
TERM RANK OF THE DIRECT PRODUCT OF MATRICES 

RICHARD A. BRUALDI 

1. Introduction. Let A = [atj] be a matrix of O's and l 's or a (0, l)-matrix 
of size m by m!. The term rank of A is denned as the maximal number of l 's 
of A with no two of the l's on the same row or colunn. A theorem due to D. 
Kônig (3, Theorem 5.1, p. 55) asserts that the term rank of A is also equal to the 
minimal number of rows and columns of A that collectively contain all the l 's. 
The term rank of A will be denoted by p(A). Obviously it is invariant under 
arbitrary permutations of the rows and columns of A. We assume without loss 
of generality that all matrices considered have no rows or columns consisting 
entirely of O's. 

Let B = [bki] be another (0, l)-matrix of size n by n'. The direct product or 
Kronecker product of A with B is defined by 

#ii B duB . . . aim
f B 

a<i\B aii B . . . aim' 
B 

(1.1) A XB = 

_am\B am2 B ... amm> 1 

It is a (0,1)-matrix of size mn by m'n'. The submatrix o f i X 5 given by 

(1.2) [atjB] (1 < i < m\ 1 < j < m') 

will be called the (i,j)-block of A X B or simply a block of A X B. The blocks of 
A X B are of size n by n'. Evidently we have a natural one-to-one corre­
spondence between the elements of A and the blocks of A XB. Thus we say 
that the block \aiù B] corresponds to the element atj of A. The submatrix 

(1.3) 

&miB 

(1 < i < m') 

of A X Bis called the iih column block of A X B. It is of size mn by n'. Similarly 
the submatrix 

(1.4) [aji B, aj2 B, . . . , aim* B] (1 < j < m) 

oiA X B is called the j th row block of A XB. It is of size n by m'n'. 
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The direct product of matrices has applications in the theory of games and 
the theory of graphs. It is also known in combinatorial mathematics, where it is 
shown that the direct product of two Hadamard matrices is a Hadamard 
matrix (3, pp. 104-107). The direct product is known to possess many properties. 
A good account of these is given by MacDuffee in (1, pp. 81-84). Actually 
we need only two properties here. Given the matrices A and B we may form 
either A X B or B X A. In general these two matrices are different. However, 
one verifies by inspection that the rows and columns of A X B can be permuted 
to give B X A. From this it follows that 

(1.5) P(A X B) = p(B X A). 

Secondly, permutations of the rows and columns of A or B induce in a natural 
way permutations of the rows and columns of A X B. This also follows by 
inspection. 

The purpose of this paper is to investigate the term rank p(A X B) of the 
direct product of A with B. In §2 we first give an elementary upper bound for 
p{A X B). We then derive a significant lower bound for p(A X B). As a coroll­
ary we obtain necessary and sufficient conditions in order that the term rank 
be multiplicative on A X B. In §3 we introduce the concepts of essential 
rows and essential columns. We use these to derive a normal form for an arbi­
trary (0, 1)-matrix. This normal form is then used to find a lower bound on the 
number of essential rows and columns of A X B. Finally we obtain an upper 
bound for p(A X B). 

This paper is taken from a portion of the author's doctoral dissertation sub­
mitted to Syracuse University in June, 1964 and written under the supervision 
of Professor H . J . Ryser. The author wishes to take this opportunity to express 
his sincere appreciation to Professor Ryser for his guidance and for very many 
helpful conversations. The dissertation was written during a period in which 
the author held a summer fellowship of the National Science Foundation and a 
fellowship of the National Aeronautics and Space Administration. 

2. A lower bound for p(A X B). We first prove : 

THEOREM 2.1. Let A and B be two (0,1)-matrices of sizes m by m' and n by n' 
respectively. Then 

(2.1) p(A X B) < minjpOl) max{w, »'}, p{B) max{w, m')). 

Proof. Let rows i\, i2, . . . , ir and columns j i , 72, . . . ,js contain all the l's of 
B. Here r and 5 are non-negative integers with r + s = p(B). In each row block 
of A X B select rows i\, i2, . . . , iT1 and in each column block select columns 
7*i» J2, . . . ,7*s. It is then clear that the totality of these lines contain all the l's of 
A X B. Moreover the number of lines we have used is 

mr + m's < (r + s) max{m, m'\ = p(B) maxjra, m'\. 

Applying Kônig's theorem and (1.5), we obtain (2.1). 
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Inequality (2.1) is in general not very sharp. This is particularly so if 
\m' — m\ and \n' — n\ are both large. At the end of §3 we obtain an upper bound 
for p(A X B) that will be better under these circumstances. 

LEMMA 2.2. p(A X B) > p{A)p{B). 

Proof. Select p(A) l 's of A with no two l's on the same line and p(B) l 's of B 
with no two l's on the same line. In each of the blocks of A X B corresponding 
to these p{A) l 's of A select the prescribed p{B) l 's of B. This gives p(A)p(B) 
l 's of A X B with no two of the l's on the same line. 

Now let A be a (0, l)-matrix of size m by mr. In A select p(A) l 's no two of 
which lie on the same line. (In general this can be done in many ways, but once 
we have made our choice we do not alter it.) The rows and columns in which 
these l's lie must contain all the l 's of A, for otherwise we contradict the 
definition of the term rank p(A) of A. Denote by A0 that submatrix of A 
consisting of those elements of A that lie in the intersection of the rows belong­
ing to these p{A) l 's with the columns belonging to these p(A) l 's. Let Ai be 
that submatrix of A consisting of those elements that lie within the rows 
belonging to the selected p(A) l 's of A but not within their columns. Similarly, 
let A 2 be that submatrix of A consisting of those elements that lie within the 
columns of the selected p{A) l 's but not within their rows. Thus if we permute 
the rows and columns of A so that these p(A) l 's occupy the first p(^4) positions 
on the main diagonal of A, we obtain 

pL'o A'7\ 
[A'z 0 

where the prime sign on a matrix here denotes a matrix obtained from it by 
permuting rows and columns, and where 0 denotes all 0's. We proceed by 
induction. If we have formed AiUm,,t ik with ij = 1 or 2 for j = 1, 2, . . . , ky 

then select p(Atl ik) l 's of Aix ik with no two of them on the same 
line. We define Au ikti to be that submatrix of Ailt,mmt ik consisting of 
those elements that lie within the rows belonging to the chosen p(Au ik) 
l 's but not within their columns. Likewise we define Atl ikt2 to be that sub-
matrix of -4*1,...,** consisting of those elements that lie within the columns 
belonging to the chosen p(A u ik) l 's but not within their rows. I t is possible 
that the matrix Ailt,_tik)ik+1is vacuous, in which case we define 

P\Aii ik, ik+l) = 0. 

This happens, in particular, if A u,...,ik consists entirely of 0's. The collection of 
submatrices of A, 

Mo; Au A2; An,A12, A2i, A22\ . . .} 
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will be called a decomposition of A. Different decompositions of A may be 
obtained by altering the choice of l 's in the different steps. We say that the 
above decomposition of A terminates at stage k where k > 0 provided 
Aix i t i ik+1 consists of all O's or is vacuous for all ij = l o r 2 , j = 1 , 2 , . . . , & + 1 
and provided Atll...tik does not have this property for some choice of ij = 1 or 
2, j = 1, 2, . . . , k. Now we are assuming that A has no rows or columns 
consisting entirely of O's. Therefore a decomposition of A terminates at the 
stage 0 if and only if A is square with p(A) equal to the order of A, I t is possible 
that two different decompositions of A terminate at different stages. However, 
this is not true if A has a decomposition that terminates at the stage 0. (It is in 
general true that Ai contains zero rows and A2 contains zero columns; in fact, 
the number of non-zero rows of Ai plus the number of non-zero columns of At 
cannot exceed the term rank of A. The zero rows of A i and the zero columns of 
A 2 are of no importance and thus could be excluded from the definition of A i 
and A 2. We do not adopt this convention, however. Similar remarks hold for 
an arbitrary A H,i2,...ik.) 

Two subsets E and F of the elements of A are row disjoint (column disjoint) 
provided the rows (columns) of A in which the elements of E lie are distinct 
from the rows (columns) of A in which the elements of F lie. E and F are 
line disjoint provided they are both row and column disjoint. A collection of 
subsets of the elements of A is pairwise line disjoint provided every pair of 
subsets is line disjoint. 

LEMMA 2.3. The collection of submatrices {Ailfi2t...tik} where k is a fixed 
positive integer and ij = 1 or 2 for j = 1,2,. . . y k is pairwise line disjoint. 

Proof. For k = 1, the collection consists of two submatrices A i and A 2, and 
these are line disjoint by their definition. Assume the statement of the lemma is 
true for a k > 1 so that '{Ailti2,m..tik} is pairwise line disjoint. But then for 
(ii, ii, • • • , ik) fixed Atl ikti and Ailt...ttkt2 Site line disjoint, which shows 
that the entire collection {A tl, i2,..., ik +1} is also pairwise line disjoint. 

We come now to the main theorem of this section. Let A and B be two 
matrices of O's and l's. Form a decomposition 

(2.2) {Aç>\AirA<L',Aiu .412, ,4 2i, ^22; . . .} 

of A and a decomposition 

(2.3) {Z?o; Bij B2) Bu, Bn, B21, £22; . . •} 

of B. (Of course, within each of the matrices in these decompositions we have a 
prescribed set of l 's with no two on the same line.) For k > 1, let ik denote 
either the integer 1 or 2. If ik = 1, define j * = 2; while if ik = 2, define j k = 1. 
We then have 
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T H E O R E M 2.4. 

p(A X B) > max\p(A)P(B) + £ p{Ail)p{Bjl) + . . . 
( (il) 

+ z3 p(^ù,i2 ik)p(BjUh **) + . . . £ 
( t ' i , il ik) J 

where S(11,12,...,^) denotes the sum taken over all ordered k-tuples (ii, i2, . . . , ik) 
with is = 1 or 2 for s = 1, 2, . . . , k and where the maximum is taken over all 
decompositions of A and all decompositions ofB. 

Proof. Let (2.2) and (2.3) be fixed decompositions of A and B respectively. 
Let 

(2.4) 70 = p(A)p(B), 

(2.5) 7* = p(A)p(B) + . . . + Z p(Ailtil ik)p(Bh 
( i l , i 2 , • • • , ik) 

* = 1 , 2 , . . . , 

(2.6) 7 = P(^)P(B) + . . . + £ P(̂ «i , 1 2 , . . . . ik 

Ui,i2 ik) 

We shall show that 

p{A XB) >yk for k = 0 ,1 ,2 , . . . , 

by an induction argument. In doing so we construct yk Vs of A X B with no 
two of them on the same line. Since there exists an integer r > 0 such that 
7 = 7r = 7r+i = . . • , this will prove the theorem. 

In each of the p(A) blocks of A X B corresponding to the prescribed 
p(A) l 's of i select the prescribed p(B) Vs of B. Likewise in each of 
the p ( i j ! J blocks of A X B corresponding to the prescribed p(Ailt...,u) 
l 's of An is select the prescribed p(Bjl j8) l ' s of Bjlt.,.tj8. Do this 
for all 5-tuples (ih . . . , is), s = 1, 2, . . . , k. This gives yk l 's of A X B. The 
induction hypothesis asserts that these yk l 's of A X B are such that no 
two of them lie on the same line and thus that p(A X B) > yk. We shall prove 
a similar statement for 7^+1. By Lemma 2.2 and its proof the induction hypo­
thesis is true for k = 0. For each (k + l)-tuple (ii, . . . , 4+i), select in each 
of the p(Ailt...tik+1) blocks of A X B corresponding to the prescribed 
p(An,...,ik+1) l ' s -of Atl ifc41 the prescribed p(BJlt...,Jk+1) l ' s of Bjlt...,jk+1. 
Now for (i i , . . . , ik+i) fixed, these l 's clearly have no two on the same line of 
A X B. Since by Lemma 2.3 the collection of submatrices {Au ik+l} taken 
over all (k + l)-tuples is pairwise line disjoint, it follows that the collection 
of l 's chosen in stage k + 1 is such that no two lie on the same line. Thus we 
need only verify that none of the l's chosen in stage k + 1 lies on the same line 
with any of the l's chosen in stages 0 , 1 , . . . , k. 

Consider now a fixed Atl ik+1 and an arbitrary AS1 Sr with 1 < r < k 
and st = 1 or 2, i = 1, 2, . . . , r. Suppose for some integer t, that st ?± it. 
We may select the smallest such /. Then Ailt...tik+1 is a submatrix of Ailt...tit 
and Aslt...lSr is a submat r ix of A81f...tSt. Since it 5^ su Atll...tU and A81 st 

are line disjoint, and therefore so are Ailt...tik+l and Asl Sr. Thus the l's 
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of A X B chosen in the blocks corresponding to the p(Aslt..,tSr) l 's of Asl Sr 

do not lie on the same line with any of the l's chosen in the blocks corre­
sponding to the p(Ailt,..,ik+1) l 's of Aiu...tik+1. We now have only to verify 
that for (ii , . . . , ik+1) fixed, the l 's of A X B chosen within 

A* ilf-,ik+l X B ji jk+i 

do not lie on the same line with any of the 1 's chosen within 

Ao X BQ, Afl X Bju . . . , Ailt..,tik X Bjlt...tjk, 

in stages 0 , 1 , . . . , k, respectively. 
Let r be a fixed integer with 1 < r < k. Depending on whether i r + i = 1 or 

2, Ailt...fik+1 and the set of prescribed p(Atlt.„,ir) l 's of Aix ir are column 
disjoint or row disjoint. We have a similar statement for BH jk+1 and 
Bji,..*,jr- However, since i r +i 5̂  jr+i» if Ailt...tik+1

 a n d the set of prescribed 
p(Au ir) l 's of Atl ir are row disjoint (column disjoint), then Bjlt,m.tjk+1 

and the set of prescribed p{Bjx jr) l 's of BJlt.,,ljr are column disjoint (row 
disjoint). This implies that the l's of A X B chosen within 

An ik+i X Bjlt,..jk+l 

do not lie on the same line with any of the l 's chosen within 

Ailt...,ir X Bjlt,,.tjr 

for r = 1, 2 , . , . , k. A similar argument shows they also cannot lie on the same 
line with the l's chosen within Ao X Bo. Therefore we have succeeded in estab­
lishing the induction hypothesis for k + 1 and have thus proved the theorem. 

COROLLARY 2.5. Let A and B be two (0, 1)-matrices of sizes m by mf and n by 
nf respectively. Then 

p(A XB) >p{A)p(B) 

with equality if and only if one of the following conditions is satisfied: 

(2.7) p(A) =m = m', 

(2.8) p(B) = n = n', 

(2.9) p(A) = mandp(B) = n, 

(2.10) p(A) = m'andp{B) = n'. 

Proof. By the theorem we have 

p(AXB)>p(A)p(B)+p(A1)p(B2)+p(A2)p(B1). 

If p(A XB) = p(A)p(B), then p(A1)p(B2) = 0 and p(A2)p(B1) = 0. This 
implies that one of the above four conditions must hold. The fact that equality 
occurs under one of these conditions follows from an easy application of Kônig's 
theorem. 

It had been suspected that equality would have to occur in Theorem 2.4. 
However, the following example shows this need not be the case. Let 
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A = 
1 0 0 1 
0 1 0 1 
0 1 1 0 

and B 

1 0 0 
0 1 1 
0 0 1 
1 1 0 

It is not difficult to show that for these two matrices the maximum that can 
occur on the right side of the inequality in Theorem 2.4 is 11, while one can 
exhibit 12 (and no more) l 's of A X B with no two on the same line. 

Let (2.2) and (2.3) be fixed decompositions of A and B respectively, and let y 
be defined as in (2.6). In the proof of Theorem 2.4 we constructed 7 l 's of A X B 
with no two of the l 's on the same line. The following theorem implies that if 
these 7 l 's are not a maximal collection of l 's with no two on the same line, i.e. 
if p(A X B) > 7, then they cannot be extended to a maximal collection by the 
addition of more l 's. 

THEOREM 2.5. The rows and columns of the 7 l's as constructed in the proof of 
Theorem 2.4 contain all the Y s of A X B. 

Proof. We give an inductive proof. Assume the statement of the theorem is 
true for all matrices A with the decomposition {A0; Ah A2; . . . } terminating 
at stage k and for an arbitrary B and corresponding decomposition. If the given 
decomposition of A terminates at the stage 0, then by Corollary 2.5 

p(A XB) - 7 

and the theorem is obviously true. Thus assume the given decomposition of A 
terminates at stage k + 1. Replace each non-vacuous A n,...,ik+l by an approp­
riate matrix of all 0's. This yields a new matrix A' where the corresponding 
decomposition of A1 terminates a t stage k. Denote by 7' the corresponding 7 
(as defined in (2.6)) for A' X B using this decomposition of A' and the given 
decomposition of B. The yr l 's of A' X B as constructed in the proof of 
Theorem 2.4 are a subset of the 7 l 's of A X B. Therefore by the induction 
hypothesis the rows and columns in which these 7' l 's lie contain all the l 's 
of A X B except possibly those within Ailt,,.tik+1 X B for each (k + l)-tuple 
(ii, . . . , 4+i). Since Au ik+l is a submatrix of A, it follows that all but 
possibly the l 's of the BH portion of each block B of Ail%...tjk+l X B are 
contained in the rows and columns of the 7' l 's. Since Aix ik +1 is a submatrix 
of Ailr all but possibly the l 's of the Bjltj2 portion of each block B of 
Atl ik+1 X B are contained in the rows and columns of the 7' l 's . Con­
tinuing in this way, we see that since Atl ik+l is a submatrix of Ailt...tik, 
all but possibly the l's of theB J u . . . , j k + 1 portion of each blockB of A tl ik+iXB 
are included in the rows and columns of the y' l 's. But if A <i,...,<ft+1 is neither a 
vacuous nor a zero matrix, then upon deletion of its rows and columns that 
consist entirely of O's it is square with term rank equal to its order. This is a 
consequence of the fact that the decomposition of A terminates at stage 
k + 1. From this it follows easily that the rows and columns of the remaining 
(7 — 7') l 's include all the l 's of A X B hitherto unaccounted for. Therefore 
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all the l 's of A X B are contained in the rows and columns of these y l 's of 
AXB. 

3. An upper bound for p(A X B). Let A be an arbitrary (0, l)-matrix 
with term rank p(A). By a covering of A we mean a collection of lines of A that 
together contain all the l's of A. A minimal covering of A is a covering using 
exactly p(A) lines. By Kônig's theorem minimal coverings of A exist, and 
coverings of A with less than p(A) lines do not exist. We define an essential row 
of the matrix A to be a row that is a member of every minimal covering of A. 
Similarly, an essential column of A is a column that belongs to every minimal 
covering of A. 

THEOREM 3.1. Let A be a (0, l)-matrix of size m by m' with term rank p(A). 
Let A have a\ essential rows and a2 essential columns. Choose a set of p(A) Vs of A 
with no two Vs on the same line. Then the rows and columns of A can be permuted 
to yield 

a2 

[y * 
* '"1 

* * 
Â1 

0 

1 * 
1 

* *1 
0 0 

0 * v.* 
* ' 1 

0 

0 A, 0 0 

with the chosen set of p(A) Vs of A on the main diagonal of (3.1). The indicated 
a\ rows of (3.1) correspond to the essential rows of A, while the indicated a2 columns 
correspond to the essential columns of A. Here 0 denotes all 0's, while * denotes 
arbitrary elements. 

Proof. We may permute the rows and columns of A so that the chosen p(A) 
l 's of A occupy the first positions on the main diagonal. Call this new matrix 
A'. Let rows iu i2, . . . , iai be the essential rows of A' and columns j l t j 2 t . . . , 
j a 2 be the essential columns of A'. The two sets of integers {i%, i2j . . . , iai} and 
Uujit • • • »i«} are subsets of the integers {1, 2 , . . . , p(A)}. By the definition of 
the term rank p(A) of A, they can have nothing in common. Thus we may 
simultaneously permute the first p(A) rows and columns of A' so that rows 
iu ii, . . • , iai become rows 1, 2, . . . , a\ and columns j h j 2 , . . . , ja* become 
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columns ai + 1, ai + 2 , . ... , ai + a%. Under these simultaneous permutations, 
we preserve the property of having the chosen set of p(A) l 's on the first 
positions of the main diagonal. We then have 

1 * 

* " 1 
* * * 

Eï 

1 * 

* ' 1 
£ 4 E e '• 

E, * 
1 * 

* 1 
£ ? 

E3 
* 

£ 5 Es 

Now Ei and E 8 must be zero matrices, by Konig's theorem and the definition of 
p(A). £2 , £e, and £7 must be zero matrices, since otherwise the rows 1, 2 , . . . , ai 
would not be the only essential rows of (3.2). Similarly, £3 , £4, and £5 must be 
zero matrices. This establishes the theorem. 

The form (3.1) obtained for the matrix A is similar to the "normal form" 
obtained by Ore in (2); however, we have said more. Theorem 3.1 shows that 
if we strike out the ai essential rows and a2 essential columns of the matrix A, 
then the remaining l's of A are contained in a3 = p(A) — ai — a2 rows of A. 
Likewise they are contained in a3 columns of A. We call these az rows the 
semi-essential rows of A and these a3 columns the semi-essential columns of A, 
The degenerate case a3 = 0 may occur, in which case A has precisely one 
minimal covering, namely that using the essential rows and essential columns of 
A. If a3 7* 0, then we have two canonical minimal coverings of A. One consists 
of the essential rows and columns and the semi-essential rows. The other con­
sists of the essential rows and columns and the semi-essential columns. Finally 
the preceding theorem implies that the number of minimal coverings of A does 
not exceed 2aa. 

We now investigate the essential rows and essential columns of the direct 
product of two (0,1) -matrices. 

THEOREM 3.2. Let A and B be (0, l)-matrices with term ranks p(A) and p(B) 
respectively. Suppose A has a\ essential rows and a2 essential columns and B has 
bi essential rows and b^ essential columns. Then the direct product A X B has at 
least 

ai(p(B) - b2) + bi(p(A) - a2) - ai &i 

essential rows and at least 
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a2(p(B) - bi) + b2(p(A) - ax) - a2 b2 

essential columns. 

Proof. We shall show that the direct product of an essential row of A with an 
essential or semi-essential row of B is an essential row of A X B and that the 
direct product of a semi-essential row of A with an essential row of B is an 
essential row of A X B. We have a similar statement for an essential column of 
A X B, This will then prove the theorem. Since permutations of the rows and 
columns of A and B give rise to permutations of the rows and columns ofvl X £ , 
we may assume that A and B are in the form (3.1) of Theorem 3.1. The ax l 's 
on the main diagonal of A in the essential rows of A and the b\ l 's on the main 
diagonal of B in the essential rows of B give rise to a,\ b\ l 's of A X B with no 
two of these l's on the same line. Any minimal covering of A X B must use 
either the row or column of each of these ax bi l 's. The rows and columns of 
these a\ b\ l 's contain only those l's in the direct product of the essential rows of 
A with the essential rows of B. But the rows of these <Zi bi l 's themselves contain 
all the l 's of the direct product of the essential rows of A with the essential 
rows of B. We shall have shown therefore that these rows are essential rows of 
A X B when we establish that any other collection of a\ bi rows and columns, 
one through each of these a\ b\ l 's, leaves some 1 uncovered which does not lie 
on the same line with any 1 of the matrix obtained by deleting from A X B the 
direct product of the essential rows of A with the essential rows of B, Thus 
suppose we have such a collection T that contains one or more columns. Since 
the first ai rows of A are essential rows of A, then it follows that after suitable 
permutations of its rows and columns the block of order ax in the upper left 
corner of A may be assumed to have the form 

11 
1 ' 1 

* * * 

-Ei 
1 

' 1 

* * 

0 E2 

1 

' 1 
* 

0 0 
E3 etc. 

0 0 
0 etc. 

where the first block of rows corresponds to the rows in which A i has a 1 and 
where Eu E2, EZl . . . are non-vacuous matrices with no rows having all O's. 
Consider the first 1 of the ai l 's on the main diagonal of (3.3) such that in the 
corresponding block B in the direct product the collection T contains the 
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column of one of the b\ l 's of B under consideration. If this 1 is in a row in which 
Ai has a 1, then we clearly have a 1 within A\ X B satisfying the desired 
condition. Otherwise let this 1 be in a row of A in which Rj lies. Then we have 
a 1 within EjX B satisfying the desired condition. Therefore the direct 
product of the a,\ essential rows of A with the b\ essential rows of B gives a,\ b\ 
essential rows of A X B. In a similar way we show that the direct product of 
the a2 essential columns of A with the ô2 essential columns of B gives a2 i2 

essential columns of A X B. Let 63 = p(B) — b\ — i2. In the direct product 
of the ai essential rows of A with the 63 semi-essential rows of B a\ 63 l 's of 
A X B with no two on the same line arise naturally. Any minimal covering of 
A X B must use either the row or column of each of these l 's. With that portion 
of A X B already covered by the existing essential rows and columns excluded, 
the rows and columns of these a\ i 3 l 's contain only those l 's in the direct 
product of the essential rows of A with the semi-essential rows of B. Moreover, 
the rows of these a,\ b% l 's contain the l 's of this direct product. Proceeding as 
above, we may conclude that the direct product of the a\ essential rows of A 
with the b% semi-essential rows of B gives rise to a\ 63 essential rows of A X B. 
Similarly, the direct product of the a2 essential columns of A with the bz 
semi-essential columns of B gives rise to a2 h essential columns of A X B. 
Now the rows and columns of B X A can be permuted to give A X B with the 
direct product of the b\ essential rows of B and the a3 semi-essential rows of A 
corresponding to the direct product of the a3 semi-essential rows of A and the b\ 
essential rows of B. Since we have already proved that the former gives rise to 
a3 b\ essential rows of B X A, it follows that the latter gives rise to a3 b\ 
essential rows of A X B. Likewise the direct product of the a3 semi-essential 
columns of A with the 52 essential columns of B gives rise to a3 Z>2 essential 
columns of A X B. This completes the proof of the theorem. 

We wish to clarify a point. For a given selection of p(A) l 's of A with no two 
Vs on the same line, the Ai as defined in (3.1) differs from the A1 defined in §2 
only in that some of the zero rows of the latter have been deleted and the 
remaining rows have been permuted amongst themselves. Thus our notation 
is not inconsistent, at least for our purposes. Similar remarks apply to A 2. 
We may choose p(Ai) l 's of A1 with no two on a line and p(A2) l 's of A 2 with 
no two on a line and write A1 and A 2 in the form of (3.1). In this way we obtain 
the matrices i n , A\2i An, A22. We repeat our construction on these matrices 
and inductively define Ailt.m.tik1 where each ij = 1 or 2 for j = 1, 2, . . . , k. 
We let an ikti be the number of essential rows of Aix ik and an ik>2 be 
the number of essential columns oi Au ik. 

We now obtain an upper bound for the term rank p(A X B) of the direct 
product A X B by constructing a covering T of the l 's of A X B. We include 
in T the essential rows and columns of A X B which were found in Theorem 
3.2. If we strike these out from A X B, the remaining l 's of A X B are contained in 
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ftt 

(3.4) ax 

1 *1 
Y\ * 

A\ X 
* • 1 

* i 
•**1 X 

B2 

— _ J 

a% 

\ l . * 

* 1 
X 

1 * 

' 1 
Bx 

i l l 

X 
1 * 

' 1 
Bx 

1 

bi 

« 3 h 

n * 
X 

i . * 

1 * i * i\ 

(3.5) 

and 

(3.6) 

Moreover, these three matrices are pairwise line disjoint. We note that (3.6) 
has no essential rows or columns. Thus if A X B has any other essential rows or 
columns, they must come from (3.4) or (3.5). The direct product in (3.6) 
has term rank equal to a% b%, and we include in T its a3 &3columns, which form a 
(minimal) covering of this matrix. Now consider (3.4). r is to contain the first 
ai £2 columns of (3.4). We then write Ai in the form of (3.1). We add to F all 
the columns of the direct product of the essential and semi-essential columns of 
A i with the matrix on the right in (3.4) and also all the rows of the direct pro­
duct of the essential rows of A i with the first bi rowrs of this matrix on the right 
in (3.4). We include in Y analogous rows and columns of the direct product in 
(3.5). It can now be verified that the number of rows and columns in T thus far 
is 
(3.7) P(A)P(B) + piAJb* + p(A2)bu 

and that we have left to cover the l's in 

(3.8) 

and 

on-
[Î # 

Au 
* 1 J 

X Bi 
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(3.9) X Bi 

Moreover, the matrices in (3.8) and (3.9) are line disjoint. We proceed with 
(3.8) and (3.9) just as we did with A X B. However, the situations here are 
simpler, since in (3.8) A is replaced by a matrix all of whose rows are essential, 
while in (3.9) A is replaced by a matrix all of whose columns are essential. 
Thus corresponding to (3.8) we add 

(3.10) allP(B2) + p (411)622 

more lines to r , and corresponding to (3.9), we add 

(3.11) a22p(B1) + p(A22)bn 

more lines to T. We may proceed inductively and obtain a covering T of A X B 
using the following number of lines : 

(3.12) P(A)p(B) + p(Ai)b2 + p(A2)b1 

+ anp(B2) + p(An)b22 + a22p{Bx) + p(A22)bn + . . . 
+ ai...ip(B2...2) + p(Ai...i)b2...2 + a2...2p(Bi...i) + p(A2...2)bi...i 

+ 
k-l k-l 

Hence by Konig's theorem, (3.12) furnishes an upper bound for p(A X B). 
Finally we remark that in order to calculate this upper bound for p(A X B) 
and the lower bound in Theorem 2.4, it is not necessary to construct the direct 
p roduc t s X B. 

Added in proof. It has come to the author's attention that A. L. Dulmage and 
N. S. Mendelsohn in their joint paper Coverings of bipartite graphs (this J., 10 
[1958], 517-534) obtained the result in Theorem 3.1 in the language of graphs. 
They do this by first proving some theorems about minimal covers. Our proof 
is more direct, and Theorems 5, 6, 7 of Dulmage and Mendelsohn follow easily 
from our Theorem 3.1. They go on to decompose further the submatrix, which, 
in our terminology, is the intersection of the semi-essential rows with the semi-
essential columns. However, their result is immediate from our approach. 
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