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Abstract

The existence of stationary solutions to the MHD equations in three-dimensional bounded
domains will be proved. At the same time if the assumption of smallness is made on external
forces, uniqueness of the stationary solutions can be guaranteed and it can be shown that
any IS (r > 3) global bounded non-stationary solution to the MHD equations approaches
the stationary solution under both L2 and IS norms exponentially as time goes to infinity.

1. Introduction

Let Q be a three-dimensional bounded domain with smooth boundary dQ and

Q = Q x (0, oo). Consider the MHD equations [3] in Q as follows:

au 1
vAu + (w • V)M (B • V)Bdt p/i

2pix
(x,t)eQ,

, (x,t)€Q,—
at

V-i i = 0, VB = 0, (x,t)eQ,

u\dn = 0, B\dn = 0, te (0,oo),

u(x, 0) = M0(jc), B(x, 0) = floCO, * € fi.

In (E.S), u = (K'CC, 0, u\x, t), u\x, t)) and B = (B\x, t), B2(x,t), B\x, t)) are

an unknown velocity vector and magnetic field respectively, / (x) is a known external
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96 Chunshan Zhao and Kaitai Li [2]

force and 111 is pressure and can be uniquely determined by (u, B, f) up to a constant.
We note that v, //., p are constants of kinematic viscosity, magnetic permeability and
density of Eulerian flow respectively and that k = r)/ix with electrical resistivity r\.

Clearly, the stationary solutions of (E.S) satisfy the following equations:

-\Ab-\

Vu = (

v\3n = 0

( VI (ft

- (w • V)fe - (fe •

), V • b = 0,

, *|8n = 0.

V)u =

J: € Q

2PH
0, X 6!

2 1
P

In a similar manner, Jtx can also be uniquely determined by (v, b, f) up to a constant.
In this paper, we mainly study the existence and uniqueness of stationary solutions,

and stability relations between the global U (r > 3) bounded non-stationary solutions
and stationary solutions. First, let us recollect some related methods and results about
stability for stationary solutions to the well-known Navier-Stokes equations (N.S).
Temam [12] studied the existence and uniqueness of stationary solutions to (N.S) and
obtained L2-exponential stability for the stationary solutions under the assumption that
external forces are sufficiently small or the viscosity constant of fluids is sufficiently
large. Recently, Schonbek [9] and Guo and Zhang [5] presented some decay properties
of solutions to the MHD equations and showed that under some assumptions on the
decay properties of external forces, any non-stationary solutions to the MHD equations
on the whole three-dimensional or two-dimensional space decay to zero algebraically
as time goes to infinity. Qu and Wang studied Lp stability for stationary solutions of
(N.S) on three-dimensional bounded domains in [7]. Motivated and inspired by the
above mentioned work, we studied existence, uniqueness and U (r > 3)-exponential
stability for stationary solutions to the MHD equations on three-dimensional bounded
domains. We prove the existence of at least one stationary solution to the MHD
equations in three-dimensional bounded domains and uniqueness of the stationary
solutions if external forces are sufficiently small or v and X. are sufficiently large.
The main purpose of this paper is to prove that under the assumption of smallness of
external forces there exist positive constants c, k, ft independent of t, u, B such that

II«(O - «li; + HB(O - b\\'r < c(||iioOO - < + ll«o(*) - *C) V *

for all t > 0, where || • ||r denotes the usual Z/-norm.
This paper is arranged as follows. We present some mathematical preliminaries

in Section 2. In Section 3, we prove the existence of stationary solutions to (E.S).
Moreover, if external forces are sufficiently small or /x and A. are sufficiently large,
uniqueness of the stationary solution can be guaranteed. Additionally in this section,
we also prove our main results on L2-exponential stability of stationary solutions to
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(E.S). The main results on U (r > 3)-exponential stability are presented and proved
in Section 4.

2. Mathematical preliminaries

In this section we present some mathematical preliminaries. First, let us introduce
some vector-valued functional spaces and notation as follows: Lr(Q) denotes the
usual vector-valued functional space consisting of r-times integrable functions on £2.
Here Hr = closure of {<p e C£°(£2), V (j> - 0} in Lr(Q) and Hnr = closure of
(f> e C^Q)) in Lr(Q). As described by Temam [11],

Here Wm-r(£l) (m > 0) denotes the well-known vector-valued Sobolev spaces. In
particular, iir = 2,Hm= Wm-2(Q).

Let Pr : Lr(J2) —> Hr be aHelmholtz projection operator [11] andletAr = —PrA
be the well-known Stokes operator with domain D(Ar) = Hr D Wo

lr(S2) D W2-r(Q).
Let V = closure of (0 e C^°(S2), V • <p = 0} in Hl(Q) and let V be the dual space
of V. For simplicity, we omit subscripts in the notation H2, A2, P2 and || • ||2. We
denote by (•, •> and (•, •) the dual product between V and V and the inner product of
H respectively.

Applying P to both sides of the first two equations in (£.S) and in (5.5) yields

and

9 M

— + vAu-\
at

— +XA
dt

A

- P(uV)u-

B + P(u • V)

P(B-

B - P(B •

+ P(v- V)v PQ>-

Ab + P(v-V)b- P(b-

V)B

V ) M

V)b

V)u

= Pf,

= 0

= Pf,

= 0.

(2.1)

(2.2)

(2.3)

(2.4)

Since A"1 : H ->• D(A) is a positive compact operator, A has eigenvalues
(/ = 1 .2 , . . . ) and corresponding eigenvectors [<Oj] (j = 1 , 2 , . . . ) satisfying

J = XjCOj, 0 < A-i < k2 < • • • < kj <

Moreover, A, —> oo as y —> oo.

DEFINITION 1. For any uo(*). B0(x) e H n Lr(fi) (r > 3) and / (x) e Lr(Q),
(u(x, t), B(x, r)) is called an Lr-bounded solution of (£.5) if
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(i) both ||M(JC, t)\\r and \\B(x, t)\\r are uniformly bounded with respect to t e
[0, oo);

(ii) u(x, t), B(x, t) e Wl-r(Q), for any t e (0, oo);
(iii) (u(x, t), B(x, t)) satisfies (E.S) in a weak or strong sense.

For existence and uniqueness of local or global strong (weak) solutions of (E.S),
see references [2, 6, 8].

3. Existence, uniqueness and L2-exponential stability
for stationary solutions

In this section, we study the existence, uniqueness and L2-exponential stability for
stationary solutions to the MHD equations. We use a Fadeo-Galerkin approximation
combined with Schaefer's fixed point theorem to show the existence of stationary
solutions, and the energy estimates method to show uniqueness and L2-exponential
stability for stationary solutions.

THEOREM 3.1. Iff (x) e V, then there exists at least one solution (v, b) e V x V
to (2.3M2.4). Moreover, iff(x) e H, then v, b e D(A). Additionally, if\\f(x)\\
is sufficiently small or both v and X are sufficiently large, then the solution (u, b) to
(2.3H2-4) 15 unique.

PROOF. We implement the well-known Fadeo-Galerkin method [11] to prove the
existence of solutions {v, b) to (2.3)-(2.4). For m € N, we look for an approximate
solution (vm, bm) such that vm = J™=\ Him^h K = J™=i hmOi, Him, hm e R, and

»(VwM, Vfi) + b*(vm, vm, v) - —b\bm, bm, v) = {f, v), (3.1)
p\i

A.(V*m> Vb) + b*(vm, bm, b) - b*(bm, vm, b) = 0, (3.2)

for every v, b e Wm = span{a>i, . . . , com], where

b\u, v,w) = Yi f ui—wi dx.

Equations (3.1)-(3.2) are also equivalent to

vAvm + Pm(ym • V)um Pm(Jbm • V)bm = PJ, (3.3)
p\i

\Abm + Pm(vm • V)bm - Pm(bm • V)vm = 0 (3.4)
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in V, where Pm : H -*• Wm is a projection operator.
Next we prove the existence of a solution (vm, bm) to (3.3)-(3.4) by the well-known

Schaefer fixed point theorem [4]. Since Wm is a finite-dimensional subspace of H,
to apply the fixed point theorem, it is sufficient to show the uniform boundedness
of || Vum|| and || Vfcm|| with respect to 0 < a < 1 for all possible solutions of the
following equations:

vAvm + aPm{vm • V)vm - —Pm(bm • V)bm = P,J, (3.5)

XAbm + aPm(vm • V)bm - aPm(bm • V)um = 0. (3.6)

In fact, taking the dual product of V and V with vm on both sides of (3.5) and with
bm/pn on both sides of (3.6), then summing them together, yields

, A , v , 1
v||Vum|| H l|V£m|| = {Pmf, vm) S — IIVum|| H 1|/ \\v,.

pix 2 2v
Therefore

, 2A. , 1 ,
u||Vum|| H ||Vfcm|| < - | | / ||T,,.

pix v

Thus due to the Schaefer fixed point theorem acting on Wm x Wm, the existence of
(vm, bm) is guaranteed.

Next we give some a priori estimates of vm and bm.
First, taking 0 = vm, b = bm/pix in (3.1)-(3.2) and summing them together, we

get

, X , 1 , v ,v\\ Vt»m|| -| ||Vfem|| = (/, vm) < — 1 | / ||T,, -|—||Vum|| .
pv 2v 2

Therefore

v | |VvJ | 2 + — \\Vbm\\2 < -\\f \\2
V,. (3.7)

PfX V

So we can extract from (vm, bm) a subsequence (ym>, bm>) which converges weakly
in V to some limit (u, b), and since the injection of V in H is compact, (vm>, bm>)
converges to (u, b) strongly in H, that is, bm< —>• b and vm> —>• v weakly in V and
strongly in H. Passing to the limit in (3.1)—(3.2), we find that (u, b) is a solution of
(3.3H3.4) in V. We note that if v, b e V, then according to [12, (2.26)] it follows
that P(v • V)u, P(b • V)b, P{v • V)Z> and P(b • V)u belong to D(A"1/2). Hence

v = v ' A " 1 ( P / - P(v • V)w + — P(fc • V)fc ) e D(A3/2), (3.8)
V pix J

b = A-'A"1 (P(i • V)u - P(v • V)b) e D(AV2). (3.9)
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If/Oc) e L2(Q), applying [12, Lemma2.1] to (3.8H3.9) yields P(uV)u, P(bV)b,
P(v • V)b, P(b • V)u e H. Therefore v and b e D(A). Since v,b e D(A) c

. H2(Q.) we can define ||u||r, \\b\\r for any r > 2 according to the Sobolev embedding
theorem [4].

Next we give some a priori estimates of (i>, b) in V and D(A) respectively. If
/ (x) e L2(Q), from (3.7) and lower-semicontinuity of the norm || • ||, it follows that

v||Vu||2 + — | |Vfc | | 2 <-H| / | | 2 .

For the norm in D(A), we infer from (2.3)-(2.4) for r = 2 that

v\\Av\\ < | |/ || + \\P(v • V)v\\ + —\\P(b • V)i||
PfX

< ll/ll + c, (\\Vv\\3'2\\Av\\>/2 + —\\Vb\\V2\\Ab\\lA
\ PIL )

< 11/ II + j\\Av\\ + ^| |Vv||3 + ^ ^ 3

4 v 4
where we have used Young's inequality. Similarly,

^||Au|| + ||Vi|| + \\\Ab\\ + ^-
4 v 4 A.

Finally,

' + 1)1 ,f ,3. (3,0)

To prove the uniqueness result, let us assume that (i>,, bt), i = 1, 2, are two solutions
of (2.3H2.4) for r = 2, that is,

v(Vv,, Vw) + b*(vit vlt v) b*(bh b,, v) = {f,v),
p/j,

XC7bh Vfc) + b*(v,, bh b) - b*(bh vh b) = 0,

for i = 1, 2 and 0, £ € V.
Let w = V\ — v2,b = b\ — b2- We get

v(Vtu, Vfi) + fc*(v,, w, 0) + b\w, v2, v) (b*(bi, b, v) + b*(b, k , v)) = 0,
Pfj,

X(Vb, V6) + fc*(ulf b, b) + b*(w, bi, b) - {b\bu w, b) + b\b, v2, b)) = 0.
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Taking v = w and b = b in the above equalities and adding them together yields

| | V | | 2 +

101

= -b\w, v2, w) + —(b*(b, b2, w) + b*(b, v2, b) - b*(w, b2, b))
Pfix '

<c,||Vu;||

+ —iiv gna(-p^ + - r 4 - r ) II/II-
PM VvA., JpixXvXj

Therefore

If 11/ Mil is sufficiently small or both v and X are sufficiently large so that

and

11/ II > 0,

it follows that V\ = v2 and &i = b2. Hence uniqueness of the solution is proved and
the proof of Theorem 3.1 is completed.

THEOREM 3.2. Let (u(t), B(t)) be any solution of (2A)-(2.2) with initial data
M0, Bo € H andf (x) e H be sufficiently small or v and X be sufficiently large. Then
there exist constants c, fi > 0 independent oft, u and B such that, for all t > 0,

— \\B{f) - b\\2 < c
Px

PROOF. Let w(t) = u(t) - v and B(t) = B(t) - b. We have by difference,
n 1

— + vAw + P(u-V)w + P(w-V)v (P(BV)B + P(BV)b) = 0, (3.11)
dt pnK '

— + XAB + P(u • V)B + P(w • V)b - (P(B • V)w + P(B • V)u) = 0, (3.12)
dt

w(x,O) = uo-v, B(x,0) = B0-b.
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Taking the scalar product of (3.11) with w(t), and of (3.12) with B(t)/pfj, in H and
summing them together, we get

— \\B(t)\\2) + v\\Vw\\2 + — |
pn. ) pfj,

~ flMOII2 + — \\B(t)\\2) + v\\Vw\\2 + —||VB||2
2dt\ pn ) p

= -b\w, v, w) + —(b*(B, b, w) + b*(B, v, B) - b*(w, b, B)). (3.13)
PfM

Next we give estimates of each term on the right-hand side of (3.13)

\b*(w, v, w)\ < l ^|
6

\b*(B,b,w)\ < 3 1 4

^||Vu;|| +
6 6pfi

where we have used Young's inequality.
Similarly,

\b\B, v,B)\<

\b\w,b, B)\ <

opfx

also using Young's inequality here.
Substituting the above estimates into (3.13), we get

4- (\\WW2 + -^\\B\\2) + UHV^II2 + —dt\ pfx ) p/x

< 2c2\\w\\2 (-L\\Av\\^ + -±-

+ 2Cl\\Bf

Therefore

4 (Nil 2 + —ll^ll2) + P (Nil2 + — ll^ll2) < 0, (3.14)

dt \ pfi ) \ pfx )
(Nil2 + —\ pfx
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where

[c2||Au|l , 2c2\\Ab\\W
- 2 m a x { +{—iJTTi— + — ^ T 7 i — ' TJn + 1175

From (3.10), we know

and

v,+*\ (I + ) + ^L(
v \_v4A, \ v A./ v5/2(AA.!)3'2 \p2 /x A-

• +1)1 „,3
/x A- v/J

Thus it follows that if v and A. are sufficiently large or \\f || is sufficiently small, then
0 >0.

Taking (3.14) into account, we get

II«W - "II2 + —\\B(t) - b\\2 < c (\\u0 - v\\2 + —1|Bo -
PH \ pix

for all t > 0. The proof of Theorem 3.2 is completed.

4. Main results of U (r > 3)-exponential stability

In this section we will study the stability of the solutions to (E.S) with initial values
uo(x), B0(x) e //nZ/(£2). The main tools we use in this section are energy estimates.

From (E.S) and (5.5), by difference, we get

dw 1 , - .
vAw + (u • V)w + (w • V)v ((B • V)B + (B • V)b)

dt pnK '

+ -!-V(|fi |2 - \b\2) + -V(n , - m) = o, (x, t) e Q,
2p\i p

dB

-(BV)w-(BV)v = 0, (x,t)eQ,

Vw = 0, V B = 0 , (x,t)eQ,

^ | 3 n=0 , B\3n = 0, r e (0,oo),

w(x, 0) = uo(x) - v, B(x, 0) = B0(x) -b, x e Q.
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Let us denote n = (|B|2 - \b\2)/(2pfi) + (II, - nx)/p. From (D.E.S) we see

dw 1 , - - „
vAw + (« • V)u; + (w • V)w {{B • V)B + (B • V)b) + n = 0, (4.1)

at p/x

^- - XAB + (M • V)B + (w • V)b - (B • V)w - (B • V)w = 0. (4.2)
at

LEMMA 4.1. The following estimate ofTl holds:

fr+2)/2 < c\\w\\2
r+2(\\v\\2

r+2 + \\w\\2
r+2) + —\\B\\2

r+2(\\b\\2
r+2+\\B\\2

+2). (4.3)
PfA

PROOF. To estimate ||n||(r+2)/2, we take the divergence of (4.1) and obtain

-A n = E a4-(u;'<"/ + ^ - — E irir&i*

From the Calderon-Zygmund inequality [10] it follows that

Noticing that u = w + v and B = B + iwe obtain

lin||(r+2)/2<

Then by Holder's inequality, we get

l|n||2
r+2)/2 < c||u,| |2

+2(|M|2
+2+ ||u,||2+2) + -£-||B||2

+2(||fe||2
+2 + ||B||2

+2).

Lemma 4.1 is proved.

Next we present two lemmas which were proved in [1].

LEMMA 4.2. Let r > 2andNr(w) = Jn\Vw\2\w\r~2 dx. Then

Nr(w) > c||u;||-4r/3(r-2)||u;||;+(4r/3(r-2)),

for any w e Wlr(Q) and w ^ 0.

LEMMA 4.3. Let r > 3 and w e WJ'r(Q). Then \\w\\r
rXl < cl l ioli ;-1^^)3^.
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[11] Stationary solutions to the MHD equations in 3D domains 105

Multiplying both sides of (4.1) by \w\r~2w and both sides of (4.2) by \B\r~2B and
integrating over Q, after suitable integrations by parts, we obtain

\r-2= - I\u-V)w-\w\r~2wdx- I (w-V)v-\w\r~2wdx
Jn Jn

+ — ( f (BV)B • \w\r-2w dx+ [ (B- V)fc • \w\r~2w dx
if*> \Jn JnPf

- f
Jn

)

- \w\r~2wdx (4.4)

and

infill; + XNr(B) + A2^A f \v\B\«2\2dx
rdt r2 Jn'

= - I\u-V)B-\B\r-2Bdx- I\w-V)b-\B\r-2Bdx
Jn Jn

+ / (fl-V)u;-|B|
r-2Bdx+ f

Jn
(B V)v\B\r-2Bdx. (4.5)

Noticing that the first integral on the right-hand side of (4.4)-(4.5) vanishes since
u, w and B are divergence free, we need only give estimates of other terms on the
right-hand sides of (4.4)-(4.5), that is,

(w-V)v- \w\r~lwdx <{r-\) ! \w\r-x\Vw\\v\dx
Jn

a x

\w\r\v\2dx\

1/2

On the other hand,

- 3 2 r v
; + 2 < cNr(iy)3 / ( r + 2 ) | | io| |^-1 ) / ( r + 2 ) . Thus

.. ..-, v

Therefore

L(w-V)v- \w\r~zwdx b (4.6)

Similarly,

(BV)b- \w\r-2wdx < (r -
1/2

8(r - I)2

https://doi.org/10.1017/S1446181100013705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013705


106

Noticing that

Chunshan Zhao and Kaitai Li [12]

2
+2 <

we get

c\\w\

A.

Hence

(B V)b- \w\r~2wdx

By a similar manner, we get

<^r(u;)+A^(B)
lo 52

(4.7)

\L
IX

(w- V)b\B\r~2Bdx

r+2)/(r-l)

(B • V)v\B\r~2Bdx

| |2^/(,-I)> ( 4 g )

(4.9)

and

LVU-\w\r-2wdx < (r - 1) / I
Jn

\n\\w\r-2\Vw\dx

< ( r -
v

Applying Lemma 4.1, we have

-H
Pfj,

V'-||,,, | | '-lcNr{w)3"\\w\\r,

-t- r+2

^llfcll2™^^ + c\\B\\r
r\\b\\2£mr-n + cllBH
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Hence
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LVn-\w\'-2wdx lo 16

WbCZ™"" + c||B||;(|-I)/('-3). (4.10)

Since

\L(fl • V)B *\f:
\L(B-V)B -\w\r-2wdx

(b-V)B • \w\r~lwdx

c\\w\\r
r\\bCi

L (B • V)B

and Lemma 4.3 tells us

< ( r - 1) / \w\r-2\Vw\\B\2dx
Jn

we get

h

Similarly,

Jn

16
- ^ r ( f i ) + c||u;||;i|fc||^2

+2)/(r-1)

(4.11)

(4.12)
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Substituting estimates (4.6)-(4.12) into (4.4)-(4.5) and summing them together, we get

-rjt (IMI; + 11*11;) + \
< c{\\w\Vr

By interpolation, we have ||u>||, < ||ui4/(3'-2)||t<;||3<r~2)/(3''~2). From Lemma 4.2 it
follows that Nr(w) > c|M|-4r/(3(f-2))||ui;+(4r/3(r-2)). Using these estimates, we get

From (3.10), Theorem 3.1 and H2(&) <̂-> Lr+2(J2), we get

( l l C(ll«C + W\rr) + c(\\wo\\2 + \\B0fy
kefikl(\\wl

< c(\\w\\r
r + \\B\\r

r) + c(||u,||; + ||B||;)(r"I)/(r"3), (4.13)

where k = 2r/3(r - 2).
Lety(0 = ||u>(0li;+ II^WIi;. From (4.13) we get

-ry\t) +.c{\\wo\\
r
r + ||JBo|l0"*'e/>*'y(OI+W3tr-?)) < cy{f)

where k, = 4/3(r - 2).
Applying Lemma 4.5, we get the following theorem.

THEOREM 4.4. Suppose (u, B) is any U-boundedsolution of (E.S),f(x) e Z/(
and uo(x), B0(x) e Lr(Q) D H, where (v, b) is the solution of (S.S). If the L2-norm
off (x) is sufficiently small or v and X are sufficiently large, then there exist constants
c, B, kt > 0 independent oft, u and B such that, for all t > 0,

\\U(t) - v\\r
r + use?) - fen; < c(n«o - wii; + iiBo - fen;) V ' * ' .

LEMMA 4.5 ([7]). Let us make the following assumptions'.

(i) There exists a constant M > 0 such that for all t > 0, the function y (r) < M.
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(ii) There exists a differentiable function h(t) > 0 and continuous functions f \ (t),
• • •, fm (0 for f > 0 such that

(iii) There are constants ax > a2 > • • • > am > OQ > 1.
(iv) The function y(t) satisfies the differential inequality

y\t) + ch(t)y{t)« < hy{t) -

where c, b0 > 0. Then the estimate y(t)°°~l < (bo/cl)h(t)~l holds for all t > 0.
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