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THE EIGENVALUES OF COMPLEMENTARY PRINCIPAL 
SUBMATRICES OF A POSITIVE DEFINITE MATRIX 

R. C. THOMPSON AND S. THERIANOS 

1. Introduction. Let C be an ^-square Hermitian matrix, presented in 
partitioned form as 

"A X' 
X* B C = 

where A is a-square and B is ^-square. Let 71 ̂  . . . ^ 7B, «i ̂  . . . ^ aa, 
01 ^ • • • ^ Pb denote the eigenvalues of C, A, B, respectively. In a recent 
paper [10] the following inequality was established: 

m m m m 

=s E «f. + E &., 
s=l s=l s=l ŝ =l 

if 
(1.2) l£ii<...<im£a, lûji<...<jm£b. 

This inequality is a simplification and a sharpening of an inequality established 
earlier in [6], and is a wide generalization of an inequality of Aronszajn [4]. 
This earlier inequality proved in [6] was modelled on the Amir-Moez inequali­
ties for the eigenvalues of a sum of Hermitian matrices [1] and it took the form 

2m m m 

(2) ET*.- ^£«/.»+EJ8«.". 
s=l s=l s—1 

where is",js",ks" are certain somewhat complicated subscripts; an exact 
description of these subscripts may be found in [1] or in [2]. Recently Amir-
Moez and Perry [3] have shown that if C is positive definite, then an exactly 
analogous multiplicative version of (2) is valid for the eigenvalues of C, A, B, 
namely, 

2m m m 

(3) nyt."£Tl«<."II(i,.». 
5 = 1 S = l S = l 

Since (1) is simpler and sharper than (2), it is natural to ask if the following 
multiplicative version of (1) is valid when C is positive definite: if the sub­
scripts satisfy (1.2), then 

m m m m 

(4) n yu+u-sH 7n-m+* s n «nil &.• 
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COMPLEMENTARY PRINCIPAL SUBMATRICES 659 

The inequality (4), if it were true, would be simpler and sharper than (3) 
just as (1) is simpler and sharper than (2). 

It is the purpose of this paper to establish two classes of inequalities, one 
of which will contain (4) as a special case. Our two classes of inequalities may 
each be regarded as a generalization of the Fischer determinantal inequality. 

It is worth noting that the inequality (3) proved by Amir-Moez and Perry 
has the blemish that their subscripts k" in the left-hand side of (3) are not 
always distinct. (This blemish is also present in the inequalities of [6].) 
However this defect does not occur in (1) or in any of the inequalities to be 
proved in this paper. 

In this paper we shall draw upon techniques developed in several recent 
papers studying the eigenvalues of matrix sums and products. At the core of 
our proofs is a construction due to J. Hersch and B. P. Zwahlen [5; 11] of a 
subspace satisfying a certain very tight set of dimensionality restrictions. 
Without this extremely useful construction of Hersch and Zwahlen the proofs 
given below would not have been found. 

This paper is the twenty-fifth in a series of papers studying the eigenvalues 
of minors, sums, and products of matrices. This series of papers and a second 
series of number theoretical papers (totalling five so far) were begun when the 
senior author was a member of the Summer Research Institute of the Canadian 
Mathematical Congress, in Kingston, Ontario, 1961. The senior author wishes 
to express his appreciation to the Canadian Mathematical Congress for 
providing him ten years ago with an opportunity to begin the pursuit of the 
ideas leading to these papers. 

2. Pre l iminary l e m m a s . The following somewhat combinatorial Lemma 1 
is of independent interest and is useful in situations other than those arising 
in this paper. The symbol LL denotes the orthogonal complement of a sub-
space L in a unitary space. 

LEMMA 1. Let Uo, . . . , Un be sub spaces of a unitary vector space Vni each 
space having dimension equal to its subscript. Suppose 

UoCUiC...CUH. 

Let pu . . . , pm be integers satisfying 1 ^ pi < . . . < pm ^ n, and let 
pi,---, Pn-m denote the integers 1, . . . , n complementary to pi, . . . , pm, 
numbered such that 1 ^ pi < . . . < pn-m ^ w. Let Lm be an m-dimensional 
subspace of Vn. 

(i) Suppose that 

(5) dim{Lmr\Up.)^s (s = l, ...,m). 

Then 

(6) dim^Z,,* C\ ^t/p.'-i) ^ n - m + 1 - 5 (s = 1, . . . , n - m). 
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(ii) Suppose that 

(7) dim(Lw C\ - ^ . - i ) £ m + l - s (s = 1, . . . , m). 

Then 

(8) d i m ^ L ^ C\ UP8>) è s (s = 1, . . . , n - m). 

Proof, ii) Let us arrange the integers pi, . . . , pm into strings of consecutive 
integers, as follows: 

gi + 1, . • • ,gi + ei; 

(9) £ 2 + 1, ...,g2 + e2; 

gr+ 1, • • • ygr + er. 

Here gx + ex < g2t g2 + e2 < gz, . . . , gT-i + er-i < gr, 0 g gi, and gr + eT ^ w. 
For convenience let e0 = 0 = go and g r+i = n. 

We shall use the following easily derived identity: for any subspaces L and 
U in Vn we have 

(10) d i m ^ L n 1 [ / ) = w - d i m L - dim £/ + dim(L H f/). 

What are the integers pi,..., pn-m
f when expressed in terms of the g{ and 

et} Arranged in strings of consecutive integers they are: 

1 , . . . ,gi; 
gi + eY + 1, . . . ,g2; 

(11) g2 + e2 + 1, . . . ,g3; 

gT-i + er-i + 1, . . . , gr] 
gr + er + 1, . . . ,n. 

It is straightforward to check that if 1 :g t S gs+i — g s — es, then the integer 
g $ + e$ + t in the list (11) occupies position 

gs + es + t - X *P 
p=0 

in this list. To verify (6) thus amounts to verifying 

s 

dim^Lm H LUgs+es+t-i) ^ n — m + 1 - gs — et - t +J2 ep. 
p=0 

But, by (10), we have 

dim(xLm n ±Uga+ea+t-i) =n-m-gs-es — t+l+ dim(Zm H [/„+,.+,_i) 

^ n - m - g s - e s - t + l+ dim(Lm Pi 17,.+,,) 

^n - m - gs — es — t + I + ^ <V 
P=o 
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The first inequality here follows from the nested property of the spaces Uu 
and the second inequality follows from (5) and the fact that gs + es occupies 
position e0 + e\ + . . . + es in the list (9). This completes the proof of (i). 

(ii) Let Ws = ^Unsy for 5 = 0, . . . , n. Apply (i) to the nested subspaces 
Ws and the integers n + 1 — pm+i-s, s = 1, . . . , m. The complementary 
integers in 1, . . . , n to these integers are the integers n + 1 — £n_m+i_/, 
5 = 1, . . . , n — m. Now (ii) follows from (i). 

LEMMA 2. Let H be an n-square positive semidefinite Hermitian linear trans­
formation on unitary space Vn. Let hi ^ . . . ^ hn be the eigenvalues of H, and 
let U\, . . . , un be an associated orthonormal system of eigenvectors. Let 
Us = (ui, . . . , us), s — 1, . . . , n, where ( ) indicates the linear span of the 
enclosed vectors. Let integers pi, . . . , pm satisfy 1 ^ pi < . . . < pm ^ n and 
suppose that m-dimensional subspace Lm satisfies (5). Let Xi, . . . , xm be any 
orthonormal basis for Lm. Then 

det((Hxu Xj))i^ij^m ^ hpl . . . hPm. 

If, on the other hand, Lm satisfies (7) then 

det((Hxi, Xj))i^ij^m ^ hpl . . . hVm. 

Here ( , ) denotes the inner product in Vn. 

Proof. Lemma 2 is proved as [9, Lemmas 1 and 2]. 

3. The first main result. 

THEOREM 1. Let 

c = \ A x] u [x* B\ 

be an n-square positive definite Hermitian matrix with eigenvalues 71 è . . • à 7n« 
Let A be a-square and B be b-square with eigenvalues ai ^ . . . ^ aa, 
0i ^ . • • = Pb, respectively. Let O ^ j u ^ a , 0 ^ v ^ b and let integers 
ii> • • • > H* ju . . . ,jv be given such that 

(12) 1 ^ h < . . . < ù S a, 1 ^ j i < . . . < j v ^ b. 

Define 

(12.1) is = a + s — ix for s > /z, 

(12.2) j s = b + s - vfor s > v. 

Then 

(i3) n7*,^n^rï/^, 
S=l 5 = 1 S = l 

where ks = is + j s — s for s = 1, . . . , JJL + v. 
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Remark. If we set JX = v = m, inequality (13) reduces to (4). 

Proof. Let gi, . . . , gn be an orthonormal system of column w-tuple eigen­
vectors of C associated respectively with the eigenvalues 71, . . . , yn. Let 
ei, . . . , ea be an orthonormal system of column a-tuple eigenvectors of A 
associated respectively with «i, . . . , aa and le t /1 , . . . , / 6 be an orthonormal 
system of column fr-tuple eigenvectors of B associated respectively with 
0i, . . . , 0». Let 

(14.1) Es = es 

0 
(5 = 1, . . . , a), £ s + a = 

be column w-tuples and let 

(14.2) 
0 

(s = 1, b), Fs+b = 

0 

0 

(s 

(s = 1, 

,&), 

a), 

<7m, 

also be column w-tuples. Set m = p -\- v. 
Let zs = i , — s, ws = j s — s, for s = 1, . . . , ra. Denote by 

^1 V» . . . \ 1>n—m j Jl ^ • • • \ Jn—m > &1 ^ • • • ^ ^n—m 

the integers 1, . . . , # complementary to ii < . . . < im, 71 < 
ki < . . . < km, respectively. By the Lemma of [8] we know that 

i/ = s + ôzl(s) + . . . + ôZm(s), 

j / = s + ôwl(s) + . . . + 5 ^ 0 ) , 

&/ = <r + 521+t01(5) + . . . + àZm+Wm(s) (s = 1, . . . , n — m). 

Here ôx(y) is a jump function defined by ôx(y) = 0 if y ^ x, = 1 if y > x. 
Since zw + wm S n — m, we know from [9, Lemma 4] that an (n — Tri­
dimensional subspace Ln-m of column w-space exists such that 

(15.1) dim(Ln_m C\ (Elf . . . , Eu.)) £ s, 

(15.2) dim(Lw_w H (Fl9 . . . , 7 v » ^ *, 

(15.3) dim(L„_m Pi (g*-, . . . , gn» g » m + 1 — s (s = 1, m). 

Let Lm = -LLn_m. The integers complementary to i / , . . . , 4_m ' are ii, . . . , im\ 
those complementary to jY, . . . ,jn-m'a*eji, • • • , 3m ; and those complementary 
to ki, . . . , kn-J are &i, . . . , km, where ks = is + j s — s, for 5 = 1, . . . , m. 
By Lemma 1 above, applied to (15.1), (15.2), (15.3) we find that 

(16.1) dim(Lm C\ (Ei8, . . . , En)) ^ m + 1 - s, 

(16.2) dim(Lm C\ (Fj9, ...,Fn)) ^ m + 1 - s, 

(16.3) dim(Lm H (gu • • • , gks)) ^ s (s = 1, . . . , m). 

In particular, by setting s = y + 1 in (16.1) we get 

d i m ( L w n ( ^ , . . . , ^ > ) è y 
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and by setting 5 = v + 1 in (16.2) we get 

dim(LmPi (Ei, . . . , Ea)) ^ /*. 

For 5 ^ j u w e now have 

d i m ( L m n <£,., . . . , Ea)) 

= dim(Lm H (Eit, . . . , En) r\ Lm H (Eu . . . , Ea)) 

= dim(Lm H <£<fl . . . , En)) + dim(Lm H (Eu . . . , Ea)) 

- dim(Lm C\ (Eu, ...,En) + Lmn (El9 

^ m + 1 — s + fj. — w = / x + l — 5. 

Thus 

(17.1) dim(Lm H <£,., . . . , £ f l» è /x + 1 - 5 ( 5 = 1 , . 

and similarly 

(17.2) dim(Lm r\ (Fu, . . . , £ 6 » èv+1-s (s = 1, . 

By virtue of (17.1) we may find orthonormal vectors Xi, . 

Xs £ Lmr\ (Eu, . . . , £ a ) (s = 1, . . . , /i) 

and by virtue of (17.2) we may find orthonormal vectors Z ^ i , . . . , XM+„ 
such that 

•Ea)) 

XM such that 

XM+S Ç Lm P\ (£/s, £>> (. = 1, . . . , v). 

Since the spaces (£1, . . . , Ea) and (Fu . . . , £&) are orthogonal, it follows 
that Xi, . . . , Xp, Xy+u • • • î ^M+" form an orthonormal basis of Lm. Further­
more because of (14) we see that 

(18) Xs = (s = 1, . . . , M), X^S = \ \ (s = 1, . . . , v), 

and hence that 

(19.1) dim((xi, 

(19.2) dim«xM+i, . 

M), 

v). 

. , Xy) C\ (eis, . . . , ea)) ^ n+ 1 — s (5 = 1,, 

, xM+„) H </,„ . . . , /6) ^ *> + 1 - s (5 = 1,. 

By (16.3) and Lemma 2, we see that 

(20) 7*1 .- - 7*m ^ det((CX"if Xj)^,^ 

Applying the Fischer inequality to (20) and using (18) we get 

7*1 • • • 7km ^ det((Axu Xjïïigijgp • det((Bxt, ^ ) ) M < 0 ^ m . 

Finally, applying Lemma 2 to each of the factors on the right-hand side 
obtained here and making use of (19.1) and (19.2) we get 

det ((A x t, X]))i£ij£p ^ an .. .atll, 

det((Bxit Xj^^u^m g /S,! . . . pj9. 

The proof of (13) is now complete. 
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4. The second main result. 
T H E O R E M 2. Assume the hypotheses of Theorem 1. Let ôx(y) denote a jump 

function, defined by dx(y) = 0 if y ^ x, 5x(y) = 1 if y > x. Let integers 
Zi , . . . , Z0_„, Wi, . . . , Wt-, satisfy 

^ W i è ^ l . . . ^ WV-, ^ 0. 

(* = 1 , . 

(* = 1, ,0, 
(5 = 1, . . . , H + v). 

(21.1) 

(21.2) 

sa 
(21.3) Zs = 0 (s > a - »), Ws = 0 (s > b - p) 

Define integers Is, Js, Ks by 

(22.1) Is = s + 5Zl(s) + . . . + 8Za_,(s) 

(22.2) J, = s + ôWl(s) + . . . + ôWb_v(s) 

(22.3) X . = ^ + ôZl+Wl(s) + . . . + ÔZn_m+Wn_m(s) 

Then 

(23) KT*. ^n«/.fi^.. 
5 = 1 S = l 5 = 1 

Proof. Define zs, ws by zs = \x — Zs, ws = v — Ws for ail s = 1, 2, . . . . 
T h e n 0 ^ zx ^ . . . ^ zw_m ^ /x, 0 ^ «ii ^ . . . S wn-m ^ *s and zn_m + 
^n-m ^ w, where w = M + ?• Set 

(24.1) *,' = s + ôzl(s) + ... + ôzn_m(s), 

(24.2) i / = 5 + ôwl(s) + . . . + ôWn_m(s), 

(24.3) k/ = s + ôgl+m(s) + . . . + S2n_w+„B_m(s) (5 = 1, 

Observe t h a t for s ^ /z we have 

(25.1) ij = s + ôzl(s) + . . . + ôZa_,(s) 

since za_M+i = . . . = £n_w = y. Also observe t h a t for s ^ *> we have 

(25.2) j , ' = s + 8wl(s) + . . . + ôm_v(s), 

since wb-v+1 = . . . = ww_m = *>. 
Let Eu . . . , £ n , Fi, . . . , Fn be as in § 3, and set 

, m). 

Ei = Ea = 

(26) F1 = Fb = 

ea 

0 

0 

, . . . , Ea — E i — , 

É a +i = Ea+i = Fi, . . . , En = En = Fbf 

,,..,A-*=[°J, 
^ & + l = ^ 6 + 1 = ^ 1 > 

I l = gn, • • • , gn = gl-

F = F = F 
1 n * n ±-Jay 
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By (24) and [9, Lemma 4], we may find subspace Lm such that 

(27.1) d i m ( L m n ( £ ! , . . . , Êw)) Zs 

(27.2) d i m ( L w n < A , . . . , ^ v ) ) *s 

(27.3) dim(Lm H <&.,, . . . , gn)) ^ m + 1 - s (s = 1, . . . , m). 

For 5 ^ / i w e obtain from (27.1) that 

(28) dim(Lm H <E f l+i_v , . . . , Ea)) ^ s. 

Now by (25.1), for s ^ /x we have 

a + 1 - W i - / = ^ + X) (1 - *zt(M + 1 - s)) 
t=i 

a—n 

= S + X) ^_0 , (5) 
1=1 

a—ii 

= s + X) *zt (s) = -f«• 

Thus (27.1) states that 

(29.1) dim(Lw H <£,., . . . , Ea) ^ M + 1 - 5 (5 = 1, . . . , ju). 

Similarly from (27.2) and (25.2) we get 

(29.2) dim(Lw H (Fj„ . . . , Fb)) ^ v + l - s (s = l,...,v). 

We also obtain from (27.3) and (24.3) the inequality 

(29.3) dim(Lm H (g1} . . . , gKs) ^s ( 5 = 1 w). 

Using (29.1) in succession for s = /*,/*— 1, . . . , we may construct an LM in 
Lm and in (£1, . . . , Ea) such that 

dim(LM H (EIt, . . . , Ea) ^ n + 1 - s (s = 1, . . . , M). 

And we may also use (29.2) to find an Lv inside Lm and (Fi, . . . , Fb) such that 

dim(L, H (Fj9, . . . , ^ ) ) ^ *> + 1 - ^ (s =l,...,v). 

Then by (26) we see that Lm = LM JL Lv, and so we may find an orthonormal 
basis 

x1 = [*lJ,... ,x, = [**J ,x„+1 = [^°J , . . . ,xm = [x°J 

of Lm such that 

(30.1) dim((xi, . . . , * „ } H <*/., . . . , ea» è / i + 1 - 5 (s = 1, . . . , ju), 

(30.2) dim«xM+1, . . . , xm) C\ (fJê, . . . , / 6 » ^ v + l - s (5 = 1, . . . , „). 
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Using the Fischer inequality, Lemma 2, (30.1), (30.2), and (29.3), we obtain 

7KI • . • 7Km S det((CXu Xj)) 

^ det((CXu Xj^i^ij^detitCXu Xj))^,^ 

= det((ÂXi, Xj))i^ifj^det((Bxu Xj))n<ijSm 

This completes the proof of Theorem 2. 

5. Additional remarks. It is interesting to compare the inequalities 
(13) and (23). In the inequalities of Theorem 1 we set is = Is (s S M) and 

j s = J s (s g v). Thus 

(31.1) is = s + ôZl(s) + . . . + ôZa_»(s) (s = 1, . . . , M), 

(31.2) j s = s + ôWl(s) + . . . + ôWb_v(s) (s = l,...,v). 

Because of (21.1) and (12.1), the relation (31.1) is valid for s > fx and because 
of (21.2) and (12.2), the equality (31.2) is valid for s > v. We thus obtain the 
following formulas showing both similarities and contrasts between the ks 

and the Ks: 

(32.1) ks = 5 + ôZl(s) + . . . + ôZa_»(s) + ôWl(s) + . . . + ôWh_,(s), 

(32.2) Ks = s + ôZl+Wl(s) + . . . + 8Z(a_fx:)+(b_V)+W(a_tl)+(b_v)(s) 

(s = 1, . . . , /x + v). 

In (32) the Zt, Wt are constrained by the conditions (21). One may ask 
whether ks ^ Ks for all 5 or whether Ks ^ ks for all s. Simple numerical 
examples show that neither of these possibilities can hold in general. For 
example, if a = b = 5, /* = v = 3, Zi = W\ = 3, Z2 = W2 = 2, then 
&i = 1, k2 = 2, &3 = 5, &4 = 8, &5 = 9, &6 = 10, whereas i£i = 3, K2 = 4, 
i£3 = 5, X4 = 6, i£5 = 8, i£6 = 9. 

We will not give here the proof of the claim that (4) is both simpler than 
and sharper than (3), since this proof exactly parallels the proof in [10, § 4] 
and is basically a restatement of the last part of [7]. The inequalities of 
Theorems 1 and 2 may be extended by an easy induction on k to obtain 
inequalities comparing the eigenvalues of a positive definite 

C — (Ast)i^Stt^k 

partitioned into a k X k block matrix with the eigenvalues of the main 
diagonal blocks i n , . . . , AkJc. We do not state this result or give its proof. 
The form of these results are directly analogous to the form of the correspond­
ing additive inequalities in [10, Theorems 3 and 4]. 
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