[x_1, \ldots, x_n]]$; then

$$\Delta_1(f(x_1,\ldots,x_n)) = \sum_{i=1}^n \frac{\partial}{\partial x_i} f(x_1,\ldots,x_n) \cdot \Delta_1(x_i)$$

and for $i \geq 2$,

$$\Delta_{i}(f(x_{1},...,x_{n})) = \sum_{j=1}^{n} A_{ij}(x_{1},...,x_{n})\Delta_{i}(x_{j}) + B_{i}(x_{1},...,x_{n};\Delta_{1}(x_{1}),...,\Delta_{i-1}(x_{n}))$$

where $A_{ij} \in k[[x_1, \ldots, x_n]]$ and

$$B_i \in k[[x_1, \ldots, x_n]][\{\Delta_l(x_i)|l=1, 2, \ldots, i-1 \text{ and } j=1, 2, \ldots, n\}].$$

Indeed let $\Delta: k[[x_1, \ldots, x_n]] \Rightarrow k[[x_1, \ldots, x_n]][[t]]$ be the ring homomorphism

Received December 15, 1975 and in revised form, September 10, 1976.

given rise by $\{\Delta_i\}_{i=1}^{\infty}$. Then

$$\Delta_t(x_1^{i_1} \dots x_n^{i_n}) = \text{coefficient of } t^i \text{ in}$$
$$(x_1 + \Delta_1(x_1)t + \dots)^{i_1} \dots (x_n + \Delta_1(x_n)t + \dots)^{i_n}.$$

Thus,

$$\Delta_{t}(x_{1}^{i_{1}} \dots x_{n}^{i_{n}}) = \sum_{j=1}^{n} a_{ij}^{i_{1} \dots i_{n}} \Delta_{t}(x_{j})$$

$$+ \sum_{\substack{1 \leq l_{k} \leq i-1 \\ 1 \leq j_{k} \leq n}} a_{l_{1}j_{1}}^{i_{1} \dots i_{n}} \Delta_{l_{1}}(x_{j_{1}}) \Delta_{l_{2}}(x_{j_{2}}) + \dots$$

$$+ \sum_{\substack{1 \leq j_{k} \leq n \\ 1 \leq l_{k} \leq i-1}} a_{l_{1}j_{1} \dots l_{i-1}j_{i-1}}^{i_{1} \dots i_{n}} \Delta_{l_{1}}(x_{j_{1}}) \dots \Delta_{l_{i-1}}(x_{j_{i-1}})$$

where

 $a_{ij}^{i_1...i_n}$ are monomials of degree $(i_1+...+i_n)-1$,

 $a_{l_1j_1}^{i_1\dots i_n}$ are monomials of degree $(i_1+\dots+i_n)-2$, and

 $a_{l_1j_1...l_{i-1}j_{i-1}}^{i_1...i_n}$ are monomials of degree $(i_1+\ldots+i_n)-(i-1)$.

Thus, if $f(x_1, \ldots, x_n) \in k[[x_1, \ldots, x_n]], f(x_1, \ldots, x_n) = \sum_{i=1}^n a_{i_1 \ldots i_n} x_1^{i_1} \ldots x_n^{i_n}$, where $\{i_1 + i_2 + \ldots + i_n\}$ is monotone increasing.

$$\begin{split} \Delta_{i}f(x_{1},\ldots,x_{n}) &= \sum_{i=1}^{n} a_{i_{1}\ldots i_{n}} \Delta_{i}(x_{1}^{i_{1}}\ldots x_{n}^{i_{n}}) \\ &= \sum_{i=1}^{n} a_{i_{1}\ldots i_{n}} \left(\sum_{j=1}^{n} b_{ij}^{i_{1}\ldots i_{n}} \Delta_{i}(x_{j}) + \sum_{1 \leq l_{k} \leq i-1} b_{l_{1}j_{1}l_{2}j_{2}}^{i_{1}\ldots i_{n}} \Delta_{l_{1}}(x_{j_{1}}) \Delta_{l_{2}}(x_{j_{2}}) + \ldots \right. \\ &+ \sum_{1 \leq l_{k} \leq i-1} b_{l_{1}j_{1}\ldots l_{i-1}j_{i-1}}^{i_{1}\ldots i_{n}} \Delta_{l_{1}}(x_{j_{1}}) \ldots \Delta_{l_{i-1}}(x_{j_{i-1}}) \right) \\ &= \sum_{j=1}^{n} A_{ij} \Delta_{i}(x_{j}) + \sum_{1 \leq l_{k} \leq i-1 \atop 1 \leq l_{k} \leq n} A_{l_{1}j_{1}l_{2}j_{2}} \Delta_{l_{1}}(x_{j_{1}}) \Delta_{l_{2}}(x_{j_{2}}) + \ldots \\ &+ \sum_{1 \leq l_{k} \leq i-1 \atop 1 \leq l_{k} \leq i-1}} A_{l_{1}j_{1}\ldots l_{i-1}j_{i-1}} \Delta_{l_{1}}(x_{j_{1}}) \ldots \Delta_{l_{i-1}}(x_{j_{i-1}}), \end{split}$$

where $A_{ij}, \ldots, A_{l_1 j_1 \ldots l_{i-1} j_{i-1}} \in k[[x_1, \ldots, x_n]].$

Remark 3. Let $k[[x_1, \ldots, x_n]]$ be a complete local ring over a field k. Let $\{\delta_i\}_{i=0}^{\infty}$ be a higher derivation in $\mathfrak{S}_k(k[[x_1, \ldots, x_n]])$. Then for $f(x_1, \ldots, x_n) \in k[[x_1, \ldots, x_n]], \delta_i f(x_1, \ldots, x_n) = \sum_{j=1}^n A_{ij} \delta_i(x_j) + B_i$ where

$$A_{ij} \in k[[x_1,\ldots,x_n]]$$

and $B_i \in k[[x_1, \ldots, x_n]][\{\delta_i(x_i)|i=1, 2, \ldots (i-1); j=1, 2, \ldots, n\}]$. Let

 $k[[X_1,\ldots,X_n]]$ be the formal power series ring. Let π be the canonical surjection from $k[[X_1,\ldots,X_n]]$ to $k[[x_1,\ldots,x_n]]$ with $\mathfrak A$ as its kernel. Then δ can be lifted to a higher derivation $\Delta=\{\Delta_i\}_{k=0}^\infty$ of $k[[X_1,\ldots,X_n]]$ such that $\mathfrak A$ is differential under Δ . In fact let $\Delta_i:k[X_1,\ldots,X_n]\to k[[X_1,\ldots,X_n]]$ be a k-linear map such that $\Delta_0(f(X))=f(X)$ for all $f(X)\in k[X_1,\ldots,X_n]$ be a k-linear map such that $\Delta_0(f(X))=f(X)$ for all $f(X)\in k[X_1,\ldots,X_n]$ be a k-linear map such that k-linear

$$\Delta_i(f(X_1,\ldots,X_n)) = \sum_{j=1}^n A_{ij}\Delta_i(X_j) + B_i \text{ where } A_{ij} \in k[[X_1,\ldots,X_n]]$$

and $B_i \in k[[X_1, \ldots, X_n]][\{\Delta_l(X_j)|l=1, 2, \ldots, i-1, j=1, 2, \ldots, n\}],$ it follows that $\delta_i(f(x_1, \ldots, x_n)) = \pi(\Delta_i f(X_1, \ldots, X_n)) = \sum \pi(A_{ij}) \cdot \pi \Delta_i(X_j) + \pi(B_i) = A_{ij}(x_1, \ldots, x_n)\delta_i(x_j) + B_i(x_1, \ldots, x_n; \delta_1(x_1), \ldots, \delta_{i-1}(x_n))$ where $A_{ij}(x_1, \ldots, x_n) \in k[[x_1, \ldots, x_n]]$ and $B_i(x_1, \ldots, x_n; \delta_1(x_1), \ldots, \delta_{i-1}(x_n)) \in k[[x_1, \ldots, x_n]]$ $[\{\delta_l(x_j)|l=1, 2, \ldots, i-1, j=1, 2, \ldots, n\}].$

Lemma 2'. Let $\mathfrak{D} = k[[x_1, \ldots, x_n]]$ be a complete local ring over a field k, let \mathfrak{p} be a prime ideal in \mathfrak{D} , and let $\mathfrak{N} = \{x \in \mathfrak{D} | xr = 0 \text{ for some } r \in \mathfrak{D} - \mathfrak{p}\}$. If $\delta = \{\delta_t\} \in \mathfrak{S}_k(\mathfrak{D}_{\mathfrak{p}})$, then for every positive integer m, there exist $k_1, \ldots, k_m \in \mathfrak{D}/\mathfrak{N} - \mathfrak{p}/\mathfrak{N}$ such that $\{\delta, k_1\delta_1, \ldots, k_m\delta_m\}$ is a higher derivation of rank m from $\mathfrak{D}/\mathfrak{N}$ to itself.

Proof. Let $\mathfrak{D}/\mathfrak{N}=k[[\bar{x}_1,\ldots,\bar{x}_n]]=k[[\bar{x}]]$ where $\bar{x}_i=x_i+\mathfrak{N}$. By the definition of localization, $\mathfrak{D}/\mathfrak{N}$ is a subring of $\mathfrak{D}_{\mathfrak{P}}$. Let m be a positive integer. For each $j=1,2,\ldots,m$, $\delta_j(\bar{x}_i)\in\mathfrak{D}_{\mathfrak{P}}$, say $\delta_j(\bar{x}_i)=u_{ij}(\bar{x})/v_{ij}(\bar{x})$. Let $d_j=\Pi_{i=1}^n\ v_{ij}(\bar{x})$, then $d_j\in\mathfrak{D}/\mathfrak{N}-\mathfrak{p}/\mathfrak{N}$. Set $t_j=d_1{}^jd_2{}^j\ldots d_{j-1}{}^jd_j$ for $j=1,2,\ldots,m$, we claim that, as additive group homomorphisms $\{t_j\delta_j\}_{j=0}^m\in\mathfrak{N}=1,2,\ldots,m$, we claim that, as additive group homomorphisms $\{t_j\delta_j\}_{j=0}^m\in\mathfrak{N}=1,2,\ldots,m$, and let $f=\sum a_{i_1\ldots i_n}\bar{x}_1{}^{i_1}\ldots\bar{x}_n{}^{i_n}, a_{i_1\ldots i_n}\in k, t_j\delta_j(f)=t_j(\sum_{i=1}^nA_{ji}\delta_j(\bar{x}_i)+B_j)$ where $A_{ji}\in\mathfrak{D}/\mathfrak{N}$ and $B_j\in\mathfrak{D}/\mathfrak{N}[\{\delta_l(\bar{x}_i)|i=1,2,\ldots,n,\ l=1,2,\ldots,j-1\}].$ Thus $t_jA_{ji}\delta_j(\bar{x}_i)\in\mathfrak{D}/\mathfrak{N}$. Since $B_j=\mathfrak{D}/\mathfrak{N}$ -linear combination of power products of $\delta_l(\bar{x}_i)$ involving at most j of $\delta_l(x_i)$ counting repeated ones for $i=1,2,\ldots,n;\ l=1,2,\ldots,j-1$. Thus $t_jB_j=d_1{}^jd_2{}^j\ldots d_{j-1}{}^jd_jB_j\in\mathfrak{D}/\mathfrak{N}$ also. Hence $t_j\delta_j(f)\in\mathfrak{D}/\mathfrak{N}$. Now set $k_i=(t_1{}^m\ldots t_{m-1}{}^mt_m){}^i,\{\delta_0,k_1\delta_1,\ldots,k_m\delta_m\}\in\mathfrak{S}_k(\mathfrak{D}/\mathfrak{N})$.

Theorem 3'. Let $\mathfrak{D} = k[[x_1, \ldots, x_n]]$ be a complete local ring over a field k, let \mathfrak{p} be a prime ideal in \mathfrak{D} . If \mathfrak{p} is differential under all k-higher derivation of finite rank m for all m, then $\mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$ is differential under all k-higher derivations of finite or infinite rank.

Proof. Let \mathfrak{N} be the kernel of the canonical surjection $\mathfrak{D} \to \mathfrak{D}_{\mathfrak{p}}$, and let $\mathfrak{D}/\mathfrak{N} = k[[\bar{x}_1, \ldots, \bar{x}_n]], \mathfrak{D}/\mathfrak{N}$ is a subring of $\mathfrak{D}_{\mathfrak{p}}$. Let $(0) = \bigcap_{i=1}^s \mathfrak{q}_i$ be a pri-

mary decomposition of the zero ideal in \mathfrak{D} . Suppose $\mathfrak{q}_{it} \subset \mathfrak{p}$ for $i = 1, 2, \ldots, t$ and $\mathfrak{q}_i \not\subset \mathfrak{p}$ for i > t. Then $\mathfrak{N} = \bigcap_{i=1}^t \mathfrak{q}_i$.

Suppose $\mathfrak{D}_{\mathfrak{p}}$ is not differential under $\mathfrak{F}_{k}(\mathfrak{D}_{\mathfrak{p}})$, then there exists a higher derivation $\{\delta_{i}\}\in \mathfrak{F}_{k}(\mathfrak{D}_{\mathfrak{p}})$ such that $\delta_{m}(\mathfrak{p}\mathfrak{D}_{\mathfrak{p}})\not\subset \mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$ for some $m\geq 1$. Suppose m is the least index such that $\delta_{m}(\mathfrak{p}\mathfrak{D}_{\mathfrak{p}})\not\subset \mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$. $\{\delta_{0},\delta_{1},\ldots,\delta_{m}\}\in \mathfrak{F}_{k}(\mathfrak{D}_{\mathfrak{p}})$ and is of rank m. It follows from Lemma 2', there exists $t_{0},t_{1},\ldots,t_{m}\in \mathfrak{D}/\mathfrak{N}-\mathfrak{p}/\mathfrak{N}$ such that $\{t_{i}\delta_{i}\}_{i=1}^{m}\in \mathfrak{F}_{k}(\mathfrak{D}/\mathfrak{N})$. For $j< m,t_{j}\delta_{j}(\mathfrak{p}/\mathfrak{N})\subset \mathfrak{p}\mathfrak{D}_{\mathfrak{p}}\cap \mathfrak{D}/\mathfrak{N}=\mathfrak{p}/\mathfrak{N}$ and $\delta_{m}(\mathfrak{p}\mathfrak{D}_{\mathfrak{p}})\not\subset \mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$ yields $t_{m}\delta_{m}(\mathfrak{p}/\mathfrak{N})\not\subset \mathfrak{p}/\mathfrak{N}$. Let $\mathfrak{D}/\mathfrak{N}=k[[\bar{x}_{1},\ldots,\bar{x}_{n}]]$ and $\bar{\pi}$ be the canonical surjection from the formal power series ring $k[[X_{1},\ldots,X_{n}]]$ to $\mathfrak{D}/\mathfrak{N}$. $\{t_{0}\delta_{0},\ldots,t_{m}\delta_{m}\}$, can be lifted to

$$\{\Delta_0, \Delta_1, \ldots, \Delta_m\} \in \mathfrak{F}_k(k[[X_1, \ldots, X_n]]),$$

according to Remark 3. Let \mathfrak{N}' be the pre-image in $k[[X_1,\ldots,X_n]]$ of \mathfrak{N} . Then \mathfrak{N}' is $\{\Delta_i\}_{i=1}^m$ — differential, i.e. $\Delta_i(\mathfrak{N}') \subset \mathfrak{N}'$. Let \mathfrak{p}' and \mathfrak{q}_i' be the pre-image of \mathfrak{p} and \mathfrak{q}_i in $k[[X_1,\ldots,X_n]]$ for $i=1,2,\ldots,s$ respectively. Then $\mathfrak{N}'=\mathfrak{q}_1'\cap\ldots\cap\mathfrak{q}_i'$. Let $d\in (\bigcap_{i=t+1}\mathfrak{q}_i')-\mathfrak{p}', \{d^i\Delta_i\}_{i=0}^m$ is a higher derivation on $k[[X_1,\ldots,X_n]]$. Let $\mathfrak{N}'=\bigcap_{i=1}^s\mathfrak{q}_i'$. Then $\mathfrak{N}'\subset\mathfrak{N}'$ and $d^i\Delta_i(\mathfrak{N}')\subset d^i\cdot\mathfrak{N}'\subset (\mathfrak{q}_1'\cap\ldots\cap\mathfrak{q}_i')\cap (\mathfrak{q}_{t+1}'\cap\ldots\cap\mathfrak{q}_s')=\mathfrak{N}'$. Hence \mathfrak{N}' is $\{d^i\Delta_i\}_{i=1}^m$ on $k[[X_1,\ldots,X_n]]/\mathfrak{N}'=\mathfrak{D}$. Since $d_m\delta_m(\mathfrak{p}/\mathfrak{N})\not\subset\mathfrak{p}/\mathfrak{N}$, therefore $\Delta_m(\mathfrak{p}')\not\subset\mathfrak{p}'$. Thus $d^m\Delta_m(\mathfrak{p})\not\subset\mathfrak{p}$, i.e. \mathfrak{p} is not $\{d^{\bar{\imath}}\Delta_i\}_{i=1}^m$ -differential, a contradiction to the hypothesis.

Let k be a field X_1, \ldots, X_n indeterminates over k, $\Sigma = k((X_1, \ldots, X_n)) =$ quotient field of $k[[X_1, \ldots, X_n]]$. Let $u = \{u_{ij} | i = 1, 2, \ldots, n; j = 1, 2, \ldots, \infty\}$ and t be indeterminates over Σ . The mapping $q: k[[X_1, \ldots, X_n]] \rightarrow k[[X_1, \ldots, X_n]][u][[t]]$ defined by the substitution $X_i \rightarrow X_i + \sum_{j=1}^{\infty} u_{ij}t^j$ is a continuous k-homomorphism. Let

$$a \in k[[X_1, \ldots, X_n]], a = \sum a_{i_1, \ldots, i_n} X_1^{i_1} \ldots X_n^{i_n}.$$

Then

$$q(a) = \sum_{i=1}^{\infty} a_{i_1...i_n} \left(X_1 + \sum_{j=1}^{\infty} u_{1j} t^j \right)^{i_1} ... \left(X_n + \sum_{j=1}^{\infty} u_{nj} t^j \right)^{i_n}$$

$$= \sum_{i=1}^{\infty} a_{i_1...i_n} X_1^{i_1} ... X_n^{i_n} + q_1(a)t + ... + q_j(a)t^j + ...,$$

where $q_j(a) \in k[[X_1, \ldots, X_n]][u]$. Set q_0 = identity map on $k[[X_1, \ldots, X_n]]$. Then, by Remark 1, $\{q_j\}_{j=1}^{\infty} \in \mathfrak{F}_k(k[[X_1, \ldots, X_n]], k[[X_1, \ldots, X_n]][u])$, and q_j 's are continuous for all j. By Remark 2, $q_j(k[[X_1, \ldots, X_n]]) \subset k[[X_1, \ldots, X_n]][\{u_{i:l}|l=1, 2, \ldots, j-1, i=1, 2, \ldots, n\}]$. Let $\mathfrak{D} = k[[x_1, \ldots, x_n]]$ be a complete local domain over a field k, $\Sigma = k((x_1, \ldots, x_n))$ its quotient field. Let $\bar{u} = \{\bar{u}_{i:j} \in \Sigma[i=1, 2, \ldots, n, j=1, 2, \ldots, \infty\}$ be a collection of elements in Σ . Let $u_j = \{u_{i:l}|l=1, 2, \ldots, j; i=1, 2, \ldots, n\}$ and let $\bar{u}_j = \{\bar{u}_{i:l}|l=1, 2, \ldots, j; i=1, 2, \ldots, n\}$. Let

$$\pi^{(j)}: k[[X_1,\ldots,X_n]][u_j] \to k[[x_1,\ldots,x_n]][\bar{u}_j] \subset \Sigma$$

be the canonical k-homomorphism such that $\pi^{(j)}(X_i) = x_i$ and $\pi^{(j)}(u_{il}) =$

 \bar{u}_{il} for $l=1, 2, \ldots, j$, and $i=1, 2, \ldots, n$. Let $f(X_1, \ldots, X_n) \in k[[X_1, \ldots, X_n]]$. We say $\bar{u} = \{\bar{u}_{ij}\}$ is a set of solutions of $q_j(f) = 0$ if and only if $\pi^{(j)}(q_j(f)) = 0$. The notations $\pi^{(j)}, q_j$ are to be used in the following.

LEMMA 3'. Let $\mathfrak{D}=k[[x_1,\ldots,x_n]]$ be a complete local domain over a field k, Σ its quotient field. Let $\mathfrak{A}=(f_1,\ldots,f_r)\subset k[[X_1,\ldots,X_n]]$ be the kernel of the canonical homomorphism $k[[X_1,\ldots,X_n]]\to\mathfrak{D}$. If $\delta=\{\delta_i\}\in\mathfrak{S}_k(\Sigma,\Sigma)$ then the set $\{\bar{u}_{ij}\in\Sigma|\bar{u}_{ij}=\delta_j(x_i),\ i=1,2,\ldots,n;\ j=1,2,\ldots,\infty\}$ is a set of solutions of the equation

$$(3') \quad q_j(f_m) = 0, \quad m = 1, 2, \ldots, r, j = 1, 2, \ldots, \infty.$$

Conversely, if a subset $\{\bar{u}_{ij}|i=1,2,\ldots,n,j=1,2,\ldots,\infty\}$ of Σ is a family of solutions of (3'), then there is a higher derivation $\delta=\{\delta_j\}\in\mathfrak{S}_k(\Sigma,\Sigma)$ such that $\delta_j(x_i)=\bar{u}_{ij}$ for $i=1,2,\ldots,n,j=1,2,\ldots,\infty$.

Proof: $f_m(x_1, ..., x_n) = 0$ for m = 1, 2, ..., r. Since $\delta = \{\delta_j\} \in \mathfrak{G}_k(\Sigma, \Sigma)$, $\delta_j(f_m) = 0$. By Remark 2, $0 = \delta_i(f_m) = \sum_{j=1}^n A_{mji}(x_1, ..., x_n)\delta_j(x_i) + B_m$ where $A_{mji}(x_1, ..., x_n) \in k[[x_1, ..., x_n]]$ and $B_m \in k[[x_1, ..., x_n]][\{\delta_i(x_i)|i=1, 2, ..., n, i-1, i=1, 2, ..., n\}] \subset \Sigma$. Therefore $\{\delta_j(x_i)|i=1, 2, ..., n, j=1, 2, ..., \infty\}$ solves the system $q_j(f_m) = 0$ in Σ.

Conversely, if $\{\bar{u}_{ij}|i=1,2,\ldots,n,j=1,2,\ldots,\infty\}\subset\Sigma$ form a family of solutions to the system $q_j(f_m)=0$. Then we can find a $\delta=\{\delta_j\}\in \mathfrak{H}(\Sigma,\Sigma)$ such that $\delta_j(x_i)=\bar{u}_{ij}$ as follows: For $g(X_1,\ldots,X_n)\in k[[X_1,\ldots,X_n]]$, and for $j\geq 1$, set $\delta_j(g(x_1,\ldots,x_n))=\pi^{(j)}(q_j(g(X_1,\ldots,X_n)))$, where $\pi^{(j)},q_j$ are the same as defined in the preceding. δ_j is well defined and $\{\delta_j\}\in\mathfrak{H}_k(k[[x_1,\ldots,x_n]],\Sigma)$ and $\delta_j(x_i)=\bar{u}_{ij}$. By [2, Lemma 2, p. 35], $\{\delta_j\}$ can be extended to Σ .

The following theorem shows that simple algebroid sub-varieties of an algebroid variety yield non-differential ideals.

THEOREM 4'. Let $\mathfrak{D}=k[[x_1,\ldots,x_n]]$ be a complete local ring containing a field k. Let $\mathfrak{p}\subset\mathfrak{D}$ be a non-minimal prime ideal such that $\mathfrak{D}_{\mathfrak{p}}$ is a regular local ring. Then $\mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$ is not differential under $\mathfrak{F}_k(\mathfrak{D}_{\mathfrak{p}},\mathfrak{D}_{\mathfrak{p}})$.

Proof. Let \mathfrak{N} be the kernel of the canonical homomorphism $\mathfrak{D} \Rightarrow \mathfrak{D}_{\mathfrak{p}}$. Let $\hat{\mathfrak{D}}_{\mathfrak{p}}$ be the completion of $\mathfrak{D}_{\mathfrak{p}}$, then it is well known from [5, Corollary, p. 307] that $\hat{\mathfrak{D}}_{\mathfrak{p}} = K[[t_1, \ldots, t_r]]$, a formal power series ring over a field K with $K \cong \mathfrak{D}_{\mathfrak{p}}/\mathfrak{p}\mathfrak{D}_{\mathfrak{p}}$. Without loss of generality, we may assume K contains k. It follows from Lemma 3', by taking $\bar{u} = \{\bar{u}_{ij} | \bar{u}_{11} = 1 \text{ and } \bar{u}_{ij} = 0 \text{ for } i = 1, 2, \ldots, r \text{ and } j = 2, 3, \ldots, \infty\}$, and noting that \mathfrak{A} in the Lemma 3' is the zero ideal, that there exists a higher derivation $\{\delta_j\}_{j=0}^{\infty} \in \mathfrak{G}_K(\hat{\mathfrak{D}}_{\mathfrak{p}}, \hat{\mathfrak{D}}_{\mathfrak{p}})$ such that $\delta_j(t_i) = \bar{u}_{ij}$. Let $\mathfrak{D}/\mathfrak{N} = k[[\bar{x}_1, \ldots, \bar{x}_n]]$, we may assume $t_1 \in \mathfrak{D}/\mathfrak{N}$. Let $\mathfrak{A} = (f_1, \ldots, f_s)k[[X_1, \ldots, X_n]]$ be the kernel of the canonical homomorphism $k[[X_1, \ldots, X_n]] \Rightarrow k[[\bar{x}_1, \ldots, \bar{x}_n]]$. Then the system $\sum f_{mi}(\bar{x})\delta_1(x_i) = 0$, $\sum t_{1i}(\bar{x})\delta_1(x_i) - 1 = 0$ where $f_{mi}(\bar{x})\delta_m(x_i, t_{1i}) = \frac{\partial t_1(X)}{\partial X_i}$ with $t_1(X)$

being a representative of t_1 in $k[[X_1, \ldots, X_n]]$, and for each $j = 2, 3, \ldots, \infty$ the linear system $\sum_{j=1}^n A_{mji}d_j(\bar{x}_i) + B_m = 0$ where $m = 1, 2, \ldots, s, A_{mji} \in k[[\bar{x}_1, \ldots, \bar{x}_n]]$ and

$$B_m \in k[[\bar{x}_1,\ldots,x_n]][\{\delta_l(\bar{x}_i)|l=1,2,\ldots,(j-1),i=1,2,\ldots,n\}]$$

have solution set $= \{\delta_j(x_i) | i = 1, 2, \dots, n; j = 1, 2, \dots, \infty\}$ in $\hat{\mathbb{D}}_{\mathfrak{p}}$. Thus by [4, Lemma p. 39], the linear system $q_1(f_m) = 0, m = 1, 2, \dots, s$ and $q_1(t_1(X)) - 1 = 0$, and for each $i = 2, \dots, \infty$ the linear system $q_j(f_m) = 0$ $m = 1, 2, \dots, s$ have solutions set $\bar{u} = \{\bar{u}_{ij} | i = 1, 2, \dots, n; j = 1, 2, \dots, \infty\} \subset \mathbb{D}_{\mathfrak{p}}$. Thus it follows from Lemma 3' that there is a higher derivation $\{\delta_j'\}_{j=0}^{\infty} \in \mathfrak{F}_k(\mathbb{D}/\mathfrak{N}, \mathbb{D}_{\mathfrak{p}})$, such that $\delta_j'(t_1) = 1$. Extending $\{\delta'\}_{j=0}^{\infty}$ to $\mathbb{D}_{\mathfrak{p}}$ we have thus a higher derivation $\{\delta'\}_{n=0}^{\infty} \in \mathfrak{F}_k(\mathbb{D}_{\mathfrak{p}})$ such that $\delta_1'(\mathfrak{p}\mathbb{D}_{\mathfrak{p}}) \not\subset \mathfrak{p}\mathbb{D}_{\mathfrak{p}}$.

I would like to thank the referee for his comments.

Added in proof. W. C. Brown and the author have noted that Example 3 in [1] is incorrect. A correct example is as follows: Let k denote a field of characteristic two. Set $\mathcal{O} = k[[X]]$, the power series ring in one indeterminate X over k. We can define a higher derivative $D = \{\delta_i\}$ on \mathcal{O} by setting $\delta_i(X) = 1$ for all $i \geq 1$. Then $\delta_2(X^2) = 1$, but there exists no subring $\mathcal{O}_1 \subset \mathcal{O}$ such that X^2 is analytically independent over \mathcal{O}_1 and $\mathcal{O} = \mathcal{O}_1[[X^2]]$.

Thus, the conjecture mentioned in [1] before Example 3 is false even for regular local rings.

REFERENCES

- W. Brown and W. Kuan, Ideals and higher derivations in commutative rings, Can. J. Math. 24 (1972), 400-415.
- N. Heerema, Convergent higher derivations on local rings, Trans. Amer. Math. Soc. 132 (1968), 31-44.
- W. Kuan, A note on a lemma of Zariski and higher derivations, Proc. Amer. Math. Soc. 42 (1974), 333-340.
- 4. A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. Jour. Math. 89 (1967), 22-42.
- 5. O. Zariski and P. Samuel, Commutative algebra, Vol. 2 (New York, 1960).

Michigan State University, East Lansing, Michigan