
Canad. J. Math. Vol. 62 (3), 2010 pp. 646–667
doi:10.4153/CJM-2010-025-9
c©Canadian Mathematical Society 2010

Reducibility in AR(K), CR(K), and A(K)

R. Rupp and A. Sasane

Abstract. Let K denote a compact real symmetric subset of C and let AR(K) denote the real Banach

algebra of all real symmetric continuous functions on K that are analytic in the interior K◦ of K,

endowed with the supremum norm. We characterize all unimodular pairs ( f , g) in AR(K)2 which are

reducible. In addition, for an arbitrary compact K in C, we give a new proof (not relying on Banach

algebra theory or elementary stable rank techniques) of the fact that the Bass stable rank of A(K) is 1.

Finally, we also characterize all compact real symmetric sets K such that AR(K), respectively CR(K),

has Bass stable rank 1.

1 Introduction

The concept of stable rank of a ring was introduced by H. Bass [2] to study some

stabilisation questions in algebraic K-theory. We recall this notion below.

Definition 1.1 Let A be a commutative ring with an identity element, denoted by 1.

Let n ∈ N = {1, 2, 3, . . . }. An element a = (a1, . . . , an) ∈ A
n is called unimodular if

there exists a b = (b1, . . . , bn) ∈ A
n such that

n∑

k=1

bkak = 1.

We denote by Un(A) the set of unimodular elements of A
n.

We say that a = (a1, . . . , an) ∈ Un(A) is reducible (in A), if there exist h1, . . . ,
hn−1 ∈ A such that (a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(A).

The Bass stable rank of A, denoted by bsr A, is the least n ∈ N such that every

a ∈ Un+1(A) is reducible, and it is infinite if no such integer n exists.

The Bass stable rank of several complex Banach algebras of analytic functions is

well known: for example, if K is compact in C, then the Bass stable rank of A(K) is 1,

where A(K) denotes the set of all continuous functions on K that are analytic in the

interior K◦ of K; see [5, Theorem 2.3] and [13].

In [17], Brett Wick considered reducibility questions in the real Banach algebra

AR(D) consisting of those elements of the disk algebra A(D) that have real Fourier

coefficients, or equivalently, those elements from the disk algebra that satisfy the

symmetry condition f (z) = ( f (z∗))∗ for all z ∈ D. (Throughout this article, we

use the following notation.)
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Notation 1.2 We use z∗ to denote the complex conjugate of z, and we use Ω to

denote the closure of the set Ω ⊂ C.

Bass and topological stable ranks of AR(D) play an important role in control the-

ory in the problem of stabilization of linear systems. We refer the reader to [11, 16]

for background on the connection between stable rank and control theory.

In this article, we study the reducibility of corona pairs in some real Banach alge-

bras of real symmetric functions. We define these in Definition 1.4 below.

Definition 1.3 Let K denote a compact subset of C and let A(K) denote the complex

Banach algebra of all continuous functions on K that are analytic in the interior K◦ of

K, endowed with the supremum norm ‖ f ‖∞ = supz∈K | f (z)|, whereas R(K) denotes

the uniform closure of all rational functions with poles off K.

Definition 1.4 If K is real symmetric (that is, z ∈ K if and only if z∗ ∈ K), we use

the symbol AR(K) (respectively RR(K)) to denote the set of functions f belonging to

A(K), (respectively R(K)) that are real symmetric, that is, f (z) = ( f (z∗))∗ (z ∈ K).

Moreover, CR(K) denotes the set of complex-valued, bounded, continuous func-

tions f defined on K, that satisfy f (z) = ( f (z∗))∗ (z ∈ K).

Let R[z] denote the set of all polynomial functions with real coefficients, and R(z)

the set of all rational functions, which are ratios of polynomials from R[z].

2 The Bass Stable Rank of RR(K) Is at Most 2

In this section we prove that if C \ K has only finitely many connected components,

then tsr AR(K) ≤ 2 and so bsr AR(K) ≤ 2. We will do this by first computing the

topological stable rank (defined below) and using the known fact that the Bass stable

rank is bounded above by the topological stable rank (Proposition 2.2).

Definition 2.1 [12] Let A denote a commutative unital Banach algebra. The topo-

logical stable rank of A, denoted by tsr A, is the minimum n ∈ N such that Un(A) is

dense in A
n, and is infinite if no such integer exists.

We recall the following result [4, Theorem 3, p. 293].

Proposition 2.2 Let A be a commutative unital real (or complex) Banach algebra. If

Un(A) is a dense subset of A
n, then bsr A ≤ n.

We will use the following fact several times in some of our proofs.

Lemma 2.3 Let A be a ring such that R[z] ⊂ A ⊂ AR(K). If the Bass stable rank of

A is 1, then K ∩ R is totally disconnected.

Proof If K∩R is not totally disconnected, then there exists a closed connected subset

L of K ∩ R which is not a singleton, so two different real numbers a, b belong to

L ⊂ R. But then the interval [a, b] is contained in L. (If not, we have c ∈ R \ L

such that a < c < b. Since L is closed, it follows that for a sufficiently small r, we

have that (c − r, c + r) ⊂ R \ L, and so L splits into the disjoint closed union L =
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([a, c−r]∩L)∪([c +r, b]∩L).) But then the unimodular pair (z− a+b
2

, (z−a)(z−b))

is not reducible by the intermediate value theorem for real continuous functions on

the interval [a, b], a contradiction. Hence K ∩ R is totally disconnected.

Theorem 2.4 Let K be a real symmetric subset of C.

(i) The topological stable rank of RR(K) is at most 2.

(ii) The topological stable rank of RR(K) is equal to 1 if and only if K◦
= ∅ and K ∩R

is totally disconnected.

Proof We will show that U2(RR(K)) is dense in RR(K)2. Take ( f , g) ∈ RR(K)2 and

approximate f , g by real symmetric rational functions r, s, respectively. Since r ∈
R(z), we have the following representation for r:

r(z) =
C

∏
(z − r j)

∏
(z − w j)(z − w∗

j )

q
,

where C, r j are real numbers, q ∈ R[z] has no zeros in K, and w j denote the non-

real zeros of r. If r and s have a common root in K, then we replace r j , w j , w∗
j by

r j + ǫ, w j + ǫ, w∗
j + ǫ with a sufficiently small real ǫ so that the new real symmetric

rational function r̃ has no common root with s in K. Thus (r̃, s) ∈ U2(RR(K)) is near

( f , g). So tsr RR(K) ≤ 2.

Suppose that K◦
= ∅ and K ∩ R is totally disconnected. We must show that

U1(RR(K)) is dense in RR(K). Let f ∈ RR(K). Given ǫ > 0, by the definition

of RR(K) we can find a real symmetric rational function r with poles off K such

that ‖ f − r‖∞ < ǫ/2. Since r ∈ R(z) has poles off K, it again has the following

representation:

r(z) =
C

∏
(z − r j)

∏
(z − w j)(z − w∗

j )

q
,

where C, r j are real numbers, q ∈ R[z] has no zeros in K, and w j denote the non-real

zeros of r. If r has any zeros in K, then, since K ∩ R is totally disconnected, we can

replace r j by r j + δ with sufficiently small δ > 0, such that r j + δ ∈ R \ K. Since K◦

is void, we can replace all non-real zeros w j , w∗
j by w j + ρ, w∗

j + ρ∗, where |ρ| is small

such that the new real symmetric rational function r̃ has no zeros in K and moreover

‖r − r̃‖∞ < ǫ/2. Since r̃ ∈ R(z) has zeros and poles off K, it is invertible in RR(K),

and we also have ‖ f − r̃‖∞ < ǫ.

Suppose now that the topological stable rank of RR(K) is 1, that is, U1(RR(K)).

is dense in RR(K). Then by Proposition 2.2 it follows that the Bass stable rank of

RR(K) = 1 as well. By Lemma 2.3, K ∩ R is totally disconnected.

If K◦ is not empty we show that U1(RR(K)) is not dense in RR(K), a contradiction.

Note that U1(RR(K)) is the set of units in RR(K), and f is invertible as an element in

RR(K) only if it has no zero in K. Now consider z0 in the interior K◦ of K, and let the

open disk D(z0, r) be contained in K◦. But by Hurwitz’s theorem, the uniform limit

of a sequence of nowhere-vanishing analytic functions on a connected open set U is

either identically zero or has no zeros in U ; see [1, Theorem 2, p. 178]. So taking any

function in RR(K) with finitely many zeros in D(z0, r), say (z−z0)(z−z∗0 ), we see that

it cannot be the uniform limit of a sequence in U1(RR(K)). So tsr RR(K) > 1.
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In light of Theorem 2.4, Proposition 2.2 yields the following.

Corollary 2.5 Let K denote a real symmetric compact subset of C. The Bass stable

rank of RR(K) is at most 2.

Of course, it is natural to ask for conditions for Bass stable rank to be 1.

Lemma 2.6 Let K denote a real symmetric compact subset of C such that K ∩ R is

totally disconnected. Then the set of elements u · r, where u ∈ RR(K)−1 and the real

symmetric rational function r ∈ RR(K) has only non-real zeros, is dense in RR(K).

Proof Let f ∈ RR(K). Given ǫ > 0, by the definition of RR(K) we can find a real

symmetric rational function r with poles off K such that ‖ f − r‖∞ < ǫ/2. Since

r ∈ R(z) has poles off K, it again has the following representation:

r(z) =
C

∏
(z − r j)

∏
(z − w j)(z − w∗

j )

q
,

where C, r j are real numbers, q ∈ R[z] has no zeros in K, and w j denote the non-real

zeros of r. If r has any zeros in K, then since K ∩ R is totally disconnected, we can

replace r j by r j +δ with sufficiently small δ > 0, such that r j +δ ∈ R\K. The new real

symmetric rational function r̃ has only non-real zeros in K and has the form u·r from

the assertion. Moreover ‖r − r̃‖∞ < ǫ/2. Hence we conclude ‖ f − r̃‖∞ < ǫ.

Theorem 2.7 Let K denote a real symmetric compact subset of C. The Bass stable rank

of RR(K) is 1 if and only if K ∩ R is totally disconnected.

Proof If the Bass stable rank of RR(K)) is equal to 1, then by Lemma 2.3, K ∩ R is

totally disconnected. Assuming that K ∩ R is totally disconnected we must show that

every unimodular pair ( f , g) is reducible. For unimodular ( f , g) ∈ U2(RR(K)) there

exist α, β ∈ RR(K) such that α(z) f (z)+β(z)g(z) = 1, (z ∈ K). We now approximate

α by functions of the form u · r, where u ∈ RR(K)−1 and r has only non-real zeros;

see Lemma 2.6. To be precise ‖u · r − α‖∞ · ‖ f ‖∞ < 1/2. This gives

∣∣u(z)r(z) f (z) + β(z)g(z)
∣∣ =

∣∣1 + (u(z)r(z) − α(z)) f (z)
∣∣ ≥ 1 − 1/2 = 1/2

for all z ∈ K. Hence u · r · f + β · g =: U ∈ RR(K)−1.

Claim: (ur, g) is reducible, that is, there exists h ∈ RR(K) such that ur + hg ∈
RR(K)−1.

To this end we look at the product representation

r(z) =
C

∏
(z − w j)(z − w∗

j )

q
,

where C, r j are real numbers, q ∈ R[z] has no zeros in K, and w j denote the non-

real zeros of r. It is enough to show that (
∏

(z − w j)(z − w∗
j ), g) is reducible. For the

moment we will work with the complex Banach algebra R(K). The Bass stable rank of
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R(K) is 1 (see [6, Theorem 3.1]). Fix a non-real zero w of r. Then the unimodular pair

((z−w), g) is reducible in R(K), i.e., there exists a k ∈ R(K) such that z−w+k(z)g(z)

is invertible in R(K). By symmetrization we conclude that z −w∗ + k(z∗)∗g(z) is also

invertible in R(K). Multiplying both results shows that

νw := (z − w)(z − w∗) +
(

k(z)(z − w∗) + k(z∗)∗(z − w) + k(z)k(z∗)∗g(z)︸ ︷︷ ︸
=:kw(z)

)
g(z)

is invertible in R(K). But νw, kw are real symmetric and consequently, by taking the

product of the νw corresponding to each non-real zero w, we see that (ur, g) is re-

ducible in RR(K). Starting from ur+hg = v ∈ RR(K)−1 we conclude ur f +h f g = v f .

Recalling now that ur f +βg = U ∈ RR(K)−1 gives us v f +(β−h f )g = U ∈ RR(K)−1.
This shows that ( f , g) is reducible.

Now we make the assumption that C \ K has only finitely many connected com-

ponents. Then the real symmetric rational functions with poles off K are dense in

AR(K) (and so AR(K) = RR(K)). Indeed, given f ∈ AR(K) and ǫ > 0, Mergelyan’s

theorem gives the existence of a rational function r̃ with poles off K such that

‖ f − r̃‖∞ < ǫ/2.

The desired real symmetric rational function r can now be obtained simply by sym-

metrization:

r(z) :=
r̃(z) + (r̃(z∗))∗

2
(z ∈ K).

Then r has poles off K and ‖ f − r‖∞ < ǫ.

Corollary 2.8 Let K denote a real symmetric compact subset of C such that C \ K has

only finitely many connected components. Then Bass stable rank and topological stable

rank of AR(K) is at most 2.

3 Preliminaries

3.1 Lemmas on Zero and Level Sets.

In this subsection, we collect some technical lemmas on zero sets and level sets.

Definition 3.1 For g ∈ A(K) the zero set Zg of g is Zg := {z ∈ K | g(z) = 0}, and

for δ > 0 the level set Zg(δ) of g is Zg(δ) := {z ∈ K | |g(z)| ≤ δ}. Of course, the

inclusion Zg ⊂ Zg(δ) holds.

The following property of level sets and zero sets will play an important role in the

sequel.

Lemma 3.2 Let K denote a compact subset of C. For every function g ∈ A(K) and

every δ > 0 the following holds.

(i) Every component of C \ Zg(δ) contains a component of C \ K.

(ii) Every component of C \ Zg contains a component of C \ K.
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These assertions also hold if K◦
= ∅.

Proof Obviously, there is only one unbounded component G∞ of the complement,

because Zg(δ) (respectively Zg) is compact. But then the unbounded component of

C \ K belongs to G∞.

(i) Let G denote a bounded component of C \ Zg(δ).

Claim: If there exists a bounded component G of the complement C \ Zg(δ), then

we must have G ∩ (C \ K) 6= ∅.

Assuming the contrary, there exists a bounded component of C \ Zg(δ) such that

G ⊂ K. If K◦
= ∅, then no such open G exists, so we are done. If K◦ 6= ∅, then we

proceed as follows. Being in the complement of the level set, we must have |g(z)| ≥ δ
for all z ∈ ∂G ⊂ K. On the other hand, |g(z)| ≤ δ for all z ∈ ∂G ⊂ K, because

∂G ⊂ ∂(C \ Zg(δ)) = ∂Zg(δ) ⊂ Zg(δ).

This gives |g(z)| = δ for all z ∈ ∂G. The maximum modulus theorem now shows

that in fact we must have G ⊂ Zg(δ), a contradiction. Hence no such bounded com-

ponent of the complement of Zg(δ) can exist. Thus G must intersect a component C

of C \ K. By connectedness we now conclude C ⊂ G, proving the assertion.

(ii) The proof for C \ Zg is entirely similar.

In order to facilitate handling zero sets, we prove the following result, in which we

enclose the zero set by finitely many closed sets.

Lemma 3.3 Let K denote a real symmetric compact subset of C, and let U denote an

open real symmetric neighborhood of K in C. If g ∈ AR(K), then for all δ > 0, there

exist finitely many closed sets H1, . . . , HN ⊂ U lying symmetrically with respect to the

real axis, that is, H j = H∗
k for certain j, k, with the following properties:

(i) Zg ⊂
⋃N

j=1 H j and (
⋃N

j=1 H j) ∩ K ⊂ Zg(δ).

(ii) H j ∩ Hk = ∅ ( j 6= k).

(iii) (a) If no real zero of g belongs to H j , then H j ∩ K ∩ R = ∅, H j ∩ K belongs

entirely to the upper (respectively lower) half-plane and H j ∩K = H∗
k ∩K for

some j 6= k.

(b) If at least one real zero belongs to H j (that is, x0 ∈ Zg∩H j∩R), then H j = H∗
j

holds and H j is connected.

(iv) If the zero z0 belongs to H j , then there exists a disc D with center z0 such that

D ∩ K ⊂ H j .

Before we prove this lemma, we make the following observations.

Remarks 3.4 1. A construction of the covering sets in K is possible if the com-

ponents of the (relatively) open sets H := {z ∈ K | |g(z)| < δ} are open. This is the

case if H is locally connected, for example if K is bounded by finitely many pairwise

disjoint Jordan curves.

2. A similar result is true in case g ∈ A(K), where K is compact but not neces-

sarily real symmetric. The corresponding covering of the zero set intersected with K

belongs to Zg(δ) and consists of pairwise disjoint, connected sets. Assertions (i), (ii),

and (iv) remain true.
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Proof We extend the real symmetric continuous function g from K likewise to the

closure U , the extension being denoted by g0. The zero set Zg ⊂ K is compact, and

so finitely many components K j , j = 1, . . . , M, of the open set

H := {z ∈ U
∣∣ |g0(z)| < δ}

will suffice to cover Zg . Since H is symmetric with respect to the real axis, its com-

ponents are symmetric as well. Unfortunately, the closures K j need not be disjoint.

However, we may take the closed connected components of
⋃N

j=1 K j , and there are at

most M such components. These components are symmetric as well.

To ensure all four assertions we must eventually truncate the closed sets K j .

(i) If no real zero of g belongs to the set K j , then |g(z)| ≥ ρ j > 0 for all z ∈
(K j ∩ K ∩ R) × (| Im(z)| ≤ δ j) for a sufficiently small δ j > 0. Hence no zero of

g belongs to z ∈ (K j ∩ K ∩ R) × (| Im(z)| ≤ δ j). We truncate as follows: H j :=

K j ∩ K ∩ (Im(z) ≥ δ j) (and a corresponding reflected set H∗
j in the lower half-

plane). The closed set K j ∩ K splits in two closed sets belonging entirely to the upper

(respectively lower) half-plane.

(ii) If at least one real zero of g belongs to K j , then we do not truncate, that is,

H j := K j . By symmetry we have H j = H∗
j and H j = K j is connected, because K j is.

All the zeros of g belong to exactly one closed set K j , j = 1, . . . , N, by construction.

To prove the last assertion, take a small disc D with center z0 ∈ Zg ∩ H j such that

D ⊂ {| Im(z)| ≥ δ j} in case (i) above and |g(z)| < δ holds for all z ∈ D ∩ K. By

the construction, D ∩ K ⊂ ⋃N
j=1 H j . Because the sets H j are compact and pairwise

disjoint, they have a positive distance from each other. So choosing the radius of the

disc D small enough gives D ∩ K ⊂ H j .

3.2 Factorization Theorem for Units

We begin with the following definition of sign-functions, and prove Theorem 3.6 on

units, which will be needed later.

Definition 3.5 A sign-function χ ∈ AR(K) is a function satisfying χ2
= 1 on K.

(Note that K may be disconnected.)

Theorem 3.6 (Units) Let K denote a real symmetric compact subset of C and let A

denote one of the algebras AR(K),CR(K). For any unit u ∈ A
−1 we have two factoriza-

tions:

(F1) u = p · exp(H), where p denotes a real symmetric invertible rational function

p ∈ A
−1 and a function H ∈ C(K).

(F2) u = p · χ · exp(h), where p denotes a real symmetric invertible rational function

p ∈ A
−1, χ ∈ A is a sign-function, and h is a real symmetric function in A.

The rational function p in (F1) is the same as that in (F2).

Proof First of all we prove the theorem in case A = CR(K).

(F1): We prove the existence of a real symmetric rational function p with poles off

K and H ∈ C(K) such that u = p · exp(H).
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Without symmetry this would be the assertion of [3, Theorem 4.29]. The need for

symmetry causes some difficulty in the proof in [3], and so we include it in modified

form. By means of an affine transformation, preserving symmetry, we may assume

that

K ⊂ (0, 1) × (−1, 1) =: Q.

Tietze’s Theorem gives a continuous extension f0 : Q → C of u from K to Q. It can be

chosen to be real symmetric. Let L := f −1
0 ({0}). This is a closed subset of Q disjoint

from K, so by compactness there exists an r > 0 such that |z−w| ≥ r (z ∈ K, w ∈ L).

Let m be a positive integer such that m >
√

2/r and consider the squares

Q j,k :=
[ j − 1

m
,

j

m

]
×

[ k − 1

m
,

k

m

]
with center p j,k :=

j − 1/2

m
+ i

k − 1/2

m

for all j, k ∈ {1, . . . , m}, and their reflections

Q j,k :=
[ j − 1

m
,

j

m

]
×

[ k + 1

m
,

k

m

]
with center p j,k :=

j − 1/2

m
+ i

k + 1/2

m

for all k = −m, . . . ,−1 and j = 1, . . . , m.

As will be seen, the two symmetrically situated squares Q j,−1 and Q j,1 play a differ-

ent role. Hence we define the rectangles R j := Q j,−1 ∪ Q j,1 with center p j :=
j−1/2

m
,

j = 1, . . . , m. We define

K := {( j, k)
∣∣ 1 ≤ j, |k| ≤ m and Q j,k ∩ K 6= ∅},

K∅ := {( j, k)
∣∣ 1 ≤ j, |k| ≤ m and Q j,k ∩ K = ∅}.

By symmetry we have either the case that both ( j,−1) and ( j, 1) belong to K, or the

case that both ( j,−1) and ( j, 1) belong to K∅, hence we have

R j ⊂
⋃

( j,k)∈K

Q j,k or R j ⊂
⋃

( j,k)∈K∅

Q j,k, ( j = 1, . . . m).

We have that K ⊂ K1, where K1 is the closed set defined by K1 :=
⋃

( j,k)∈K
Q j,k,

and from the choice of m and r it also follows that K1 ⊂ Q \ L. Note that either

R j ⊂ K1 or R j ∩ K1 = ∅ holds for j = 1, . . . , m. Let f1 be the restriction of f0 to K1.

Since K1 is a union of squares Q j,k, each interval { j
m
} ×

[
k−1

m
, k

m

]
and each interval[ j−1

m
, k

m

]
×{ k

m
}, k = 1, . . . , m, either lies wholly in K1 or meets K1 only at endpoints

or does not meet K1 at all. By symmetry this is also true for the reflected squares in the

lower half-plane. At each endpoint where f1 is not already defined, give it the value 1.

Then for any interval I = [a, b] of the above kind that does not lie wholly in K1,

f1(a), f1(b) are non-zero complex numbers and f1 is not defined in (a, b). Extending

the continuous function with values log f1(a), log f1(b) from the compact set {a, b}
to [a, b] gives a function which, when exponentiated, gives a continuous extension of

f1 to a map of I into C \ {0}.
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In order to preserve symmetry we now proceed in a different manner than in [3]:

by symmetry we have a real symmetric, continuous, zero-free extension f2 of f1 to

the closed set

K2 := K1 ∪
( m⋃

j=1

⋃
2≤|k|≤m

∂Q j,k

)

of the rectangle Q. The same is true for the boundaries of the rectangles R j , j =

1, . . . , m. Note that the values on the boundary ∂R j are already defined by the values

in K2. We arrive at a symmetric, continuous, zero-free extension f3 of f2 to the closed

set

K3 := K2 ∪
( m⋃

j=1

∂R j

)

of the rectangle Q. The definitions of K∅ and K1 then show that

K3 ∩ Q j,k = ∂Q j,k for ( j, k) ∈ K∅ and |k| ≥ 2,

K3 ∩ R j = ∂R j for ( j,−1) and ( j, 1) ∈ K∅.

For each such ( j, k) there exists an integer n j,k such that (z−p j,k)n j,k f3(z) (respectively,

(z − p j)
n j f3(z)) has a zero-free, continuous extension F j,k to Q j,k (respectively, R j);

see [3, Theorems 4.23, 4.24]. Note that we can use reflection to obtain pn,−k = p∗
n,k

and n j,−k = n j,k. Hence we can consistently define F0 on the rectangle Q by

F0(z) := f3(z)
∏

( j,k)∈K∅

|k|≥2

(z − p jk)n j,k
∏

( j,±1)∈K∅

(z − p j)
n j

for z ∈ K3, and

F0(z) := F j ′,k ′(z)
∏

( j,k)∈K∅\( j ′k ′)
|k|≥2

(z − p jk)n j,k
∏

( j,±1)∈K∅

j 6= j ′

(z − p j)
n j

for all z ∈ Q j ′,k ′ with ( j ′k ′) ∈ K∅ and all z ∈ R j ′ , ( j ′,±1) ∈ K∅. This function

is continuous and zero-free on Q, and so it has a continuous logarithm there. The

restriction to K gives the desired symmetric product form. This completes the proof

of (F1).

(F2): Because the units u and p are real symmetric, we derive

exp(H(z)) = exp((H(z∗))∗) (z ∈ K).

Hence for all z ∈ K, there exists an integer k = k(z) such that H(z) − (H(z∗))∗ =

2kπi, and so
H(z) + (H(z∗))∗

2
= (H(z∗))∗ + kπi.

But the difference in the first identity is a bounded continuous function on K, and

so only finitely many integers k j , j = 1, . . . , m can occur. Thus K splits in disjoint

compact sets K j , j = 1, . . . , m, and the sign-function χ is given by

χ(z) := exp(−k jπi) (z ∈ K j , j = 1, . . . , m).
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Defining h ∈ CR(K) by

h(z) =
H(z) + (H(z∗))∗

2
(z ∈ K),

we conclude that

exp(H(z)) = exp((H(z∗))∗) = exp(h(z)) · χ(z) (z ∈ K),

hence u = p · exp(H) = p · χ · exp(h). Note that as u, p, h are real symmetric, χ is

real symmetric as well.

The remaining case A = AR(K) now follows from the first case as follows. By

the holomorphic inverse function theorem applied to z 7→ exp(z), we see that it

has a local holomorphic inverse around each point z0, say gz0
. Thus z 7→ h(z) =

gz0
(u(z)χ(z)(p(z))−1) is holomorphic near z0 as well.

3.3 Lemma on Relocation of Poles

In Sections 5 and 6, we will often use the following useful fact.

Lemma 3.7 Let K, L denote compact sets in C with L ⊂ K and every component of

C \ L contains a component of C \ K. Suppose that f ∈ C(K) is such that

f (z) = p(z) exp(k(z)) (z ∈ L),

where k ∈ C(L) and p is a rational function with poles and zeros off L.

(i) There exists a rational function p̃ and a k̃ ∈ C(L) such that

f (z) = p̃(z) exp(k̃(z)) (z ∈ L),

and p̃ has its poles and zeros off K.

(ii) If K, L, p, k are in addition real symmetric, then we can ensure that the p̃, k̃ con-

structed in (i) above are real symmetric as well.

In other words, we can shift the poles and zeros of p from C \ L to C \ K. In our

applications later, typically L = Zg , where g ∈ A(K).

Proof Let a denote a pole or zero of p belonging to the component G of C \ L. By

assumption every component of C \ L contains a component of C \ K, and so there

is a common point b ∈ G ∩ (C \ K). Because L does not separate a and b (that is,

they lie in the same connected component G of the complement of L), it follows from

Eilenberg’s theorem [3, Exercise 4.36] that there exists a logarithm l ∈ C(L) such that

z − a

z − b
= exp(l(z)) (z ∈ L).

Thus the claim in (i) follows.
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If in addition K, L, p are real symmetric, then in the above we have

z − a∗

z − b∗
= exp

(
(l(z∗))∗

)
(z ∈ L∗

= L).

Consequently,
z − a

z − b
· z − a∗

z − b∗
= exp

(
l(z) + (l(z∗))∗

)

for all z ∈ L.

4 Reducibility in Real Symmetric Subalgebras of AR(K)

In this section, we will prove our main result in Theorem 4.1.

Theorem 4.1 Let K denote a real symmetric compact subset of C. The following as-

sertions are equivalent for any unimodular pair ( f , g) ∈ AR(K)2:

(i) There exists a sign-function χ ∈ AR(K), an invertible rational function p ∈
AR(K)−1, a continuous function l ∈ C(K) such that for all z ∈ Zg ,

χ(z) · f (z)

p(z)
= exp(l(z)),

and for every real zero z of g,

χ(z) · f (z)

p(z)
> 0.

(ii) ( f , g) is reducible in AR(K), that is, there exists a unit u ∈ AR(K)−1 and there

exists k ∈ AR(K) such that f + kg = u.

Remarks 4.2 1. There always exists a continuous logarithm h for

χ(z) · f (z)/p(z)

on Zg provided that C \ Zg is connected (see [3, Corollary 4.33]), and by Tietze’s

theorem, this can be extended to a continuous function on K.

2. Since the complex algebra A(K) has Bass stable rank 1 (see for instance [5,

Theorem 2.3], [13] or Theorem 5.1), there always exists a k ∈ A(K) and a unit

u ∈ A(K)−1 such that f + kg = u. Again we can deduce u = χ · p · exp(v) for

a sign-function χ and certain p, v ∈ A(K) by the analogue of the unit representation.

The important point is that for reducibility in AR(K), we must have real symmetric

functions χ, p, v and the positivity on real zeros of g.

Proof (ii) ⇒ (i). If there exist k ∈ AR(K) and a unit u ∈ AR(K)−1 such that f +kg =

u, we use Theorem 3.6 to factor u = p · χ · exp(l), where p ∈ AR(K)−1, l ∈ CR(K),

and χ ∈ AR(K) is a sign-function. Obviously, for all z ∈ Zg ,

χ(z) · f (z)

p(z)
= exp(l(z)),
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and for all real zeros of g,
χ(z) · f (z)

p(z)
> 0.

(i) ⇒ (ii). Now assume that there exist a sign-function χ ∈ AR(K), an invertible

rational function p ∈ AR(K)−1, and a function l ∈ C(K) such that for all z ∈ Zg ,

χ(z) · f (z)

p(z)
= exp(l(z)),

and for all real zeros of g,
χ(z) · f (z)

p(z)
> 0.

We abbreviate f0 :=
χ· f

p
.

Step 1: There exist functions h, k ∈ CR(K) with continuous partial derivatives in the

interior K◦ of K, such that f0 + h · g = exp(k). Moreover, ∂h
∂z

, ∂k
∂z

are bounded in K◦.

We think of f0, g as extended to a sufficiently small real symmetric neighborhood

U ⊃ K. To be precise: f , χ are extended symmetrically to U .

Since ( f0, g) is unimodular in CR(K), there exist δ > 0 and a sufficiently small real

symmetric neighborhood U ⊃ K such that | f0(z)| + |g(z)| ≥ 4δ for all z ∈ U . The

level sets with respect to U are denoted by

ZU
g (δ) :=

{
z ∈ U

∣∣ |g(z)| ≤ δ
}

.

By assumption, we have a continuous logarithm of f0 on Zg .

Claim: For sufficiently small δ > 0 there exists L ∈ C(U ) such that

χ(z) · f (z)

p(z)
= exp(L(z)) (z ∈ ZU

g (2δ))

and L(z) = l(z) (z ∈ Zg).

Fix a symmetric, continuous extension l0 of l to U . For sufficiently small δ > 0 we

have

Re( f0(z) exp(−l0(z)) > 1/2 (z ∈ ZU
g (2δ)).

Hence there exists a continuous logarithm w of the function f0 exp(−l0); the princi-

pal branch of the logarithm will do. But then we have

f0(z) = exp(l0(z) + w(z)) (z ∈ ZU
g (2δ)).

This completes the proof of the Claim above.

By Lemma 3.3 (with 2δ instead of δ), there exist finitely many pairwise disjoint

closed sets H1, . . . , HN ⊂ U lying symmetrically with respect to the real axis, such

that Zg ⊂ ⋃N
j=1 H j and |g(z)| ≤ 2δ holds there. Hence | f0(z)| ≥ 2δ holds in the

union of these sets intersected with K.
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In particular, from the Claim above, there exist functions l j , continuous in the

closed sets H j ⊂ ZU
g (2δ) such that f0(z) = exp(l j(z)), (z ∈ H j , j = 1, . . . , N). By

assertion (iii) of Lemma 3.3, we have H j∩K∩R = ∅ if no real zero of g belongs to H j .

Moreover, H j ∩ K belongs entirely to the upper (respectively lower) half-plane. The

desired logarithm is very easy to obtain for these sets, because they do not intersect

the real line. By symmetry we have H j ∩K = H∗
k ∩K for some j 6= k. Hence we may

redefine l j(z) = (lk(z∗))∗.

Thus only the case of a real zero x0 of g belonging to H j remains to be discussed.

In this case H j is connected. By assumption f0(x0) > 0 holds for every real zero x0 of

g. Because f0 is symmetric, we derive

f0(z) = exp(l j(z)) = exp((l j(z∗))∗) (z ∈ H j = H∗
j ).

Because H j is connected and l j is continuous in H j , there exists an integer m such that

l j(z) = (l j(z∗))∗ + 2mπi (z ∈ H j = H∗
j ). Restricting to the real zero, x0 ∈ H j ∩ R

of g gives Im l j(x0) = mπ. As f0(x0) = exp(l j(x0)) > 0, the integer m must be even.

Now l j − mπi is the desired symmetric logarithm of f0 on H j = H∗
j .

Let χ j denote a smooth real symmetric function being identically 1 on H j and

identically 0 outside a neighborhood W ⊂ U of H j sufficiently small such that this

neighborhood does not intersect the other sets Hk and |g(z)| ≤ 3δ (z ∈ K ∩W ). Ob-

serve that the logarithm of f0 exists and is bounded on ZU
g (2δ). Define the function k

by k :=
∑N

j=1 χ j l j . Of course, ∂k/∂z is bounded in K◦. By construction k ∈ CR(K)

and k(z) = l j(z) (z ∈ H j ∩ K, j = 1, . . . N). The desired function h can now be

defined as follows:

h(z) :=





exp k(z) − f0(z)

g(z)
for z ∈ K \ Zg ,

0 for z ∈ Zg .

This function belongs to CR(K) because by Lemma 3.3 for the zero z0 ∈ H j there

exists a disc D with center z0 such that D ∩ K ⊂ H j , so we have h(z) = 0 for all

z ∈ D ∩ K. This implies also that ∂h/∂z is bounded in K◦.

Step 2: There exist h, k ∈ AR(K) such that f0 + hg = exp(k).

With the functions from Step 1, we define the real symmetric continuous function

on K

F :=
f0

f0 + hg
= f0 exp(−k).

Clearly
F

f0
· f0 +

1 − F

g
· g = 1.

Of course, we have that

F

f0
= exp(−k),(4.1)

1 − F

g
= h exp(−k)(4.2)

https://doi.org/10.4153/CJM-2010-025-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-025-9


Reducibility in AR(K), CR(K), and A(K) 659

are real symmetric, continuous in K, ∂h/∂z, ∂k/∂z are bounded in the interior K◦

of K. However, h, k are not necessarily analytic in K◦. Therefore we seek for a u ∈
CR(K), which is continuously differentiable in K◦ such that

∂

∂z

[
exp(ug)

f0 + hg

]
= 0,

which implies the analyticity of F
f0

exp(ug) and F exp(ug). This yields the inhomoge-

neous ∂-equation
∂u

∂z
=

1

f0 + hg
· ∂h

∂z
=: µ.

As is well known, one solution u to the ∂-equation is given by

(4.3) u(z) =
1

2πi

∫

K◦

µ(ζ)

ζ − z
dζ ∧ dζ (z ∈ K).

(See for instance [7, §1, Chapter VIII], where the result is given for the disc; in the

general case, given a point z0 ∈ K◦, we first consider a disc ∆ centered around z0 and

then split the integral in (4.3) into an integral over ∆ and over K◦ \ ∆.) It is easy to

check that u given by (4.3) is in fact real symmetric. It is continuous on K because it

is the convolution of the bounded function µ and a L1-function.

We now “replace” the function F by F exp(ug). By multiplying (4.1) by exp(ug),

we obtain that the function α := F/ f0 exp(ug) = exp[ug − k] belongs to AR(K), and

α is an exponential. Using (4.2), we also see that the function

β :=
1 − F exp(ug)

g
=

[
h + f0

1 − exp(ug)

g

]
exp(−k)

is continuous up to all the boundary of K and is analytic in the interior K◦. Since the

identity α f0 + βg = 1 holds, this completes Step 2.

Recalling the abbreviation f0 := χ· f
p

we see that also ( f , g) is reducible in AR(K).

We generalize this characterization to some subalgebras of AR(K), restricting our-

selves to compact symmetric subset K of C such that C \ K has finitely many compo-

nents.

Definition 4.3 If K denotes a compact subset of C, then we say the corona theorem

holds for A (⊂ AR(K)) if the following is true for all n ∈ N: ( f1, . . . , fn) ∈ Un(A) if

and only if there exists a δ > 0 such that for all z ∈ K,
∑n

j=1 | f j(z)| ≥ δ, that is, if

and only if the functions f1, . . . , fn have no common zero in K.

That the corona theorem holds for AR(K) follows easily from the corona theorem

for the complex algebra A(K) by symmetrization of the solution. We refer the reader

to [9] for a constructive proof (using neither Gelfand theory nor Banach algebra the-

ory) of the corona theorem for certain subalgebras of A(K) under mild assumptions

on K.
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Corollary 4.4 Let K denote a compact real symmetric subset of C such that C \ K

has finitely many components. Let A denote a subalgebra of AR(K) containing all real

symmetric rational functions with poles off K, such that the corona theorem holds for A.

The following are equivalent for any unimodular pair ( f , g) ∈ U2(A):

(i) There exist a sign-function χ ∈ AR(K), an invertible rational function p ∈ A
−1,

and a function l ∈ C(K) such that for all z ∈ Zg ,
χ(z)· f (z)

p(z)
= exp(l(z)), and for

every real zero z of g
χ(z)· f (z)

p(z)
> 0.

(ii) ( f , g) is reducible in A, that is, there exists a unit u ∈ A
−1 and there exists a

k ∈ A such that f + kg = u.

Proof (ii) ⇒ (i): Let there exist a k ∈ A ⊂ AR(K) and a unit u ∈ A
−1 ⊂ AR(K)−1

(because of the corona theorem) such that f + kg = u. Using Theorem 3.6, we can

factor u = p ·χ · exp(l), where the real symmetric rational p ∈ AR(K)−1 also belongs

to A
−1 because of the corona theorem, the function χ ∈ AR(K) is a sign-function,

and l ∈ CR(K). Clearly, for all z ∈ Zg , χ(z)· f (z)
p(z)

= exp(l(z)), and for all real zeros of g,
χ(z)· f (z)

p(z)
> 0.

(i) ⇒ (ii): Assume that there exist a sign-function χ ∈ AR(K), an invertible ratio-

nal function p ∈ A
−1 ⊂ AR(K)−1, and a function l ∈ C(K) such that for all z ∈ Zg ,

χ(z)· f (z)
p(z)

= exp(l(z)), and for all real zeros of g,
χ(z)· f (z)

p(z)
> 0. Using Theorem 4.1 the

pair ( f , g) is reducible in AR(K), that is, there exists a unit u ∈ AR(K)−1 and there

exists a k ∈ AR(K) such that f + kg = u. Using Mergelyan’s theorem there exist

rational functions kn with poles off K converging uniformly to k on K. Because K is

real symmetric, we can also approximate by the symmetrization of kn, that is, the real

rational functions k̃n given by

k̃n(z) :=
kn(z) + (kn(z∗))∗

2

converge uniformly to k too. Since u is a unit in AR(K), we must have

|u(z)| > δ > 0 (z ∈ K).

Choose a real symmetric rational function kn ∈ A near k such that

|u(z) − (k(z) − kn(z))g(z)| > δ/2 > 0 (z ∈ K).

We conclude that f + kng = u − (k − kn)g (which belongs to the algebra A) has no

zeros in K and so it is invertible because of the corona theorem. This completes the

proof of the reducibility of ( f , g) in A.

5 Bass Stable Rank of A(K)

The methods developed in the previous sections can be applied to prove that all uni-

modular pairs in A(K) (K compact in C), are reducible, that is, the Bass stable rank

of A(K) is 1. This is well known (see [5, Theorem 2.3], [13]), but we present a proof

which is independent of Banach algebra theory and elementary stable rank theory.
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Theorem 5.1 Let K denote a compact set in C. Then the stable rank of the algebra

A(K) is 1, that is, every unimodular pair ( f , g) is reducible in A(K).

Proof Given a unimodular pair ( f , g) in A(K), we must show the existence of h ∈
A(K) and u ∈ A(K)−1, such that f +hg = u. By unimodularity, we have a δ > 0 such

that | f (z)| + |g(z)| ≥ 4δ for all z ∈ K. The function f is continuous and zero-free in

the zero set Zg . Using the unit representation [3, Theorem 4.29] (Theorem 3.6 above

without symmetry), we may write

(5.1) f (z) = p(z) · exp(k(z)) (z ∈ Zg),

where p denotes a rational function with poles off Zg , and k ∈ C(Zg). By Lemma 3.2,

every component of C \ Zg contains a component of C \ K. By Lemma 3.7, we can

shift the poles and zeros of p from C \ Zg to C \ K.

As in the justification of the Claim in Step 1 of the proof of Theorem 4.1, we extend

(5.1) to the level set Zg(2δ) for sufficiently small δ, that is,

f (z) = p(z) · exp(k(z)) (z ∈ Zg(2δ)),

where p denotes a rational function with poles off K and k ∈ C(Zg(2δ)).

The rest of the proof is now analogous to the proof of Theorem 4.1, that is, we

use Lemma 3.3 (without symmetry, of course) to facilitate handling the zero set of

g with finitely many closed connected, pairwise disjoint subsets of U ⊃ K lying

within ZU
g (δ). Then we use ∂-equations to make the smooth solutions for reducibility

analytic in K.

6 When Is bsr CR(K) = 1 or AR(K) = 1?

In Section 2, we gave a necessary and sufficient condition on K so that the Bass stable

rank of RR(K) is 1. In this section we give a similar characterization for the algebras

CR(K) and AR(K).

6.1 Topological Theorems

We begin by proving two purely topological theorems, which are probably well

known to the workers in the field; see [13] for a different characterization of the

first one using the so-called “boundary principle”.

Theorem 6.1 Let K, L denote compact sets in C such that L ⊂ K. The following

assertions are equivalent:

(i) Every continuous zero-free function f ∈ C(L) can be extended to a continuous

zero-free function F ∈ C(K).

(ii) Every component of C \ L contains a component of C \ K.

Proof (i) ⇒ (ii): By assumption, every continuous zero-free f ∈ C(L) can be ex-

tended to a continuous zero-free function F ∈ C(K). Assuming the contrary of (ii),

there exists a component G of C\L containing no component of C\K, that is, G ⊂ K.
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Of course, G is not the unbounded component of C \ L, because G ⊂ K. Fix a point

w ∈ G. We conclude that w ∈ K and w ∈ C \ L. By assumption we can extend the

continuous, zero-free function f ∈ C(L) given by f (z) := z − w to a continuous,

zero-free function F ∈ C(K). In particular, we have such an extension to the set

L ∪ G ⊂ K. This contradicts [3, Theorem 4.31].

(ii) ⇒ (i): Let f ∈ C(L) be a function f which is zero-free in the compact set L.

Using the unit representation result [3, Theorem 4.29] (that is, Theorem 3.6 without

symmetry), we may write f (z) = p(z) ·exp(k(z)), (z ∈ L), where p denotes a rational

function with poles and zeros off L, and k ∈ C(L). By assumption every component

of C \ L contains a component of C \ K. Thus, applying Lemma 3.7, we can shift the

poles and zeros of p from C \ L to C \ K, and so

f (z) = p(z) · exp(k(z)) (z ∈ L),

where p denotes a rational function with poles and zeros off K, and k ∈ C(L). By

Tietze’s extension theorem we can extend k continuously to ke ∈ C(K). The desired

extension F is now given by F(z) := p(z) · exp(ke(z)), (z ∈ K).

So Lemma 3.2 now shows that given g ∈ A(K), then every continuous, zero-free

function can likewise be extended from the level set Zg(δ) to K.

Theorem 6.2 Let K, L denote compact, real symmetric sets in C such that L ⊂ K. The

following assertions are equivalent:

(i) Every continuous zero-free function f ∈ CR(L) can be extended to a continuous

zero-free function F ∈ CR(K).

(ii) Every component of C \ L contains a component of C \ K and every sign-function

χ ∈ CR(L) can be extended to a continuous zero-free function χe ∈ CR(K).

Proof (i) ⇒ (ii): By assumption, every continuous zero-free f ∈ CR(L) can be ex-

tended to a continuous zero-free function F ∈ CR(K). If there exists a component G

of C\L containing no component of C\K, then G ⊂ K (see the implication (i) ⇒ (ii)

in the proof of Theorem 6.1). Of course, G is not the unbounded component of C\L,

because G ⊂ K. Fix a point w ∈ G. We conclude that

w ∈ K and w ∈ C \ L.

By assumption we can extend the continuous, zero-free function f ∈ CR(L) given by

f (z) := (z−w)(z−w∗) to a continuous, zero-free function F ∈ CR(K). Fix a number

r > sup |G| = sup |G∗| and let D := {z ∈ C | |z| ≤ r}. With these abbreviations we

define the auxiliary function H on D by the formula:

H(z) :=

{
(z − w)(z − w∗) for z ∈ D \ (G ∪ G∗),

F(z) for z ∈ G ∪ G∗.

From

[D \ (G ∪ G∗)] ∩ (G ∪ G∗) ⊂ ∂(G ∪ G∗) ⊂ ∂G ∪ ∂G∗ ⊂ L ∪ L∗
= L
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it follows that H is well defined, continuous and zero-free in the closed disk D (note

that w ∈ G), hence there exists a continuous logarithm φ:

H(z) = exp(φ(z)) (z ∈ D).

In particular, (z − w)(z − w∗) = exp(φ(z)), (r − ε ≤ |z| ≤ r). Taking the logarithm

locally shows that φ is analytic, and so

1

z − w
+

1

z − w∗
= φ ′(z) (r − ε < |z| < r).

Integration along the circle |z| = r − ε/2 gives the contradiction 4πi = 0. Hence

no such component G ⊂ K can exist. By (i) we can extend every sign-function

χ ∈ CR(L), because it is zero-free in L. Thus we have proved all assertions in (ii).

(ii) ⇒ (i): Let f ∈ CR(L) be a function which is zero-free in the compact set L.

Using the unit representation Theorem 3.6, we may write

f (z) = p(z) · χ(z) · exp(k(z)) (z ∈ L),

where p is a real symmetric rational function with poles and zeros off L, χ ∈ CR(L)

is a sign-function, and k ∈ CR(L). By assumption every component of C \ L contains

a component of C \ K. Using Lemma 3.7, we can shift the poles and zeros of p from

C \ L to C \ K while respecting symmetry, that is,

f (z) = p(z) · χ(z) · exp(k(z)) (z ∈ L),

where p denotes a real symmetric rational function with poles and zeros off K, χ ∈
CR(L) is a sign-function, and k ∈ CR(L). By Tietze’s extension theorem we can extend

k continuously and real symmetric to ke ∈ CR(K). By assumption (ii) there exists a

zero-free extension χe ∈ CR(K) of χ. The desired extension is now given by F, which

is defined as follows: F(z) := p(z) · χe(z) · exp(ke(z)), (z ∈ K).

6.2 A Technical Lemma

Lemma 6.3 Let K be a real symmetric compact set in C, and let g ∈ CR(K) with

nonempty zero set Zg ⊂ K be given. Moreover, assume that K ∩ R is totally discon-

nected. Then for every sign-function χ ∈ CR(Zg), there exists a zero-free real symmetric

extension χe ∈ CR(K).

Proof We split K into the upper part K+ belonging to the closed upper half-plane

and the lower part K− belonging to the closed lower half-plane. Since K ∩R is totally

disconnected, its covering dimension is 0; see [10].

If K ∩ R is empty, it is easy to construct a real symmetric extension of χ to K.

As a sign-function, we must have two sets K−1, K1 ⊂ K+ such that χ(z) = ±1, for

z ∈ K±1, respectively. Then we have the logarithm l(z) = iπ on K−1 and l(z) = 0

on K1, and by Tietze’s theorem we can extend l continuously to K+. Because K ∩ R
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is empty, we may use reflection to the lower half-plane to achieve a real symmetric

extension of l to K. Define χe ∈ CR(K) by

χe(z) :=

{
exp(l(z)) for z ∈ K+,

exp((l(z∗))∗) for z ∈ K−.

So we may assume that K∩R is nonempty and has dimension zero. With the notation

S0 := {−1, 1}, we can apply Theorem III.2 in [10] to obtain a real valued continuous

extension χ0 ∈ C(K ∩ R) of the restriction of χ to Zg ∩ R with values in S0. So we

obtain the sign-function χ0. Hence we may extend the domain of χ by

χ1(z) :=

{
χ(z) for z ∈ Zg \ R,

χ0(z) for z ∈ K ∩ R.

Using Tietze’s theorem, we extend χ1 continuously to K. Take a continuous function

g1 vanishing exactly on K ∩ R. Then Zgg1
= Zg ∪ (K ∩ R). It follows that the

pair (χ1, gg1) is unimodular in the complex Banach algebra C(K+). But then the

complement of the inversion set I := {λ ∈ C | (χ1 − λ, gg1) is unimodular} satisfies

C\I = χ1(Zgg1
) ⊂ {−1, 1}. Hence the complement of the inversion set I is connected

and λ = 0 belongs to it, so a result of Corach and Suárez (see for example [13,

Proposition 1.3]) tells us that (χ1, gg1) is reducible. Thus there exist k ∈ C(K+),

U ∈ C(K+)−1 such that χ1 + kgg1 = U . In particular,

U (z) = χ0(z) ∈ R (z ∈ K ∩ R).

Hence the unit

χe(z) :=

{
U (z) for z ∈ K+,

(U (z∗))∗ for z ∈ K−,

is well defined and is an extension of χ.

6.3 When Is bsr AR(K) = 1?

The following result answers a question posed in [14].

Theorem 6.4 Let K denote a real symmetric compact set in C. The following assertions

are equivalent:

(i) The Bass stable rank of AR(K) is 1.

(ii) K ∩ R is totally disconnected.

Proof (i) ⇒ (ii): Suppose that every unimodular pair is reducible. By Lemma 2.3, it

follows that K ∩ R is totally disconnected.

(ii) ⇒ (i): We must show that every unimodular pair ( f , g) is reducible. Unimod-

ularity implies the existence of a δ > 0 such that | f (z)| + |g(z)| ≥ δ (z ∈ K). Hence
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the real symmetric function f restricted to the set L = Zg is zero-free. By Theo-

rem 3.6 for the compact real symmetric set Zg , there exists a real symmetric rational

function p with poles and zeros off Zg , and a sign-function χ ∈ CR(Zg) such that

f (z) = p(z) · χ(z) · exp(h(z)) (z ∈ Zg).

We think of h as extended continuously to all of K by Tietze’s Theorem, i.e., h ∈
CR(K). Using Lemma 3.2, every component of C\Zg contains a component of C\K.

From Lemma 3.7, we can shift the poles and zeros of p from C \ Zg to C \ K while

respecting symmetry, that is,

f (z) = p(z) · χ(z) · exp(h(z)) (z ∈ Zg),

where p denotes a real symmetric rational function with poles and zeros off K, χ ∈
CR(Zg) is a sign-function on Zg and h ∈ CR(K). Since K ∩ R is totally disconnected,

Lemma 6.3 now shows the existence of a zero-free extension χe ∈ CR(K) of χ. By

Theorem 3.6 the real symmetric unit χe ∈ CR(K) can be factored as

χe(z) = q(z) · ψ(z) · exp(k(z)) (z ∈ K),

where q denotes a real symmetric rational function with poles and zeros off K, ψ
denotes a sign-function on K, and k ∈ CR(K). Consequently,

f (z) · ψ(z)

p(z) · q(z)
= exp(h(z) + k(z)) (z ∈ Zg).

We note that exp(l(z)+k(z)) > 0 for all z ∈ Zg ∩R since h+k ∈ CR(K). In each open

component G of K, ψ is either identically +1 or identically −1, and hence analytic

there. Thus in fact ψ ∈ AR(K). Theorem 4.1 now implies that the unimodular pair

( f , g) is reducible. So the stable rank of AR(K) is 1.

6.4 When Is bsr CR(K) = 1?

Now we are in a position to calculate the Bass stable rank for CR(K) for certain com-

pact sets K. Surprisingly, the characterisation is not the same as for the complex

Banach algebra C(K). Indeed, a result of Vaserstein [15, Theorem 7, p. 104] gives

bsr C(K) = 1 if and only if K◦
= ∅.

In the case of the real algebra CR(K) we have the following.

Theorem 6.5 Let K denote a real symmetric compact set in C. The following assertions

are equivalent:

(i) The Bass stable rank of CR(K) is 1 .

(ii) The interior K◦ of K is empty and K ∩ R is totally disconnected.
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Proof (i)⇒ (ii): Suppose that every unimodular pair is reducible. Let L denote a real

symmetric compact set in K. Let f0 denote any real symmetric zero-free continuous

function on the real symmetric compact set L ⊂ K. Since each compact set in C is a

Gδ-set, there exists a continuous function g0 ∈ C(K) such that Zg0
= L; see [8, p. 15].

But then g(z) := g0(z) · (g0(z∗))∗ defines a real symmetric function g ∈ CR(K)

such that Zg = L = L∗. By Tietze’s theorem, we can extend f0 to a real symmetric

continuous f ∈ CR(K). Now the unimodular pair ( f , g) must be reducible, hence

f + hg = u for certain h, u ∈ CR(K), u zero-free in K. But u is a real symmetric zero-

free continuous extension of f0 from L to K. Theorem 6.2 now implies that every

component of C \ L contains a component of C \ K.

Next we will show that K◦ is empty. Assuming the contrary let ∆ be an open disc

such that ∆ ⊂ K, and let C be the boundary of ∆. It is easy to see that we can arrange

that ∆ is contained in the upper half-plane {z | Im(z) > 0}. Then L := C ∪ C∗ is

real symmetric, compact, and L ⊂ K. Hence from the above, it follows that every

component of C \ L contains a component of C \ K. But one of the components of

C\L is ∆, which would now contain a component of C\K, and hence a point outside

K, a contradiction. This proves that K◦ is empty.

That K ∩ R is totally disconnected follows from Lemma 2.3.

(ii) ⇒ (i): By assumption, the interior K◦ is void, i.e., AR(K) = CR(K), and K ∩R

is totally disconnected. By Theorem 6.4, the Bass stable rank of AR(K), and hence

that of CR(K), is 1.

7 Open Questions

We end this paper with some open questions. Corollary 2.8 says that if K is a real

symmetric compact subset of C such that C \ K has finitely many connected compo-

nents, then bsr AR(K) is at most 2. We suspect that this might always be the case, and

so we have the following questions:

• If K is a real symmetric compact subset of C, then is bsr AR(K) ≤ 2?
• If K is a real symmetric compact subset of C, then what is tsr AR(K)?
• Find necessary and sufficient conditions for tsr AR(K) = 1.

In light of the results in this article, analogous questions for CR(K) can also be posed:

• If K is a real symmetric compact subset of C, then is bsr CR(K) ≤ 2?
• If K is a real symmetric compact subset of C, then what is tsr CR(K)?
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