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The skeleton of a variety of groups

R.M. Bryant and L.G. Kovacs

The skeleton S(U_) of a variety IJ of groups is defined to be

the intersection of the section closed classes of groups which

generate U. • If m is an integer, m > 1 , A is the variety

of all abelian groups of exponent dividing m , and V, is any

locally finite variety, it is shown that the skeleton of the

product variety A V is the section closure of the class of

finite monolithic groups in A V . In particular, S

generates A V . The elements of S(AV) are described more

explicitly and as a consequence it is shown that

consists of all finite groups in A V if and only if m is a

power of some prime p and the centre of the countably infinite

relatively free group of V, is a p-group.

1. Introduction

If £ is a class of groups then sD and q£ denote the classes of

all groups isomorphic to, respectively, subgroups and factor groups of

groups in £ • If G is a group, an element of QS{G} will be called a

eeotion of G . A class I) is called eeation closed if QSD = I) and, as

is well-known, for any class I) , QSI) is section closed. For basic facts

and terminology relating to varieties of groups we refer to [9] - where,

however, a section is called a factor. For any variety IJ we write F(lJ)

for the class of all finite groups in H , M(lj) for the class of all

finite monolithic groups in IJ and C(tJ) for the class of all critical
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groups in U. • Thus

C(U) c M(U) c F(U) .

A denotes the variety of all abelian groups and, for any positive integer

m , A^ the variety of all abelian groups of exponent dividing m . Also,

C(m) denotes a cyclic group of order m .

The skeleton of a variety U is denoted by SQj) and is defined to

be the intersection of the section closed classes of groups which generate

£ . Thus S(IJ) consists of the groups G with the property that G t qsJ)

whenever varD = JU . We shall tie interested in varieties U, such that

•S(U,) generates IJ and which have, therefore, a unique minimal section

closed generating class. Not all varieties have this property: neither do

all locally finite varieties, nor all product varieties. We note the

following examples.

(i) S(A) consists only of groups of order 1 .

(ii) If IJ is the (locally finite) variety generated by the

dihedral group of order 8 then

S(U) = q s f c W , C(2)xc(2)} .

(iii) For any prime p , S(AA ) = Qs{C(p)} and S ( A A ) =

If 2 is a locally finite variety then JJ = .varC(lJ) , by 51. Ul of

[9]. Thus S(U) c qsC(U) . If also C(U) c S(U) then S(U) = QSC(U) and

•S(lJ) generates ]J . Certain locally finite varieties are known to have

this property. For example, Theorems 2 and 3 of Cossey [4] show that if IJ

is a variety of /1-groups (a locally finite variety in which nilpotent

groups are abelian) then C(lJ) E 5 Q i ) • Also, in this "case, C(|J) = M(U) ,

by (1.66) of [8]. Thus, if U is a variety of 4-groups,

5(U) = osC(U) = qsM(U) .

One of the objects of the present paper is to prove a similar result for

product varieties of the form A V where m is a positive integer,

m > 1 , and V is a locally finite variety. A^V is locally finite by

21.lU of [9]. It is a consequence of the Corollary of Brisley and Kovacs

[7] that, for any prime p , S(k A ) = F(A A ) . Here we shall obtain an
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explicit description of the elements of SfAYJ and, in particular, extend

the Brisley-Kovacs result by finding necessary and sufficient conditions

on m and V, to ensure S(A V ) = F h v ) . Such locally finite varieties

JJ satisfying -S(JJ) = F(U) are particularly interesting. They have the

property that every class of groups which generates IJ discriminates IJ .

(See Chapter 1, §7, of [9] for the notion of discrimination.) This is a

consequence of the following remark (proof below).

(1.1). Let I) be a class of groups contained in the locally finite

variety IJ . Then I) discriminates IJ if and only if F(U) c gsD .

Before we state our main results we fix some notation. X denotes an

absolutely free group freely generated by elements x, , x_, ... , and we

write X, for the subgroup <x, , Xp, ..., x,> of Xm generated by

x. , x_, ..., Xj, : this is a free group of rank k . If V. is a variety

we write *V(V.) for the relatively free group of X of finite rank k

5111(1 *"COOL) f o r t n e relatively free group of countably infinite rank. V,(G)

denotes the verbal subgroup of a group G corresponding to V, . We shall

always take p to be a prime. If G is a group then Z(G) denotes the

centre of G and 0 ,Z{G) the subgroup of Z(G) consisting of the

elements of finite order prime to p . For any variety V, , 0 , Z (^

is a fully-invariant subgroup of ^ ( X ) • W e

THEOREM 1.2. For any locally finite variety X aru^ anU integer

m > 1 ,

Hence S ( A | ) generates A V .

Suppose that m = p d p 1 ' ... p(r)a ( l > ) where the p(i) are

distinct primes, the ot(i) are positive integers, and r - 1 . Then, for

any locally finite variety X »
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=

Thus, by Theorem 1.2,

and to determine the elements of S h v ) it suffices to consider the case

where m is a prime power. This is done in the next two results.

(1.3). Let n and a be positive integers, n prime to p . Then

S[A A ] - csic(pa, n)} ,
V p J

where c{p , n) is the unique critical group which generates 4 A .
p0F=M

(1.3) covers the exceptional case to

THEOREM 1.4. Let V_ be a locally finite variety which is not
abelian of exponent prime to p , and let a. he a positive integer. Then

SIA JM consists of all groups G of FA M such that V (G)/V,(G) is

cyclic and, if VJ.G) is regarded as a V (G)/Vm(G)-module, its composition

factors (if any) are isomorphic and faithful.

COROLLARY 1.5. Let ^ be a locally finite variety and m a
positive integer, m > 1 . Then ^(A^V) = FfAj) if and only if m is a

power of some prime p and Z (^(X)) is a p-group.

We conclude this section toy giving the proofs of (l.l) and (1.3) and

the derivation of Corollary 1.5 from Theorems 1.2 and l.k. The proofs of

Theorems 1.2 and 1.1* will be completed in §4. §§2 and 3 will be devoted to

some preliminary results. However, of these, only (2.1) to (2.5) are

needed for the proof of Theorem 1.2.

Proof of (1.1). Let D and £ be as in the statement of (l.l). If

F(U) c QSI) then I) discriminates U by IT-1*! and 17-5 of [9].

Conversely, suppose that I) discriminates IJ . Let g be a set of

representatives of the non-trivial cosets of u(AT ) in X . Then w is
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finite since Xn/)l{x^ = *" (U,) is finite. Thus w is a finite set of

non-laws of IJ and there is a group D t £ and a homomorphism 6 : X •* D

such that w8 # 1 for all w t w . Since fl t U , n[x ) 2 kerS , and it

follows that U(^w) = ker8 . Therefore F (u) € si) . But every element of

F(U.) lies in Q { F (U.)} for some n . Thus F(y_) c QSD .
— jj — ^_ __

Proof of (1.3). In Chapter U of Cossey [3] it is shown that if n is

prime to p then there is a unique critical group C{pa, n) which

generates A (A^ . (This group has a normal subgroup which is a direct

P

product of t copies of c(p ) , where t is the least positive integer

such that n\p -1 , and with factor group C(n) .) By Theorem 3 of [4] (or

by Theorem 1.2), c(pa, n) t S A A I and it follows that

^ I <\ n)} .

Derivation of Corollary 1.5. If m is a power of p and

is a p-group, then ^ = V and so F(A v) = S{k v) by Theorem l.U. To

see the converse, first note that the order of V F | A V ) is m , while

Theorem 1.2 implies that VjiH) has prime-power order whenever H € S ylVJ .

Thus, if F Qvv) = S Qiv) then m is a prime power - say a power of p .

In this case, if V (G) were non-trivial for some G € F ^ ) then V

would be non-cyclic, and, by Theorem l.U, this would contradict

€ 5(AV) . Thus V, = V and so Z ^ Q p ) is a p-group.

2. Representation theory

Most of our terminology for representation theory follows [51, but we

deal with right modules instead of left modules. Unless otherwise stated

all modules are finitely generated. Groups are usually written

multiplicatively, but for an abelian group we may switch to additive

notation when the group is being regarded as a module. For any positive
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integer m > 1 , Z(m) will denote the ring of integers modulo m . Thus

Z(p) is a field of p elements. Throughout this section G will denote

a finite group and F a field.

If U is a G-module we write fsplitG for the semidirect product of

the abelian group U by G , where the action of G by conjugation on U

is the module action. If U has exponent dividing m then we may regard

V as a Z(m)G-module, that is, a module for the group ring Z(m)G of G

over Z(m) . We shall need a result, covered by cohomology theory, for

which we have not found any really convenient explicit reference. A

special case is proved in the paragraph beginning at the bottom of p. 393

of [/], and the proof there immediately generalizes to give what is needed

here:

(2.1). Let U be an injective Z(m)G-module and let H be an

extension of V by G , where the action of G on U is the module

action. Then H = i/splitG .

If U is a G-module, CAV) denotes the set of elements of G

u

which act trivially on U . We write H S G if H is a subgroup of G

and H 5 G if H i s a normal subgroup of G . We shall require the

following consequence of (2.1).

(2.2). Let H be an extension of the Z(m)G-module U by G , where

the action of G on U is the module action. Suppose that V is an

injective submodule of U and let N 5 H be maximal subject to N 2 H

and V n N = 1 . Then

H/N = Vsplit(G/Cc(K)) .

Proof. H/N is an extension of a factor module U' of U by a

factor group G/M of G where M 5 CAW ) and so U' may be regarded as

a Z(m){G/M)-module. Since V n N = 1 , U' has a submodule V ,

V' = V . Since V' is an injective Z(m)G-module, it is an injective

Z(m)(G/W)-module. Thus V is complemented in W . By the choice of N

it follows that V = U' , and so, by (2.1),

H/N S Vsplit(G/M) .

If G/M is identified with a complement of V in H/N then
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CG/M(V) 2 H/N and V n CQ,M(V) = 1 . Thus, by the choice of N ,

M = CG(V) .

We wish to establish some facts relating to modules over the group

rings FG and Z{m)G . Both F and 2(m) are examples of

quasi-Frobenius rings (see §58 of [5]), so more generally we shall consider

the group ring RG where Ft is a quasi-Frobenius ring with identity. By

Exercise 2(d), p. 1+02 of [5], EG is itself a quasi-Frobenius ring. In

particular RG has maximum condition and minimum condition on right

ideals. We shall only wish to consider finitely generated i?G-modules.

However, we have occasion to use injective hulls (see §57 of [5]) and it is

not perhaps obvious that the injective hull of a finitely generated

i?G-module U is again finitely generated. To see this, consider the soale

of U , denoted by all - that is, the submodule generated by the

irreducible submodules of U . Since all is completely reducible and

finitely generated it is the direct sum of finitely many irreducible

submodules. The injective hull of U is the injective hull of all and

this is the direct sum of the injective hulls of the irreducible summands

of aU . It remains only to note that the injective hull of an irreducible

ifG-module is a principal indecomposable i?G-module, and is therefore a

one-generator module. This follows from (58.6), (58.12) and (58.13) of

[5].

The regular flG-module will like the group ring be denoted by RG .

The Jordan-Holder Theorem, (13.7) of [5], and the Krull-Schmidt Theorem,

(I1*.5) of [5], apply to flG-modules and will be used without further

comment. The i?G-module U is said to be a direct summand of the

i?<J-module V if V is isomorphic to the direct sum of U and some other

flG-module. We shall write U < V if U is isomorphic to a submodule of

V . If n is a non-negative integer then u denotes the direct sum of

n copies of U and is called a direct multiple of U (with the

convention IT0 = 0 ). We say that U is faithful if CQ(U) = 1 : note

that we do not mean that U has zero annihilator in RG . We call U

homogeneous if all of its composition factors are isomorphic (without

requiring that U be completely reducible), and monolithic if it has a

unique irreducible submodule (that is, if all is irreducible). For any
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integer n we put

nU = inu : u t U) ,

writing U additively. Thus nU is a submodule of U . If B S C then

U denotes the restriction of U to RH . If H £ G and V is an

Ftf-module then v denotes the FG-module induced from V . If E is an

extension field of F and U is an FG-module we write U © E = U ®F E

for the corresponding EG-module.

By (56.6) and (58.lU) of [5] we have

(2.3). An RG-module is infective if and only if it is isomorphic to

the direct sum of finitely many principal indecomposable RG-modules.

By (58.12) of [5],

(2.4). A principal indecomposable RG-module is monolithic.

If U is an indecomposable, injective i?G-module, and N 2 G ,

N S CQ{U) , then V is clearly indecomposable and injective regarded as an

f?(C/#)-module. In other words, by (2.3),

(2.5). If V is a principal indecomposable RG-module and N 2 G ,

N £ CV,(l/) > then U regarded as an R(G/N)-module is a principal

indecomposable R{,G/N)-module.

The remainder of this section and the whole of the next section are

only needed for the proof of Theorem 1.1*.

By (2.3), an .RG-module is injective if and only if it is a direct

summand of (RGr1 for some n . If J < C and H has index k in G

then it is easy to see that [{RGrn)H = (RH)^in . Thus

(2.6). If U is an injective RG-module and S S C then U^ is an

injective RH-module.

(2.7). If H S G and V is a principal indecomposable RH-module

then, for some principal indecomposable RG-module U , V is a direct

summand of £/„ .
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If a is a positive integer, Z(p )G is homocyclic of exponent p

and so the same is true of every principal indecomposable z[p jG-module.

Clearly p Z\p )G , regarded as a Z(p)G-module, is isomorphic to

Z(p)G . Thus, if U is a principal indecomposable Z (pa) G-module, pa~1U

is a non-zero direct summand of Z(p)G , Since U is monolithic by (2.k),

Ob-X

p U is also monolithic and must be a principal indecomposable

Z(p)G-module:

(2.8). If U is a principal indecomposable z(p ^G-module then

p U is a principal indecomposable Z(p)G-module.

Suppose that F has characteristic p . Let H S 0 , Z(G) and let U

be an FG-module. Since H is a p'-group, Uj, is completely reducible

by Maschke's Theorem, (10.8) of [5]. Thus Uj, is the direct sum of its

maximal homogeneous submodules. Each such summand is G-invariant since

H < Z{G) . Therefore

(2.9). If F has characteristic p , U is an indecomposable

FG-modu le and H 5 0 ,Z(G) , then (/„ is homogeneous.

If V is a principal indecomposable Z(p )G-module and S 5 0 ,Z(G) ,

then (p01"1*/)H is homogeneous by (2.8) and (2.9). But if 0 < 3 < a then

p U/p U and p U are isomorphic 2[p JG-modules, an isomorphism being

given by

p°-\

Thus Uu is homogeneous:

(2.10). If V is a principal indecomposable z(p )G-module and

H £ 0 ,Z(G) t then £/„ is homogeneous.

The next result is a simple consequence of 1,1*.It of [7].

(2.11). If G is a p'-group and V is a non-zero homogeneous

Z(pa)G-module then V is faithful if and only if any composition factor of
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U is faithful.

We shall require the following special case of the subgroup theorem,

(kk.2) of [5]:

(2.12). If H 5 G , # 5 Z(G) and U is an FK-module, then

where k is the index of HK in G .

It is easy to check:

(2.13). If H < G and V is an FH-module then CG[u°) 5 C (V) .

The following is effectively proved in the first part of the proof of

(63.2) of [53.

(2.14). If H 5 G and V is an FG-module then U < {u^\G .

If H 5 G then it is easy to see that FG = {FH)G . Thus, by (2.3),

if U is an injective ^-module then U is an injective FG-module. If

F has characteristic p and H is a p1-group then every F#-module is

injective by Maschke's Theorem. Hence

(2.15). If F has characteristic p , H £ G , H is a p'-group

and U is an FH-module, then V is an injeative FG-module.

If £" is an extension field of F then clearly FG ® E = EG . Thus,

by (2.3),

(2.16). If E is an extension field of F and U is an injective

FG-module then U ® E is an injective EG-module.

(2.17). If E is an extension field of F and V is a principal

indecomposable EG-module then, for some principal indecomposable

FG-module U , V is a direct summand of U ® E .

We shall also need the following result, to which we have not been

able to find any published reference.

(2.18). Suppose E is an extension field of F and U and V are

FG-modules. Then U a>id V have a common non-zero direct summand if and

only if V ® E and V ® E have a common non-zero direct summand.
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Proof. If U and V have a common non-zero direct summand then

clearly so do V © E and V ® E . For the converse it suffices to

consider the case where U is indecomposable. In this case we prove that

U is a direct summand of V .

Since U ® E and V © E have a common non-zero direct summand there

exist elements <f> of Ram(U © E, V ® E) and * of Hom(7 ® E, U ® E)

such that (flip is a non-zero idempotent in End(£/ ® E) . By (29-3) of [5],

we can write

* = I <J>- ® e . , i> = I ip. © e'. ,
i v l i 3 0

where the e. and e'. are elements of E , the <f>. are elements of
t- 0 1*

Hom([/, 7) and the ip. are elements of Hom(7, U) . Thus
3

<f>* = I <(>•*• ® e .e'. .

Suppose that, for some i, 3 , the element ((I.IJJ. is a unit of EndW .

Then the element <t>. of Hom(i/, V) has the right inverse \p .[(f>.^ .)~1 ,
i- 3^3

and it follows that U is a direct summand of V as required. Thus we

assume, by way of contradiction, that no <C•4' • is a unit. Since U is
i 3

indecomposable it follows by Fitting's Lemma, 1,10.7 of [7], that each

<(> .I/J . is nilpotent, and in fact that each element of the right ideal of
t 3

End£/ generated by (J).ip. is nilpotent. Consequently, by V 2.U of [7], the
i- 3

fy.ty. generate a nilpotent right ideal in Endtf . It follows that the
*• 3

element <t>ty of End(I/ © E) is nilpotent. But this contradicts the fact

that <|N|» is a non-zero idempotent.

3. Tensor products

In this section we shall develop a result, (3.5) below, which will be

used in the proof of Theorem 1.1*. F will be a field and G and H

finite groups. If U and V are FC-modules then U © V denotes the

tensor product of U and V , also an FG-module. We shall sometimes call

U © V the inner tensor product of V and V . If U is an FC-module
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and V i s an Fff-module then U ft V denotes the outer tensor -product of

U and V (see (U3.1) of [5 ] ) : th i s i s an F(Gxff)-module. If n i s a

pos i t ive integer we sha l l wri te (f1 for the «-th direct power of G .

The subgroup

{(g, g, ... , g) : g d G}

of Cr will be called the diagonal of Gn and has an obvious isomorphism

with G . If U and V are FG-modules then U ® V is isomorphic to the

restriction of U ff V to the diagonal of G*G identified with G . If U

is an FG-module then lfn denotes the w-th outer tensor power of U and

is an F^-module. if*1 denotes the n-th inner tensor power of V . We

say that the element g of G acts tike a scalar on the FG-module U if

U(f-g) = 0 for some f t F .

If F is algebraically closed, U is an irreducible FG-module and

V is an irreducible F/7-module, then V ff V is an irreducible

F(Cxff)-module, by V,lO.3b) of [7]. Thus, by the remark after the proof of

Theorem 2.2 of [6],

(3.1). If F is algebraically aloaed, U is a principal

indeaomposahle FG-module and V is a principal indecomposable FH-module,

then V § V is a principal indecomposable F(G*H)-module.

It is easy to check (for an arbitrary F ):

(3.2). Let U be an FG-module and V an FH-module. The element

(g» h) of Gx-H acts like a scalar on U # V if and only if g acts like

a scalar on U and h acts like a scalar on V .

We shall also need:

(3.3). If F has characteristic p 3 then for each element g of

G\0 ,Z(G) , there is a principal indecomposable FG-module on which g

does not act like a scalar.

Proof. Suppose that g € G acts like a scalar on each principal

indecomposable FG-module. Then, since F has characteristic p , there

ft
is an integer k prime to p such that g acts trivially on each

principal indecomposable and hence on FG . Similarly, if h i G then
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g~ h~ gh acts trivially on FG . Since FG is faithful it follows that

g = 1 and gh = hg . Thus g € 0 ,Z(G) .

Let U be a faithful FG-module and suppose that exactly m elements

of G act like scalars on U . Then, by Theorem 2 of [2], for some

positive integer k , FG is a direct summand of

For any positive integer d , (FG) is the module induced from a

d-dimensional module for the trivial subgroup of G . Thus, if W is a

d-dimensional FG-module, (1+1*.3) of [5] shows that W ® FG = (FGr^ . Thus

if U (above) has dimension greater than one, for any d there is an n

such that (FG)^ is a direct summand of tr*2 ® V :

(3.4). Suppose that U is a faithful FG-module of dimension greater

than one on which exactly m elements of G act like scalars. Then for

any positive integer d there is a positive integer k such that

^ is a direct summand of

The remainder of this section will be devoted to a proof of the

following result.

(3.5). Let F have characteristic p and suppose that

IH = 0 ,Z(G) t G . Suppose that V is an FG-module such that !/„ is

homogeneous. Then, for some n and some principal indecomposable

FG11-module W , V < V_ where G is identified with the diagonal of G71 .

Proof. It is sufficient to prove the result in the case where V is

injective - otherwise replace V by (7ff) , using (2.lU), (2.15) and

(2.12). Clearly we may also assume that V is non-zero.

First suppose that F is algebraically closed. In this case the

outer tensor product of n principal indecomposable FG-modules is, by

(3.1), a principal indecomposable FG^-module. Thus it suffices to show
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that V is isomorphic to a submodule of some inner tensor product of

principal indecomposable FG-modules.

Since F is algebraically closed and H is abelian, every

irreducible Fff-module is one-dimensional. Since H is a p'-group, every

FG-module is completely reducible by Maschke's Theorem. Therefore every

element of H has scalar action on every homogeneous F/7-module. By

(2.9), every element of H has scalar action on every principal

indecomposable PC-module. Thus, by (3.2), every element of H has scalar

action on any inner tensor product of principal indecomposable PC-modules.

Let U. be the inner tensor product of representatives of all the

isomorphism types of principal indecomposable PC-modules and let £/„ = If?

where I is the exponent of H . Then every element of H has scalar

action on U. and hence acts trivially on £/_ . On the other hand, by

(3.3) and (3.2) no element of G\H acts like a scalar on J2 -

Since V is injective we can write

yi

where the V. are pairwise non-isomorphic principal indecomposable

PC-modules, the d(i) are positive integers, and r 2 1 since V is

non-zero. Since Vn is completely reducible and homogeneous it is a

ti

direct multiple of some irreducible Pfl-module P . Thus, for each t ,

(V.) is also a direct multiple of P . Let N = Cff(P) and let

U = V, ® i/o . Then £/„ is a direct multiple of P . No element of G\H

acts like a scalar on U and so N = C_(£/) . We now regard V , the V.

and t/ as F(G/ff)-modules and P as an F(#/tf)-module. W is a faithful

F(G/N)-module and ff/ff is the subgroup of G/N consisting of those

elements which act like scalars on U . Since H + G , U has dimension

greater than one. Let d be the maximum of the d(i) and m the order

of H/N . Then, by (3-1*), there is a J: such that (F(G/N)} is a

direct summand of
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The restriction of iPi+'1 to H/N is a direct multiple of pSk+1' . Thus

for exactly one j , 0 S j 5 m-1 , {Vr )#/•, is a direct multiple of

P . By (2.5) each V. is a principal indecomposable F(G/N)-modale; and

i s a direct multiple of P . Consequently, for each i , 7r is

a direct summand of Ijr . Thus 7 is a direct summand of if*** .
which is an inner tensor product of principal indecomposable FG-modules as

required.

Now let F be arbitrary (of characteristic p ) and E the algebraic

closure of F . Since V is injective we can write

f
i

where the V. are pairwise non-isomorphic principal indecomposable
1

FG-modules and the d(i) are positive integers. V^, is homogeneous and

completely reducible, so it is a direct multiple of some irreducible

£W-module P . Let P' be an indecomposable direct summand of P ® E .

Then P' is irreducible by Maschke's Theorem. For each i , [v. © E)v

is a direct multiple of P®E , and, by (2.16), V. ®E is an injective

£G-module. Therefore, by (2.3) and (2.9), V. © E has a principal
Is

indecomposable direct summand V., whose restriction to H is a direct

multiple of P' . Suppose that, for each i ,

where V... is not a direct summand of 7._ . By the first part we can

choose n and a principal indecomposable R^-module W' such that

@ 7

i

is a direct summand of (W')_ - where G is identified with the diagonal
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of <J . By (2.17) there is a principal indecomposable FG^-module W

such that W' is a direct sunmand of W ® E . Thus

~ '£1

is a direct summand of {W ® E)~ = Wr ® E .

Suppose that

where no V. is a direct summand of (/' . Then
1

WG® E = (®(vi ® £)®
Z(t)] © (I/1 © E) .

By (2.18), V.^ is not a direct summand of W" ® E or of K. ® E for

j + i . Thus

i l

i s a direct summand of

Therefore, for all i , d{i)k{i) 5 l(i)k(i) and so d(i) £ Z(t) . Thus

P is a direct summand of W_ and the proof of (3.5) is complete.

4. Proof of the theorems

Throughout this section V, will be a locally finite variety, m a

positive integer, m > 1 , and £ - A V . We write F(°°) = Fm(V) ,

G(c°) = i^Qi) and take F(">) , G(°°) , to be (relatively) freely generated

by {/1. /2. •••} » {0^ ff2. •••} . respectively. For any positive

integer n , we write F(n) = <fx fn> and G(n) = (̂  ?n> .

Thus F(n) = F (V.) and C(w) = f (U) .

Let M be the class of groups of the form UsplitH where H € F(V!)

and U i s a fai thful pr incipal indecomposable Z(m)//-module. We f i r s t
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prove that MQi) c sM . Suppose G € M(U) . If V^G) = 1 then

G i F(^) . Since G is monolithic and Z(m)G is faithful there is a

faithful principal indecomposable Z(m)G-module U . Thus G f s{i/splitG)

and i/splitG 6 M . Suppose then that ^(G) 4- \ . Let K = G/Vj,G) and let

U be the injective hull of V^G) regarded as a Z(m)#-module. Since G

is monolithic, V^(G) is a monolithic module. Hence U is monolithic and,

by (2.3), i/ is a principal indecomposable Z(m)X-module. Since V(G) < £/

we can form a group G* > G which is an extension of 1/ by K . (use the

same factor set as in the extension G of V^G) by K .) By (2.l), G*

splits over £/ and we can write G* = £/split# and regard X as a

complement of U in G* . Let N = C (I/) . Then N 5 G* and
A

ff n £/ = 1 . Hence N n G = l , since X(G) contains the monolith of G .

Thus, putting H = X/iV and regarding V as a Z(m)#-module,

G € s{(/split#} . But V is a faithful principal indecomposable

Z(m)ff-module, by (2.5). Thus M(£) c sM .

Proof of Theorem 1.2. Let M' be the class of groups of the form

Vs-plit [F(n)/c] , where n is a positive integer and V is a principal

indecomposable Z(m)F(w)-module regarded as a module for F{n)/C where

C = Cp, AV) . We next show that M c QEM1 . Suppose that J/splitff ? M .

Take w so that there is an epimorphism 6 : F(n) •*• H and regard U as a

Z(m)F(n)-module, via 6 . Let V be the injective hull of U . Since U

is monolithic by (2.1+), V is monolithic. Thus, by (2.3), 7 is a

principal indecomposable Z(m)F(n)-module. Let C = C-, AV) . Then

C 5 ker6 , since U is a faithful Z(m)ff-module, and so i/splitff is a

section of Vsplit (F(n)/c) . Thus M c atM' .

Since

C(V) c M(U) c sM c Q ^ '

and C(lJ) generates £ , Theorem 1.2 will follow if we can show that

M' C S(Uj . Suppose then that | is a generating class for ^ and

G 6 M1 ,

G = 7split(F(n)/c) .

We shall show that G i QSD .

Let £/ = vjG(n+l)) . Then there is an isomorphism 5 : UG{n)/U •* F(n)
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in which ( ^ K = f^ . i = X, 2, ..., n . Since U i A^ , we may regard

U as a Z(m)F(w)-module, via %, . Let e be the exponent of V, . Then

We now prove that g generates a regular submodule of U . Let W be a

regular Z(m)F(n+l)-module generated by an element w , and regard

H = ftfeplitF(w+l) as the semidirect product of subgroups W and F(n+l) .

Since H t U there is a homomorphism <J> : C(n+l) -»• fl in which g •§ = f. ,

i = 1, 2, . .., n , and g <(i = uf . Thus writing W additively,

ff* = Z w
i=0

Since w generates the regular Z(m)F(n+l)-module W it is clear that g<i>

generates a regular submodule of W-, > . It follows that g generates a

regular submodule of U .

Since U contains a regular Z(m)F(n)-module we may take V 5 U .

Thus, by (2.U), OV is a minimal normal subgroup of UG(n) . Since £

generates £ and G(n+X) is relatively free in V. , there is a group D

in £ and a homomorphism i|i : G{n+X) •* D in which OV jp ker^ . Let

J = (kerifO n UG(n) . Then OV n J = 1 and consequently V n J = 1 . Let

tf be a normal subgroup of UG{n) containing J and maximal subject to

V n N = 1 . Then UG(n)/N £ QSJ) . But, by (2.2),

UG(n)/N = Vsplit (f(n)/c) .

This completes the proof of Theorem 1.2.

ex
Proof of Theorem 1.4. From now on we take m = p , where a is a

positive integer, and assume that V. is not abelian of exponent prime to

p . Also we put

W = V = varF(°°)/O , Z ( F ( ~ ) ) .

Thus W is non-trivial and, for any group J of V , W(tf) < 0 , Z(#) .

We shall call a finite group p-special if it is an extension (necessarily

split) of an abelian p-group A by a cyclic p'-group B such that, if
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A is regarded as a B-module, A is homogeneous with faithful composition

factors. It is straightforward to check that the class of p-special

groups is section closed.

Let J, denote the class of groups G of F(lJ) such that W(G) is

p-special. Then it is easy to see that J3 is also the class of groups of

F(JJ) which are an extension of a group U i A (recall m = pa ) by a

group H i V, such that V[(H) is cyclic and, if U is regarded as a

W(ff)-module, it is homogeneous with faithful composition factors. Theorem

1.1* is equivalent to the statement SQj) = ji . Since the proof of Theorem

1.2 shows that S(lJ) = qsM , to prove Theorem l.U it suffices to prove that

S3 = QSM .

We first prove that QSM C jj . Let G t M , G = tfsplitff . Since

W(#) 5 0 ,Z(H) , Uv/H\ is homogeneous by (2.10). It is faithful since U

is faithful. Thus, by (2.11), V i \ has faithful composition factors.

Since W(ff) is abelian and has a faithful, irreducible Z(p)-module it is

cyclic. Thus G 6 £ by the second characterization of J3 . If C f S

and H i QS{<?} , then W(S) € Q S ^ W ( G ) } . Thus £ is section closed since

the class of p-special groups is section closed. Hence qsMc S. .

To complete the proof of Theorem 1.1+ we must show that S £ g s M .

Suppose then that G ( 5 : we shall show that G £ QSM . Using the second

description of J3 , G is an extension of a group U f ̂  by a group

H i V. such that Q(H) is cyclic and, if U is regarded as a

W(fl)-module, U is homogeneous with faithful composition factors. We

first consider the case where U = 1 . Since W(#) is a cyclic p'-group

there is a faithful irreducible Z{p)W(#)-module P , and G = H is

obviously isomorphic to a subgroup of (r )splittf . But ();/(//) i s

homogeneous with faithful composition factors by (2.12). Thus we may now

assume that V ? 1 .

Let U* be the injective hull of U as Z(m)#-module. Then, since

U £ U* , we can form an extension G* > G of U* by H . It suffices to

show that G* f gsM . But, by (2.1), G* = £/*split# . Let V = OU = OU* .

Then V is a non-zero Z(p)ff-module whose restriction to lf(s) is

homogeneous and faithful. We now apply the following lemma, whose proof we
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leave till last.

(5.1). Let H t F-Cvj and let V be a non-zero Z{p)H-module whose

restriction to W(#) is faithful and homogeneous. Then there are finite

groups K, L, M of V , K > L * M , such that H = L/M and, if V is

regarded as a Z{p)L-module, then V < W for some faithful principal

indecomposable Z{p)K -module W .

Let K, L, M and W be as in the conclusion of (5.1). Let W* be

the injective hull of W as a Z(m)#-module. Since OW* = aW , W* is

monolithic by (2.U). Thus, by (2.3), it is a principal indecomposable

Z(m)#-module. Also, W* is clearly faithful, since W is faithful. Thus

VsplitK is in M and so (WJ^splitL is in sM . Since V < V£ , there

is a monomorphism Q : V -*• (W*). . But (W*)T is injective by (2.6).

Consequently there is a homomorphism <f> : U* •*• (W*)T whose restriction to

V is 8 . Since V = all* , ij> is a monomorphism. Thus £/*splitL is in

sM and £/*split# is in Q S ^ . This completes the proof, apart from the

proof of (5.1).

Proof of (5.1). In this proof all modules are over Z(p) . Choose n

so that H is isomorphic to a factor group F(n)/N of F{n) and write

Y = w(f(«)) and Z = 0 ,z(f(n+l)) . Since V is not abelian of exponent

prime to p , and n + 1 2 2 , Z + F{n+l) . Suppose z « Z n F(n) .

Then, for some integer k prime to p , z = 1 and 3 / n + 1
 = fn+\

z •

Since z is a word in /\, /„, ..., / only, it follows that

s d 0 ,Z(F(°°)} . Thus z ( Y and Z n F{n) < Y . But y 5 w(f(n+l)) < Z

and so Z n F(n) = y .

Since H = F(n)/N we can regard V as an F(n)-module, and, since

iN/N ,

Vy is homogeneous and Cy[v^ < N . For a p'-group a homogeneous module

is a direct multiple of a principal indecomposable module, by Maschke's

Theorem. Thus, by (2.7), there is a homogeneous Z-module U such that

VY < UY . By (2.12), [if )„ is a direct multiple of U , and so is
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homogeneous. Thus, by (3.5), there is a positive integer r and a

principal indecomposable module W for (f(n+l)}r such that, identifying

F{n+1) with the diagonal of (F(n+l))r ,

Therefore

^ " )f(n) % WF(n) •

By (2.lit),

(u )FM - (u )Fin)

and by (2.12),

Therefore V < Wp{n) .

Now let

C = C (W) .
( ) r

Then

by (2.13). Therefore C n f(n) 5 Z n F(n) = Y . But

C n Y = Cy(Vy) < Cy(7y) < N ,

and so C n F(n) < /V . Take

K = (F(n+l))r/C , L = F(n)C/C , M = NC/C .

Then W is a faithful principal indecomposable K-module by (2.5)- Also

L/M = F(n)C/NC = F(n)/ [F(n)nNC) = H ,

since F(n) n NC = iy(Cnf(n)) = N . (5-l) follows.
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