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THE EIGENVALUES OF COMPLEMENTARY PRINCIPAL
SUBMATRICES OF A POSITIVE DEFINITE MATRIX

R. C. THOMPSON AND S. THERIANOS

1. Introduction. Let C be an n-square Hermitian matrix, presented in
partitioned form as

4 X,
¢= [X* B}
where 4 is a-square and B is b-square. Let v1 = ... 2 v, a1 = ... = a,,
B1 = ... = By denote the eigenvalues of C, 4, B, respectively. In a recent

paper [10] the following inequality was established:

m m m m

(11) Zl Y is+is—s + Z} Yn-mts = Zl ag, + Zl Biss
if

(1.2) 12 <...<tw=a 1=2hH<...<jmw=0

This inequality is a simplification and a sharpening of an inequality established
earlier in [6], and is a wide generalization of an inequality of Aronszajn [4].
This earlier inequality proved in [6] was modelled on the Amir-Moez inequali-
ties for the eigenvalues of a sum of Hermitian matrices [1] and it took the form

2m m m
) Z=;1 Ve S S; ajr + sgl Biarrs

where 4", 7", ks’ are certain somewhat complicated subscripts; an exact
description of these subscripts may be found in [1] or in [2]. Recently Amir-
Moez and Perry [3] have shown that if C is positive definite, then an exactly
analogous multiplicative version of (2) is valid for the eigenvalues of C, 4, B,

namely,
2m m

m
(3) H Yks'* é H ah"H Bic"‘
s=1 s=1 s=1

Since (1) is simpler and sharper than (2), it is natural to ask if the following
multiplicative version of (1) is valid when C is positive definite: if the sub-
scripts satisfy (1.2), then

m m m m
“4) I Yissms 11 Ynomis STT @i I1 B
s=1 s=1 s=1 s=1
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The inequality (4), if it were true, would be simpler and sharper than (3)
just as (1) is simpler and sharper than (2).

It is the purpose of this paper to establish two classes of inequalities, one
of which will contain (4) as a special case. Our two classes of inequalities may
each be regarded as a generalization of the Fischer determinantal inequality.

It is worth noting that the inequality (3) proved by Amir-Moez and Perry
has the blemish that their subscripts k,” in the left-hand side of (3) are not
always distinct. (This blemish is also present in the inequalities of [6].)
However this defect does not occur in (1) or in any of the inequalities to be
proved in this paper.

In this paper we shall draw upon techniques developed in several recent
papers studying the eigenvalues of matrix sums and products. At the core of
our proofs is a construction due to J. Hersch and B. P. Zwahlen [5; 11] of a
subspace satisfying a certain very tight set of dimensionality restrictions.
Without this extremely useful construction of Hersch and Zwahlen the proofs
given below would not have been found.

This paper is the twenty-fifth in a series of papers studying the eigenvalues
of minors, sums, and products of matrices. This series of papers and a second
series of number theoretical papers (totalling five so far) were begun when the
senior author was a member of the Summer Research Institute of the Canadian
Mathematical Congress, in Kingston, Ontario, 1961. The senior author wishes
to express his appreciation to the Canadian Mathematical Congress for
providing him ten years ago with an opportunity to begin the pursuit of the
ideas leading to these papers.

2. Preliminary lemmas. The following somewhat combinatorial Lemma 1
is of independent interest and is useful in situations other than those arising
in this paper. The symbol 1L denotes the orthogonal complement of a sub-
space L in a unitary space.

LEMMA 1. Let U, ..., U, be subspaces of a unitary vector space V,, each
space having dimension equal to its subscript. Suppose

UsCULC...C U

Let p1,...,Dm be integers satisfying 1 S p1<...< pm =n, and let
Py, Do’ denote the imtegers 1,...,n complementary to p1, ..., Pm,
numbered such that 1 < pi' < ... < Py’ = n. Let L, be an m-dimensional

subspace of Vy.
(1) Suppose that

(5) dmLan N\ Tp) Z2s (s=1,...,m).
Then
6) dim*L,N4Upp) 2 —m~+1—5s (s=1,...,n—m).
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(i1) Suppose that

(M) dimL,N\LUp) Z2m+1—5s (s=1,...,m).
Then
8) dmEL, N Up) s (s=1,...,n— m).
Proof. (i) Let us arrange the integers py, . . . , P, into strings of consecutive
integers, as follows:
a+ L., 0+t e;
(9) g2+1,...,g2+ez;

gr—l—lr---:gr_l_er-

Heregi+ e1 < g2 g2+ € <g, ..., 81+t 6.1<g,0=g,andg, + e, < n.
For convenience let ¢ = 0 = go and g,41 = #.

We shall use the following easily derived identity: for any subspaces L and
Uin V, we have

(10) dim(*L N1U) = n — dim L — dim U + dim(L N U).

What are the integers p1/, . . ., p._n’ when expressed in terms of the g, and
e,? Arranged in strings of consecutive integers they are:
1,...,81
g1+61"|‘ ly"'yg2;
(11) g2te+1,...,8;
g1t e+ 1,0,

gr+e1+1,...,ﬂ.

It is straightforward to check thatif 1 = ¢ £ g1 — g; — e, then the integer
gs + e, + ¢ in the list (11) occupies position

s
gs+3:+t_zep
p=0

in this list. To verify (6) thus amounts to verifying

dim(*L,, N YWyterm) Zn—m+1—gi—e, —t+ > e,
p=0
But, by (10), we have
dim(le N J‘Um+eo+t—1) =n—m—g;—e —t+1+dimLn N Uppteor-1)

gn_m_gs_es_t'l’"l+dim(meUan+n)

gn—m—gs—e,—t+1+2ep.

p=0
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The first inequality here follows from the nested property of the spaces U,
and the second inequality follows from (5) and the fact that g, + e, occupies
position ey + €1 + ... + ¢, in the list (9). This completes the proof of (i).

(ii) Let W, = LU,—, for s = 0,...,n. Apply (i) to the nested subspaces
W, and the integers # 4+ 1 — ppy1—, s = 1,...,m. The complementary
integers in 1,...,7n to these integers are the integers # + 1 — pp_py1-,/,
s=1,...,n — m. Now (ii) follows from (i).

LEMMA 2. Let H be an n-square positive semidefinite Hermitian linear trams-
Sformation on unitary space V,. Let hy = ... Z h, be the eigenvalues of H, and
let wuy,...,u, be an associated orthonormal system of eigenvectors. Let
Us =y ... us), s=1,...,n, where () indicates the linear span of the
enclosed vectors. Let integers P, ..., pm sSatisfy 1 S p1 < ... < pn < n and
suppose that m-dimensional subspace L,, satisfies (5). Let x1, ..., %y be any
orthonormal basis for L. Then

det((Hxi, %;))1=1,zm 2
If, on the other hand, L,, satisfies (7) then
det((Hxlr x]'))léi,]ém =

Here (,) denotes the inmer product in V,.

I\%
=~
=
=
=
s

IA
Ry
=
=
S
3

Proof. Lemma 2 is proved as [9, Lemmas 1 and 2].

3. The first main result.

THEOREM 1. Let

VD¢

c= |5 5]
be an n-square positive definite Hermitian matrix with eigenvalues v, Yne
Let A be a-square and B be b-square with eigenvalues ay ag,

= ...
= ..
B1=...= By respectively. Let 0 = u=a, 0Zv =0 and let 'mtegers

IlV v

Ty e v vy Tuy J1y -« - 5 Jv DE glvEn such that
(12) 1=3<...<, 20,1 =27 <...<j, ZD.
Define
(12.1) is=a-+s— ufors>up,
(12.2) Js=b+s—vfors> .
Then
ptv 1] v
(13) é I;I g B.’in

$; 1

)

where ky = 13+ js—sfors=1,...,u+ v
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Remark. 1f we set u = » = m, inequality (13) reduces to (4).

Proof. Let g1, ..., g, be an orthonormal system of column n-tuple eigen-
vectors of C associated respectively with the eigenvalues vi, ..., v,. Let
e1,...,e be an orthonormal system of column a-tuple eigenvectors of A
associated respectively with «y, ..., @, and let fi, ..., f» be an orthonormal
system of column b-tuple eigenvectors of B associated respectively with

ﬂl, [P ,Bb. Let

(14.1) E3=[i;](s=1,...,a),E3+a=|:0

](s=1,...,b),

be column #z-tuples and let

0

s

(14.2) F3=[ ](s=1,...,b),Fs+b=[tg](s=l,...,a),

also be column #-tuples. Set m = u + ».
Letz, =1, — s, ws = js — s, fors = 1, ..., m. Denote by
0 < oo <!y, J <ol <lJueddy, RY< o< Rusy

the integers 1,...,#n complementary to 41 < ... < 1w j1<...< Jm
k1 < ... < ky, respectively. By the Lemma of [8] we know that

isl =S _I_ 621(3) + ... + 52m(s)7
js’ 3+6w1(5)+ ---+6wm(3)y
kB =54 0,000:08) F oo F boprwn(s) (s=1,...,n—m).
Here 6,(y) is a jump function defined by 6,(y) =0if y < x, =1 if y > «.

Since 2, + W, = n — m, we know from [9, Lemma 4] that an (n — m)-
dimensional subspace L,_, of column #z-space exists such that

Il

(15.1) dim Ly N {(E1, ..., Eip)) =5,
(15.2) dim (L, N A{F1, ..., Fj)) Z s,
15.3) dim Ly N gy - -2 ) Zn—m~+1—5(s=1,...,n —m).
Let L, = 1L,_,. The integers complementary to 7y, ..., %y_n’ are iy, ..., im;
those complementary tojy/, . . ., ju—n’ areju, . . ., jn; and those complementary
to ki, ..., kyy) are k1, ..., k,, where by =4, 4+ j, — s, for s =1,...,m.

By Lemma 1 above, applied to (15.1), (15.2), (15.3) we find that
16.1) dim(L,NA{E;, ..., E)) =2m+1—5,
(16.2) dimL, N\ {Fjp ..., F)) Z2m+ 1 —s,
(16.3) dimLp NA{gy, ..., g)) =5 s=1,...,m).
In particular, by setting s = u + 1 in (16.1) we get

dim L, N (Fy, ..., F)) = v
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and by setting s = » 4+ 1 in (16.2) we get
dim(Ln, N (Eyqy ..., Ep)) Z p.

For s £ u we now have
dim (L, N A{Es,, ..., E))

=dimZ, N {(Es ..., E)NL,N(Ey, ..., E,))

= dim Ly N A(Ey,, ..., Ey)) + dim (L, N (Ey, . . ., E,))

— dim Ly N\ By ..o E) 4+ Ln N (Ey, . . ., Eo))

2m+1—s+u—m=p+1—s.
Thus
17.1) dim@Z,NA{(Es4, ..., E))Z2u+1—s5s (s=1,...,n),

and similarly

(17.2) dim(L, N\ {Fjp..., Fo)) 2v+1—5s (s=1,...,»).
By virtue of (17.1) we may find orthonormal vectors X3, ..., X, such that
X €L, N{(E;y, ..., E) (s=1,...,u)
and by virtue of (17.2) we may find orthonormal vectors X,i1, ..., X,
such that
X“+36me<l"js,...,Fb> (Szl,-..,V).
Since the spaces (Ei, ..., E;) and (Fy, ..., F,) are orthogonal, it follows
that Xy, ..., X, Xur1y ..., Xup, form an orthonormal basis of L,. Further-

more because of (14) we see that

(18) X, = [xo] GG=1,...,n), Xups = [x:)H] Gs=1,...,7),

and hence that
19.1)  dim({xg, ..., %0 N (i .- h)) Zu+1—5s (s=1,...,pw),
(19.2) dim (Xpqty « v oy Xugs) N {frer ooy =v+1—5 (s=1,...,»).
By (16.3) and Lemma 2, we see that
(20) Ver ++ Vim = det((CX 4, Xj) 124, j2m
Applying the Fischer inequality to (20) and using (18) we get

Vir -« Yim S det((Axy, %5)) 14,50 - det ((Bxy, %5))u<s, 15me

Finally, applying Lemma 2 to each of the factors on the right-hand side
obtained here and making use of (19.1) and (19.2) we get

det((Axi, xj))léi’jél,, < iy e oo Oy,

det((Bx,, xj)),,.<1,j§m § le PP ﬂj,.

The proof of (13) is now complete.
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4. The second main result.

THEOREM 2. Assume the hypotheses of Theorem 1. Let 8,(y) denote a jump
function, defined by 8,(y) =0 if y =x, 6,(y) =1 if y > x. Let integers
Ziy vy Zoyw Wiy oo, Wy, satisfy

(21.1) w21z 2...22,,20,

(21.2) vZ2Wyz2Wez ... 2 Wy, 20.

Set

(21.3) Zi=0(s>a—p), Wy=0(G>b—yw).

Define integers I, J5, K by

(22.1) I, =5+ 0850)+ ...+ 82,4(5) s=1,...,m),
(22.2) J; =5+ 0wi(s) + ...+ dpy_s(s) s=1,...,»),
(22.3) Ks = s + 8214w (5) + - . . + 0zt wam () (s=1,...,5+v).
Then

v

wtr u
(23) I;I . S I;Il .g Bs,-

Proof. Define z;, w; by 2, = p — Z;, ws =v — Wy for all s =1,2,... .
Then 0=2z1=... 22 w=u 02w =...2wW_n=v, and 3z, +
Wpem = m, where m = u + ». Set

24.1) i/ =s+6,06)+ ...+ 8.,_.(s5),
24.2) G/ = 54 8u () F ot b (5),
(24.3) kS = s+ 0040 () F o oo F Ooncmtunm(s) (s=1,...,m).

Observe that for s < u we have

(25.1) 1 =54 06,,(5) + ...+ 8.0_u(s)
since Zg_py1 = ... = Z,—n = p. Also observe that for s < v we have
(25.2) J =54 8 (s) + .+ buos(s),
SIiNCe Wyp—py1 = .. = Wy = V.
Let Ey, ..., E, F1,..., F,beasin §3, and set

A | € oo _| &a
El_Ea—[0]1"°yEa_E1_|:O:|v

Ea+l=Ea+1=Fly'-'yEn=En=Fby

(26) F1=F,,=[O],...,F,,=F1=[O],

Jo N1
Fb+1=Fb+1=E1y---an=Fn=an
=g, .. ...0 =g
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By (24) and [9, Lemma 4], we may find subspace L,, such that
27.1)  dim(L,N(Ey, ..., E;,)) =5
(27.2) dimL,N(Fy, ..., F,) = s

(27.3) dim( L, N Eryry .l =m+1—5s (s=1,...,m).
For s £ u we obtain from (27.1) that
(28) dim (Lm N <Ea+1_181, .oy Ea>) g S.

Now by (25.1), for s = u we have

a—p
a+1 =i = s+21 A—-6,u+1—53)

Il

a—p
s+ Z_; S, —Zt(s)

=5 +Z; 87,(s) = I,.
1=

Thus (27.1) states that

29.1)  dim@LnN{E;, ..., EdZu+1—s (s=1,...,4).

Similarly from (27.2) and (25.2) we get

(29.2) dimn N (Frp..o  F)) Zv+1—=5s (s=1,...,).

We also obtain from (27.3) and (24.3) the inequality

(29.3) dim(Lyp N (g1, ..., 8z 25 (s=1,...,m).

Using (29.1) in succession for s = u, up — 1,..., we may construct an L, in

L,and in (&, ..., E,) such that

dim(L,N{(E;,.. ,E)Zu+1—s (s=1,...,u).
And we may also use (29.2) to find an L, inside L,, and {Fy, . .., Fp) such that
dim(L,N{(Fsp, ..., Fo))=2v+1—s (s=1,...,»).

Then by (26) we see that L,, = L, 1 L,, and so we may find an orthonormal

basis
_ % N _ 0 _ 0
X = [0] v K= [0] » Ko = [x+] v n = [xm]

of L, such that
(30.1) dim({x1, . e, %) N {eryy .- ra) Zu+1—5 (s
30.2) dim((®us1y e+ csZm) N frere-nfo))=v+1—s (s

Il
[y

1"',"‘)7

I
ot
A3

~
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Using the Fischer inequality, Lemma 2, (30.1), (30.2), and (29.3), we obtain

Vi - Ve S det((CX 4, X)) izi,j2m
= det((CX 4, X j))i=1,s=udet ((CX 4, X j) )u<s, s2m
= det((Ax;, x;))1z4,szudet (B, ;) )u<i, szm
= xry oo -aIﬂBJx < B

This completes the proof of Theorem 2.

5. Additional remarks. It is interesting to compare the inequalities
(13) and (23). In the inequalities of Theorem 1 we set i, = I, (s < u) and
js = Js (s £ v). Thus

(31.1) I3 =5+ 05()+ ...+ 08z.u(s) (=1,...,n),
(31.2) Js=s5s+0p () + ... Fom(s) (=1,...,»).

Because of (21.1) and (12.1), the relation (31.1) is valid for s > u and because
of (21.2) and (12.2), the equality (31.2) is valid for s > ». We thus obtain the
following formulas showing both similarities and contrasts between the k,
and the Ki:

(32.1) ky=s54+08205) + ... 820 u(s) F 0w () F .ot F Swyn(s),

(32.2) Ki=s40z4m )+ ...+ 6Z(a—}l)+(b—V)+W(a—ll)+(b—l‘) (s)
s=1,...,u4+»).

In (32) the Z, W, are constrained by the conditions (21). One may ask
whether k; = K; for all s or whether K = k; for all s. Simple numerical
examples show that neither of these possibilities can hold in general. For
example, if a=b=5, p=v=3, Z1=W1 =3, Z,=W, =2, then
k1 = 1, kz = 2, ka = 5, k4 = 8, k5 = 9, ke = 10, whereas Kl = 3, K2 = 4,
K3 =5,K4= 6,K5=8,K6=9.

We will not give here the proof of the claim that (4) is both simpler than
and sharper than (3), since this proof exactly parallels the proof in [10, § 4]
and is basically a restatement of the last part of [7]. The inequalities of
Theorems 1 and 2 may be extended by an easy induction on %2 to obtain
inequalities comparing the eigenvalues of a positive definite

C = (Ast)lés,ték

partitioned into a & X k block matrix with the eigenvalues of the main
diagonal blocks A1y, ..., 4. We do not state this result or give its proof.
The form of these results are directly analogous to the form of the correspond-
ing additive inequalities in [10, Theorems 3 and 4].
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