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Introduction

This is the first of a series of papers concerning what might be thought of as ‘locally grouped spaces’, in
a loose analogy with the locally ringed spaces of algebraic geometry. The spaces that we have in mind
are simplicial sets that generalise the simplicial sets that underlie and determine the classifying spaces
of finite (or compact) groups. If the analogy is pursued, then the role of ‘structure sheaf’ is provided
by the ‘fusion systems’ associated with these spaces. Our approach here will be purely algebraic
and combinatorial, so we will not be concerned with topological realisations. All of the groups to be
considered will be finite; but a parallel series of papers representing some joint work with Alex Gonzalez
will considerably broaden the scope.

Finite localities were introduced by the author in [Ch1], in order to give a positive solution to this
question: Given a saturated fusion system F on a finite p-group, does there exist a ‘classifying space’
for F, and if so, is such a space unique up to isomorphism? The solution given in [Ch1] was closely tied
to the specific goal and did not allow for a complete development of ideas. The aim here is to provide
such a development. In part, our aim is to supplement the theory of saturated fusion systems over a
finite p-group. As part of that program, we shall need to establish a sort of dictionary that will establish
an equivalence between such notions as ‘partial normal subgroup of a proper locality’ and ‘normal
subsystem of a saturated fusion system’. This is done in a separate paper coauthored with Ellen Henke
[ChHe].

The division into several papers closely parallels the extent to which fusion systems are drawn into
the developing picture. This Part I can be characterised by its having no direct involvement with fusion
systems, and by there being no mention in it of 𝑝′-elements or 𝑝′-subgroups of a group, other than in
one application (see Proposition 4.12).

Let G be a group, and let W(𝐺) be the free monoid on G. Thus, W(𝐺) is the set of all words in the
alphabet G, with the binary operation given by concatenation of words. The product 𝐺×𝐺 → 𝐺 extends,
by generalised associativity, to a ‘product’ Π : W(𝐺) → 𝐺, whereby a word 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈

W(𝐺) is mapped to 𝑔1 · · · 𝑔𝑛. The inversion map on G induces an ‘inversion’ on W(𝐺), sending w to
(𝑔−1

𝑛 , · · · , 𝑔−1
1 ). In fact, one may easily replace the standard definition of ‘group’ by a definition given

in terms of Π and the inversion on W(𝐺). One obtains the notion of partial group by restricting the
domain of Π to a subset D of W(𝐺), where D, the product, and the inversion, are required to satisfy
conditions (see Definition 1.1) that preserve the outlines of the strictly group-theoretic setup. When one
looks at things in this way, a group is simply a partial group G having the property that D = W(𝐺).

The notions of partial subgroup and homomorphism of partial groups immediately suggest them-
selves, and a partial subgroup of a partial group L may in fact be a group. We say that the partial group
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L is ‘objective’ (see Definition 2.1) provided that the domain D of the product is determined in a cer-
tain way by a collection Δ of subgroups of L (the set of ‘objects’), and provided that Δ has a certain
‘closure’ property. If also L is finite and there exists 𝑆 ∈ Δ such that Δ is a collection of subgroups of
S, where S is maximal in the set (partially ordered by inclusion) of p-subgroups of L, then (L,Δ , 𝑆) is
a (finite) locality.

The basic properties of partial groups, objective partial groups and localities will be derived in
Sections 1 and 2. We then begin in Section 3 to consider partial normal subgroups of localities in detail.
One of the two key results in Section 3 is the Frattini lemma (Corollary 3.11), which states that if N � L
is a partial normal subgroup, thenL = 𝑁L (𝑆∩N)N. The other is Stellmacher’s splitting lemma (Lemma
3.12), which leads to the partition of L into a collection of ‘maximal cosets’ of N and to a partial group
structure on the set L/N of maximal cosets. In Section 4, it is shown that L/N is in fact a locality, and
we obtain versions of the first Nóther isomorphism theorem and its familiar consequences. In particular,
the notions ‘partial normal subgroup’ and ‘kernel of a projection’ turn out to be equivalent. This may
be compared with the situation in the theory of saturated fusion systems, where it is known that no such
equivalence exists.

Section 5 concerns products of partial normal subgroups. The main result here (Theorem 5.1) has
since been considerably strengthened by Henke [He], who shows that the product of any two partial
normal subgroups of a locality is again a partial normal subgroup. The paper ends with a result
(Proposition 5.5) that provides an application of essentially all of the concepts and results from all of
the earlier sections and will play a role in Part III.

Composition of mappings will most often be written from left to right, and mappings that are likely
to be composed with others will be written to the right of their arguments. In particular, this entails
that conjugation within a group G be taken in the right-handed sense, which is standard in finite group
theory; so that 𝑥𝑔 = 𝑔−1𝑥𝑔 for any 𝑥, 𝑔 ∈ 𝐺.

1. Partial groups

The reader is asked to forget what a group is and to trust that what was forgotten will soon be recovered.
For any set X, write W(𝑋) for the free monoid on X. Thus, an element of W(𝑋) is a finite sequence

of (or word in) the elements of X, and the multiplication in W(𝑋) consists of concatenation of words, to
be denoted 𝑢 ◦ 𝑣. The length of the word (𝑥1, · · · , 𝑥𝑛) is n. The empty word is the word (∅) of length 0.
We make no distinction between X and the set of words of length 1.

Definition 1.1. Let L be a nonempty set, let W = W(L) be the free monoid on L, and let D be a subset
of W such that

(1) L ⊆ D (that is, D contains all words of length 1), and

𝑢 ◦ 𝑣 ∈ D =⇒ 𝑢, 𝑣 ∈ D.

Notice that since L is nonempty, (1) implies that also the empty word is in D.
A mapping Π : D → L is a product if

(2) Π restricts to the identity map on L, and
(3) 𝑢 ◦ 𝑣 ◦ 𝑤 ∈ D =⇒ 𝑢 ◦ Π(𝑣) ◦ 𝑤 ∈ D, and Π(𝑢 ◦ 𝑣 ◦ 𝑤) = Π(𝑢 ◦ Π(𝑣) ◦ 𝑤).

An inversion on L consists of an involutory bijection 𝑥 ↦→ 𝑥−1 on L, together with the mapping
𝑤 ↦→ 𝑤−1 on W given by

(𝑥1, · · · , 𝑥𝑛) ↦→ (𝑥−1
𝑛 , · · · 𝑥−1

1 ).

We say that L, with the product Π : D → L and inversion (−)−1, is a partial group if

(4) 𝑤 ∈ D =⇒ 𝑤−1 ◦ 𝑤 ∈ D and Π(𝑤−1 ◦ 𝑤) = 1,
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where 1 denotes the image of the empty word under Π. Notice that (1) and (4) yield 𝑤−1 ∈ D if 𝑤 ∈ D.
As (𝑤−1)−1 = 𝑤, condition (4) is symmetric.

Example 1.2. Let L be the 3-element set {1, 𝑎, 𝑏}, and let D be the subset of W(L) consisting of all
words w such that the word obtained from w by deleting all entries equal to 1 is an alternating string
of as and bs (of odd or even length and that, if nonempty, may begin either with a or with b). Define
Π : D → L by the formula Π(𝑤) = 1 if the number of a-entries in w is equal to the number of bs;
Π(𝑤) = 𝑎 if the number of as exceeds the number of bs (necessarily by 1); and Π(𝑤) = 𝑏 if the number
of bs exceeds the number of as. Define inversion on L by 1−1 = 1, 𝑎−1 = 𝑏 and 𝑏−1 = 𝑎. It is then
easy to check that L, with these structures, is a partial group. In fact, L is the ‘free partial group on one
generator’, as will be made clear in Example 1.12 below.

It will be convenient to make this definition: a group is a partial group L in which W(L) = D. To
distinguish between this definition and the usual one, we shall use the expression ‘binary group’ for a
nonempty set G with an associative binary operation, identity element and inverses in the usual sense.
The following lemma shows that the distinction is subtle.

Lemma 1.3.

(a) Let G be a binary group, and let Π : W(𝐺) → 𝐺 be the ‘multivariable product’ on G given by
(𝑔1, · · · , 𝑔𝑛) ↦→ 𝑔1 · · · 𝑔𝑛. Then G, together with Π and the inversion in G, is a partial group, with
D = W(𝐺).

(b) Let L be a group: that is, a partial group for which W(L) = D. Then L is a binary group with
respect to the operation given by restricting Π to words of length 2 and with respect to the inversion
in L. Moreover, Π is then the multivariable product on L defined as in (a).

Proof. Point (a) is given by generalised associativity in the binary group G. Point (b) is a straightforward
exercise and is left to the reader. �

Here are a few basic consequences of Definition 1.1.

Lemma 1.4. Let L (with D, Π, and the inversion) be a partial group.

(a) Π is D-multiplicative. That is, if 𝑢 ◦ 𝑣 is in D, then the word (Π(𝑢),Π(𝑣)) of length 2 is in D, and

Π(𝑢 ◦ 𝑣) = Π(𝑢)Π(𝑣),

where ‘Π(𝑢)Π(𝑣)’ is an abbreviation for Π((Π(𝑢),Π(𝑣)).
(b) Π is D-associative. That is,

𝑢 ◦ 𝑣 ◦ 𝑤 ∈ D =⇒ Π(𝑢 ◦ 𝑣)Π(𝑤) = Π(𝑢)Π(𝑣 ◦ 𝑤).

(c) We have 𝑢 ◦ 𝑣 ∈ D if and only if 𝑢 ◦ (1) ◦ 𝑣 ∈ D, and then = Π(𝑢 ◦ 𝑣) = Π(𝑢 ◦ (1) ◦ 𝑣).
(d) If 𝑢◦𝑣 ∈ D, then both 𝑢−1◦𝑢◦𝑣 and 𝑢◦𝑣◦𝑣−1 are in D,Π(𝑢−1◦𝑢◦𝑣) = Π(𝑣) andΠ(𝑢◦𝑣◦𝑣−1) = Π(𝑢).
(e) The cancellation rule: If both 𝑢 ◦ 𝑣 and 𝑢 ◦𝑤 are in D, and Π(𝑢 ◦ 𝑣) = Π(𝑢 ◦𝑤), then Π(𝑣) = Π(𝑤)

(and similarly for right cancellation).
(f) If 𝑢 ∈ D, then 𝑢−1 ∈ D, and Π(𝑢−1) = Π(𝑢)−1. In particular, 1−1 = 1.
(g) The uncancellation rule: Suppose that both 𝑢 ◦ 𝑣 and 𝑢 ◦ 𝑤 are in D and that Π(𝑣) = Π(𝑤). Then

Π(𝑢 ◦ 𝑣) = Π(𝑢 ◦ 𝑤). (Similarly for right uncancellation.)

Proof. Let 𝑢 ◦ 𝑣 ∈ D. Then Definition 1.1(3) applies to (∅) ◦ 𝑢 ◦ 𝑣 and yields (Π(𝑢)) ◦ 𝑣 ∈ D with
Π(𝑢 ◦ 𝑣) = Π((Π(𝑢)) ◦ 𝑣). Now apply Definition 1.1(3) to (Π(𝑢)) ◦ 𝑣 ◦ (∅) to obtain (a).

Let 𝑢 ◦ 𝑣 ◦ 𝑤 ∈ D. Then 𝑢 ◦ 𝑣 and w are in D by Definition 1.1(1), and D-multiplicativity yields
Π(𝑢 ◦ 𝑣 ◦ 𝑤) = Π(𝑢 ◦ 𝑣)Π(𝑤). Similarly, Π(𝑢 ◦ 𝑣 ◦ 𝑤) = Π(𝑢)Π(𝑣 ◦ 𝑤), and (b) holds.

Since 1 = Π(∅), it is immediate from Definition 1.1(3) that if 𝑤 = 𝑢◦𝑣 ∈ D, then 𝑤′ = 𝑢◦ (1) ◦𝑣 ∈ D.
On the other hand, suppose that 𝑤′ ∈ D. If u and v are empty, then 𝑤 = (∅) ∈ D. Suppose u is not the
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empty word, and write 𝑢 = 𝑢0 ◦ (𝑥). Then 𝑤′ = 𝑢0 ◦ (𝑥, 1) ◦ 𝑣, and since Π(𝑥, 1) = 𝑥, we obtain 𝑤 ∈ D
via D-associativity. Similarly, 𝑤 ∈ D if v is nonempty, so (c) holds.

Let 𝑢 ◦ 𝑣 ∈ D. Then 𝑣−1 ◦ 𝑢−1 ◦ 𝑢 ◦ 𝑣 ∈ D by Definition 1.1(4), and then 𝑢−1 ◦ 𝑢 ◦ 𝑣 ∈ D by Definition
1.1(1). Multiplicativity then yields

Π(𝑢−1 ◦ 𝑢 ◦ 𝑣) = Π(𝑢−1 ◦ 𝑢)Π(𝑣) = 1Π(𝑣) = Π(∅)Π(𝑣) = Π(∅ ◦ 𝑣) = Π(𝑣).

As (𝑤−1)−1 = 𝑤 for any 𝑤 ∈ W, one obtains 𝑤 ◦ 𝑤−1 ∈ D for any 𝑤 ∈ D, and Π(𝑤 ◦ 𝑤−1) = 1. From
this one easily completes the proof of (d).

Now let 𝑢 ◦ 𝑣 and 𝑢 ◦ 𝑤 be in D, with Π(𝑢 ◦ 𝑣) = Π(𝑢 ◦ 𝑤). Then (d) (together with multiplicativity
and associativity, which will not be explicitly mentioned hereafter) yield

Π(𝑣) = Π(𝑢−1 ◦ 𝑢 ◦ 𝑣) = Π(𝑢−1)Π(𝑢)Π(𝑣) = Π(𝑢−1)Π(𝑢)Π(𝑤) = Π(𝑢−1 ◦ 𝑢 ◦ 𝑤) = Π(𝑤),

and (e) holds.
Let 𝑢 ∈ D. Then 𝑢 ◦ 𝑢−1 ∈ D, and then Π(𝑢)Π(𝑢−1) = 1. But also (Π(𝑢),Π(𝑢)−1) ∈ D, and

Π(𝑢)Π(𝑢)−1 = 1. Now (f) follows by Definition 1.1(2) and cancellation.
Let 𝑢, 𝑣, 𝑤 be as in (g). Then 𝑢−1 ◦ 𝑢 ◦ 𝑣 and 𝑢−1 ◦ 𝑢 ◦ 𝑤 are in D by (d). By two applications of (d),

Π(𝑢−1 ◦ 𝑢 ◦ 𝑣) = Π(𝑣) = Π(𝑤) = Π(𝑢−1 ◦ 𝑢 ◦ 𝑤), so Π(𝑢 ◦ 𝑣) = Π(𝑢 ◦ 𝑤) by (e), and (g) holds. �

It will often be convenient to eliminate the symbol ‘Π’ and speak of ‘the product 𝑔1 · · · 𝑔𝑛’ instead
of Π(𝑔1, · · · , 𝑔𝑛). More generally, if {𝑋𝑖}1≤𝑖≤𝑛 is a collection of subsets of L, then the ‘product set
𝑋1 · · · 𝑋𝑛’ is by definition the image under Π of the set of words (𝑔1, · · · , 𝑔𝑛) ∈ D such that 𝑔𝑖 ∈ 𝑋𝑖
for all i. If 𝑋𝑖 = {𝑔𝑖} is a singleton, then we may write 𝑔𝑖 in place of 𝑋𝑖 in such a product. Thus, for
example, the product 𝑔−1𝑋𝑔 stands for the set of all Π(𝑔−1, 𝑥, 𝑔) with (𝑔−1, 𝑥, 𝑔) ∈ D, and with 𝑥 ∈ 𝑋 .

A word of urgent warning: In writing products in the above way, one may be drawn into imagining
that associativity holds in a stronger sense than that given by Lemma 1.4(b). This is an error that is to
be avoided. For example, one should not suppose that if ( 𝑓 , 𝑔, ℎ) ∈ W and both ( 𝑓 , 𝑔) and ( 𝑓 𝑔, ℎ) are
in D, then ( 𝑓 , 𝑔, ℎ) is in D. That is, ‘the product 𝑓 𝑔ℎ’ may be undefined even though the product ( 𝑓 𝑔)ℎ
is defined. Of course, one is tempted to simply extend the domain D to include such triples ( 𝑓 , 𝑔, ℎ) and
‘define’ the product 𝑓 𝑔ℎ to be ( 𝑓 𝑔)ℎ. The trouble is that it may also be the case that 𝑔ℎ and 𝑓 (𝑔ℎ) are
defined but ( 𝑓 𝑔)ℎ ≠ 𝑓 (𝑔ℎ).

For L a partial group and 𝑔 ∈ L, write D(𝑔) for the set of all 𝑥 ∈ L such that the product 𝑔−1𝑥𝑔 is
defined. There is then a mapping

𝑐𝑔 : D(𝑔) → L

given by 𝑥 ↦→ 𝑔−1𝑥𝑔 (and called conjugation by g). Our preference is for right-hand notation for
mappings, so we write

𝑥 ↦→ (𝑥)𝑐𝑔 or 𝑥 ↦→ 𝑥𝑔

for conjugation by g.
The following result provides an illustration of the preceding notational conventions and introduces a

theme that will be developed further as we pass from partial groups to objective partial groups, localities
and (in Part III) regular localities.

Lemma 1.5. Let L be a partial group, and let 𝑓 , 𝑔 ∈ L.

(a) Suppose that the products 𝑓 𝑔 and 𝑔 𝑓 are defined and that 𝑓 𝑔 = 𝑔 𝑓 . Suppose further that 𝑓 ∈ D(𝑔).
Then 𝑓 𝑔 = 𝑓 .

(b) Suppose that 𝑓 ∈ D(𝑔) and 𝑓 𝑔 = 𝑓 . Then 𝑔 ∈ D( 𝑓 ), 𝑓 𝑔 = 𝑔 𝑓 and 𝑔 𝑓 = 𝑔.
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Proof.

(a) We are given ( 𝑓 , 𝑔) ∈ D, so ( 𝑓 −1, 𝑓 , 𝑔) ∈ D and Π( 𝑓 −1, 𝑓 , 𝑔) = 𝑔, by Lemma 1.4(d) and D-
associativity. We are also given 𝑓 ∈ D(𝑔) and 𝑓 𝑔 = 𝑔 𝑓 , so

𝑓 𝑔 = Π(𝑔−1, 𝑓 , 𝑔) = Π((𝑔−1, 𝑓 𝑔) = Π(𝑔−1, 𝑔 𝑓 ) = Π(𝑔−1, 𝑔, 𝑓 ) = 𝑓 .

(b) Set 𝑣 = ( 𝑓 −1, 𝑔, 𝑔−1, 𝑓 , 𝑔). As (𝑔−1, 𝑓 , 𝑔) ∈ D, it follows from Lemma 1.4(d) that also 𝑣 ∈ D and
Π(𝑣) = 𝑔. Then ( 𝑓 −1, 𝑔, 𝑓 ) = ( 𝑓 −1, 𝑔, 𝑓 𝑔) ∈ D by D-associativity and Π(𝑣) = 𝑔 𝑓 = 𝑔. Also, from
𝑣 ∈ D, we obtain ( 𝑓 , 𝑔) ∈ D from Definition 1.1(1), so (𝑔, 𝑔−1, 𝑓 , 𝑔) ∈ D by Lemma 1.4(d). Then
D-associativity yields 𝑓 𝑔 = Π(𝑔, 𝑔−1, 𝑓 , 𝑔) = 𝑔 𝑓 𝑔 = 𝑔 𝑓 . �

Notation. From now on, in any given partial group L, usage of the symbol ‘𝑥𝑔’ shall be taken to imply
𝑥 ∈ D(𝑔). More generally, for X a subset of L and 𝑔 ∈ L, usage of ‘𝑋𝑔’ shall be taken to mean that
𝑋 ⊆ D(𝑔), whereupon 𝑋𝑔 is by definition the set of all 𝑥𝑔 with 𝑥 ∈ 𝑋 .

At this early point, and in the context of arbitrary partial groups, one can say very little about the
maps 𝑐𝑔. The cancellation rule in Lemma 1.4(e) implies that each 𝑐𝑔 is injective, but beyond that the
following lemma may be the best that can be obtained.

Lemma 1.6. Let L be a partial group, and let 𝑔 ∈ L. Then the following hold:

(a) 1 ∈ D(𝑔), and 1𝑔 = 1.
(b) D(𝑔) is closed under inversion, and (𝑥−1)𝑔 = (𝑥𝑔)−1 for all 𝑥 ∈ D(𝑔).
(c) 𝑐𝑔 is a bijection D(𝑔) → D(𝑔−1), and 𝑐𝑔−1 = (𝑐𝑔)

−1.
(d) L = D(1), and 𝑥1 = 𝑥 for each 𝑥 ∈ L.

Proof. By Definition 1.1(4), 𝑔◦∅◦𝑔−1 = 𝑔◦𝑔−1 ∈ D, so 1 ∈ D(𝑔) and then 1𝑔 = 1 by Lemma 1.4(c). Thus
(a) holds. Now let 𝑥 ∈ D(𝑔), and set 𝑤 = (𝑔−1, 𝑥, 𝑔). Then 𝑤 ∈ D, and 𝑤−1 = (𝑔−1, 𝑥−1, 𝑔) by definition
in Definition 1.1. Then Definition 1.1(4) yields 𝑤−1 ◦ 𝑤 ∈ D, so 𝑤−1 ∈ D by Definition 1.1(1). This
shows that D(𝑔) is closed under inversion. Also, Definition 1.1(4) yields 1 = Π(𝑤−1 ◦ 𝑤) = (𝑥−1)𝑔𝑥𝑔,
and then (𝑥−1)𝑔 = (𝑥𝑔)

−1 by Lemma 1.4(f). This completes the proof of (b).
As 𝑤 ∈ D, Lemma 1.4(d) implies that 𝑔 ◦ 𝑤 and then 𝑔 ◦ 𝑤 ◦ 𝑔−1 are in D. Now Definition 1.1(3)

and two applications of Lemma 1.4(d) yield

𝑔𝑥𝑔𝑔−1 = Π(𝑔, 𝑔−1, 𝑥, 𝑔, 𝑔−1) = Π((𝑔, 𝑔−1, 𝑥) ◦ 𝑔 ◦ 𝑔−1) = Π(𝑔, 𝑔−1, 𝑥) = 𝑥.

Thus 𝑥𝑔 ∈ D(𝑔−1) with (𝑥𝑔)𝑔
−1

= 𝑥, and thus (c) holds.
Finally, 1 = 1−1 by Lemma 1.4(f), and ∅ ◦ 𝑥 ◦ ∅ = 𝑥 ∈ D for any 𝑥 ∈ L, proving (d). �

Definition 1.7. Let L be a partial group, and let H be a nonempty subset of L. Then H is a partial
subgroup of L (denoted H ≤ L) if H is closed under inversion (𝑔 ∈ H implies 𝑔−1 ∈ H) and closed with
respect to products. The latter condition means, of course, that Π(𝑤) ∈ H whenever 𝑤 ∈ W(H) ∩ D.
A partial subgroup N of L is a partial normal subgroup of L (denoted N � L) if 𝑥𝑔 ∈ N for all 𝑥 ∈ N
and all 𝑔 ∈ L for which 𝑥 ∈ D(𝑔). We say that H is a subgroup of L if H ≤ L and W(H) ⊆ D.

An equivalent way to state the condition for normality, which relies on the notational convention
introduced above for interpreting product sets 𝑋𝑌𝑍 , is to say that the partial subgroup N of L is normal
in L if 𝑔−1N𝑔 ⊆ N for all 𝑔 ∈ L.

We leave it to the reader to check that if H ≤ L, then H is indeed a partial group, with D(H) =
W(H) ∩ D(L).

Lemma 1.8. Let H and K be partial subgroups of a partial group L, and let {H𝑖}𝑖∈𝐼 be a set of partial
subgroups of L.
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(a) Each partial subgroup of H is a partial subgroup of L.
(b) Each partial subgroup of L that is contained in H is a partial subgroup of H.
(c) If H is a subgroup of L, then H ∩K is a subgroup of both H and K.
(d) Suppose K � L. Then H∩K � H. Moreover, H∩K is a normal subgroup of H if H is a subgroup

of L.
(e)

⋂
{H𝑖 | 𝑖 ∈ 𝐼} is a partial subgroup of L and is a partial normal subgroup of L if H𝑖 � L for all i.

Proof. One observes that in all the points (a) through (e), the requisite closure with respect to inversion
obtains. Thus, we need only be concerned with products.

(a) Let E ≤ H be a partial subgroup of H. Then

D(E) = W(𝐸) ∩ D(H) = W(𝐸) ∩ (W(H) ∩ D(L) = W(𝐸) ∩ D(L),

and (a) follows.
(b) Suppose K ⊆ H, and let 𝑤 ∈ W(K) ∩ D(H). As D(H) ≤ D(L), and since K ≤ L by hypothesis,

we obtain Π(𝑤) ∈ K.
(c) Assuming now that H is a subgroup of L, we have W(H) ⊆ D(L), and then D(H ∩ K) ⊆

D(H) ∩ D(K), so that H ∩K is a subgroup of both H and K.
(d) Let K � L, and let 𝑥 ∈ H ∩ K and ℎ ∈ H with (ℎ−1, 𝑥, ℎ) ∈ D(H). Then (ℎ−1, 𝑥, ℎ) ∈ D(L), and

𝑥ℎ ∈ K. As H ≤ L, we also have 𝑥ℎ ∈ H, so H∩K � H. Now suppose further that H is a subgroup
of L. That is, assume that W(H) ⊆ D(L). Then W(H ∩ K) ⊆ D(L), hence H ∩ K is a subgroup
of H and evidently a normal subgroup.

(e) Set X =
⋂
{H𝑖}𝑖∈𝐼 . Then Π(𝑤) ∈ X for all 𝑤 ∈ W(X) ∩ D(L), so X ≤ L. The last part of (e) may

be left to the reader. �

For any subset X of a partial group L, define the partial subgroup 〈𝑋 | L 〉 of Lgenerated by X to
be the intersection of the set of all partial subgroups of L containing X. Then 〈𝑋 | L 〉 is itself a partial
subgroup of L by Lemma 1.8(e). In Parts I through III of this series, the ambient partial group L will
always be understood, so we shall simply write 〈𝑋〉 for 〈𝑋 | L >.

Lemma 1.9. Let X be a subset of L such that X is closed under inversion. Set 𝑋0 = 𝑋 , and recursively
define 𝑋𝑛 for 𝑛 > 0 by

𝑋𝑛 = {Π(𝑤) | 𝑤 ∈ W(𝑋𝑛−1) ∩ D}.

Then 〈𝑋〉 =
⋃
{𝑋𝑛}𝑛≥0.

Proof. Let Y be the union of the sets 𝑋𝑖 . Each 𝑋𝑖 is closed under inversion by Lemma 1.4(f), and 𝑌 ≠ ∅

since 1 = Π(∅). Since Y is closed under products, by construction, we get 𝑌 ≤ 〈𝑋〉, and then 𝑌 = 〈𝑋〉
by the definition of 〈𝑋〉. �

Lemma 1.10 (Dedekind lemma). Let H, K and A be partial subgroups of a partial group L.

(a) If K ≤ A, then A ∩HK = (A ∩H)K.
(b) If H ≤ A, then A ∩HK = H(A ∩K).

Proof. The proof is identical to the proof for binary groups and is left to the reader. �

Definition 1.11. Let L and L′ be partial groups, let 𝛽 : L → L′ be a mapping, and let 𝛽∗ : W → W′

be the induced mapping of free monoids. Then 𝛽 is a homomorphism (of partial groups) if

(H1) D𝛽∗ ⊆ D′, and
(H2) (Π(𝑤))𝛽 = Π′(𝑤𝛽∗) for all 𝑤 ∈ D.

The kernel of 𝛽 is the set 𝐾𝑒𝑟 (𝛽) of all 𝑔 ∈ L such that 𝑔𝛽 = 1′. We say that 𝛽 is an isomorphism if there
exists a homomorphism 𝛽′ : L′ → L such that 𝛽 ◦ 𝛽′ and 𝛽′ ◦ 𝛽 are identity mappings. (Equivalently,
𝛽 is an isomorphism if 𝛽 is bijective and D𝛽 = D′.)
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Example 1.12. Let L = {1, 𝑎, 𝑏} be the partial group from Example 1.2, let L′ be any partial group,
and let 𝑥 ∈ L′. Then the mapping 𝛽 : L → L′ given by

1 ↦→ 1′, 𝑎 ↦→ 𝑥, 𝑏 ↦→ 𝑥−1

is a homomorphism. In fact, 𝛽 is the unique homomorphism L → L′, which maps a to x, by the
following lemma. Thus, L is the (unique up to a unique invertible homomorphism) free partial group
on one generator. Free partial groups in general can be obtained as ‘free products’ of copies of L (see
Appendix A).

Lemma 1.13. Let 𝛽 : L → L′ be a homomorphism of partial groups. Then 1𝛽 = 1′, and (𝑔−1)𝛽 =
(𝑔𝛽)−1 for all 𝑔 ∈ L.

Proof. Since 11 = 1, (H1) and (H2) yield 1𝛽 = (11)𝛽 = (1𝛽) (1𝛽), and then 1𝛽 = 1′ by left or right
cancellation. Since (𝑔, 𝑔−1) ∈ D for any 𝑔 ∈ L by Lemma 1.4(d), (H1) yields (𝑔𝛽, (𝑔−1)𝛽) ∈ D′,
and then 1𝛽 = (𝑔𝑔−1)𝛽 = (𝑔𝛽) ((𝑔−1)𝛽) by (H2). As 1𝛽 = 1′ = (𝑔𝛽) (𝑔𝛽)−1, left cancellation yields
(𝑔−1)𝛽 = (𝑔𝛽)−1. �

Lemma 1.14. Let 𝛽 : L → L′ be a homomorphism of partial groups, and set N = 𝐾𝑒𝑟 (𝛽). Then N is
a partial normal subgroup of L.

Proof. By Lemma 1.13, N is closed under inversion. For w in W(N) ∩D, the map 𝛽∗ : W → W′ sends
w to a word of the form (1′, · · · , 1′). Then Π′(𝑤𝛽∗) = 1′ by Lemma 1.4(c), and thus Π(𝑤) ∈ N and N
is a partial subgroup of L. Now let 𝑓 ∈ L, and let 𝑔 ∈ N ∩ D( 𝑓 ). Then

( 𝑓 −1, 𝑔, 𝑓 )𝛽∗ = (( 𝑓 𝛽)−1, 1′, 𝑓 𝛽) (by Lemma 1.13),

so that

(𝑔 𝑓 )𝛽 = Π′(( 𝑓 −1, 𝑔, 𝑓 )𝛽∗) = Π′(( 𝑓 𝛽)−1, 1′, 𝑓 𝛽) = 1′

(again using Lemma 1.4(c)). Thus N � L. �

It will be shown later (compare Theorem 4.6) that partial normal subgroups of ‘localities’ are always
kernels of homomorphisms.

Lemma 1.15. Let 𝛽 : L → L′ be a homomorphism of partial groups, and let M be a subgroup of L.
Then 𝑀𝛽 is a subgroup of L′.

Proof. We are given W(𝑀) ⊆ D(L), so 𝛽∗ maps W(𝑀) into D(L′). �

Lemma 1.16. Let G and 𝐺 ′ be groups (and hence also binary groups in the sense of Lemma 1.3). A map
𝛼 : 𝐺 → 𝐺 ′ is a homomorphism of partial groups if and only if 𝛼 is a homomorphism of binary groups.

Proof. We leave to the reader the proof that if 𝛼 is a homomorphism of partial groups, then 𝛼 is
a homomorphism of binary groups. Now suppose that 𝛼 is a homomorphism of binary groups. As
W(𝐺) = D(𝐺) (and similarly for 𝐺 ′), it is immediate that 𝛼∗ maps D(𝐺) into D(𝐺). Assume that
𝛼 is not a homomorphism of partial groups, and let 𝑤 ∈ D(𝐺) be of minimal length subject to
Π′(𝑤𝛼∗) ≠ (Π(𝑤))𝛼. Then 𝑛 > 1, and we can write 𝑤 = 𝑢 ◦ 𝑣 with both u and v nonempty. Then

Π′(𝑤𝛼∗) = Π′(𝑢𝛼∗ ◦ 𝑣𝛼∗) = Π′(𝑢𝛼∗)Π′(𝑣𝛼∗) = ((Π(𝑢))𝛼) ((Π(𝑣))𝛼) = (Π(𝑢)Π(𝑣))𝛼,

as 𝛼 is a homomorphism of binary groups. Since (Π(𝑢)Π(𝑣))𝛼 = (Π(𝑤))𝛼, the proof is complete. �
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2. Objective partial groups and localities

Recall the convention: if X is a subset of the partial group L, and 𝑔 ∈ L, then any statement involving
the expression ‘𝑋𝑔’ is to be understood as carrying the assumption that 𝑋 ⊆ D(𝑔). Thus, the statement
‘𝑋𝑔 = 𝑌 ’ means (𝑔−1, 𝑥, 𝑔) ∈ D for all 𝑥 ∈ 𝑋 , and Y is the set of products 𝑔−1𝑥𝑔 with 𝑥 ∈ 𝑋 .

Definition 2.1. Let L be a partial group. For any collection Δ of subgroups of L, define DΔ to be the
set of all 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈ W(L) such that

(*) there exists (𝑋0, · · · , 𝑋𝑛) ∈ W(Δ) with (𝑋𝑖−1)
𝑔𝑖 = 𝑋𝑖 for all i (1 ≤ 𝑖 ≤ 𝑛).

Then L is objective if there exists a set Δ of subgroups of L such that the following two conditions hold:

(O1) D = DΔ .
(O2) Whenever X and Y are in Δ and 𝑔 ∈ L such that 𝑋𝑔 is a subgroup of Y, then every subgroup of Y

containing 𝑋𝑔 is in Δ .

We also say that Δ is a set of objects for L if (O1) and (O2) hold.

It will often be convenient to somewhat over-emphasise the role of Δ in the above definition by saying
that ‘(L,Δ) is an objective partial group’. By this, we mean L is an objective partial group and Δ is a
set (there will often be more than one) of objects for L.

We mention that the condition (O2) requires more than that 𝑋𝑔 be a subset of Y in order to conclude
that overgroups of X in Y are objects. This is a nonvacuous distinction, since the conjugation map
𝑐𝑔 : 𝑋 → 𝑋𝑔 need not send X to a subgroup of L in a general partial group.

Example 2.2. Let G be a group, let S be a subgroup of G, and let Δ be a collection of subgroups of S
such that 𝑆 ∈ Δ . Assume that Δ satisfies (O2). That is, assume that 𝑌 ∈ Δ for every subgroup Y of S
such that 𝑋𝑔 ≤ 𝑌 for some 𝑋 ∈ Δ and some 𝑔 ∈ 𝐺. Let L be the set of all 𝑔 ∈ 𝐺 such that 𝑆 ∩ 𝑆𝑔 ∈ Δ ,
and let D be the subset DΔ of W(L). Then L is a partial group (via the multivariable product in G and
the inversion in G), and (L,Δ) is an objective partial group. Specifically,

(a) If Δ = {𝑆}, then L = 𝑁𝐺 (𝑆) (so L is a group in this case).
(b) Take 𝐺 = 𝑂+

4 (2). Thus, G is a semidirect product 𝑉 � 𝑆, where V is elementary abelian of order
9 and S is a dihedral group of order 8 acting faithfully on V. Let Δ be the set of all nonidentity
subgroups of S. One may check that 𝑆 ∩ 𝑆𝑔 ∈ Δ for all 𝑔 ∈ 𝐺, and hence L = 𝐺 (as sets). But L is
not a group, as DΔ ≠ W(𝐺).

(c) Take 𝐺 = 𝐺𝐿3 (2) and 𝑆 ∈ 𝑆𝑦𝑙2 (𝐺), and let 𝑀1 and 𝑀2 be the two maximal subgroups of G
containing S. Set 𝑃𝑖 = 𝑂2(𝑀𝑖), and set Δ = {𝑆, 𝑃1, 𝑃2}. Then L = 𝑀1 ∪ 𝑀2 (in fact the ‘free
amalgamated product’ of 𝑀1 and 𝑀2 over S in the category of partial groups). On the other hand,
if Δ is taken to be the set of all nonidentity subgroups of S, then L is somewhat more complicated.
Its underlying set is 𝑀1𝑀2 ∪ 𝑀2𝑀1.

In an objective partial group (L,Δ), we say that the word 𝑤 = (𝑔1, · · · , 𝑔𝑛) is in D via (𝑋0, · · · , 𝑋𝑛)
if the condition (*) in Definition 2.1 applies specifically to w and (𝑋0, · · · , 𝑋𝑛). We may also say, more
simply, that w is in D via 𝑋0, since the sequence (𝑋0, · · · , 𝑋𝑛) is determined by w and 𝑋0.

For any partial group L and subgroups 𝑋,𝑌 of L, set

𝑁L (𝑋,𝑌 ) = {𝑔 ∈ L | 𝑋 ⊆ D(𝑔), 𝑋𝑔 ⊆ 𝑌 },

and set

𝑁L (𝑋) = {𝑔 ∈ L | 𝑋𝑔 = 𝑋}.

Lemma 2.3. Let (L,Δ) be an objective partial group.

(a) 𝑁L (𝑋) is a subgroup of L for each 𝑋 ∈ Δ .
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(b) Let 𝑔 ∈ L, and let 𝑋 ∈ Δ with 𝑌 := 𝑋𝑔 ∈ Δ . Then 𝑁L (𝑋) ⊆ D(𝑔), and

𝑐𝑔 : 𝑁L (𝑋) → 𝑁L (𝑌 )

is an isomorphism of groups. More generally,
(c) Let 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈ D via (𝑋0, · · · , 𝑋𝑛). Then

𝑐𝑔1 ◦ · · · ◦ 𝑐𝑔𝑛 = 𝑐Π (𝑤)

as isomorphisms from 𝑁𝐺 (𝑋0) to 𝑁𝐺 (𝑋𝑛).

Proof.

(a) Let 𝑋 ∈ Δ , and let 𝑢 ∈ W(𝑁L (𝑋)). Then 𝑢 ∈ D via X, 1 ∈ 𝑁L (𝑋) (Lemma 1.6(d)), and
𝑁L (𝑋)

−1 = 𝑁L (𝑋) (Lemma 1.6(c)).
(b) Let 𝑥, 𝑦 ∈ 𝑁L (𝑋), and set 𝑣 = (𝑔−1, 𝑥, 𝑔, 𝑔−1, 𝑦, 𝑔). Then (with assistance from Lemma 1.6(c))

𝑣 ∈ D via Y, and then Π(𝑣) = (𝑥𝑦)𝑔 = 𝑥𝑔𝑦𝑔 (using points (a) and (b) of Lemma 1.4). Thus, the
conjugation map 𝑐𝑔 : 𝑁L (𝑋) → 𝑁L (𝑌 ) is a homomorphism of binary groups (see Lemma 1.3).
Since 𝑐𝑔−1 = 𝑐−1

𝑔 by Lemma 1.6(c), 𝑐𝑔 is an isomorphism of groups.
(c) Let 𝑥 ∈ 𝑁L (𝑋0), set 𝑢𝑥 = 𝑤−1 ◦ (𝑥) ◦ 𝑤 and observe (using Lemma 1.6(c)) that 𝑢𝑥 ∈ D via 𝑋𝑛.

Then Π(𝑢𝑥) can be written as (· · · (𝑥)𝑔1 · · · )𝑔𝑛 , and this yields (c). �

The next lemma provides two basic computational tools.

Lemma 2.4. Let (L,Δ) be an objective partial group.

(a) Let (𝑎, 𝑏, 𝑐) ∈ D, and set 𝑑 = 𝑎𝑏𝑐. Then 𝑏𝑐 = 𝑎−1𝑑 and 𝑎𝑏 = 𝑑𝑐−1 (and all of these products are
defined).

(b) Let ( 𝑓 , 𝑔) ∈ D, and let 𝑋 ∈ Δ . Suppose that both 𝑋 𝑓 and 𝑋 𝑓 𝑔 are in Δ . Then 𝑋 𝑓 𝑔 = (𝑋 𝑓 )𝑔.

Proof. Point (a) is a fact concerning partial groups in general and is immediate from Lemma 1.4(c). Now
consider the setup in (b). As ( 𝑓 , 𝑔) ∈ Δ , we also have ( 𝑓 −1, 𝑓 , 𝑔) ∈ Δ and 𝑔 = Π( 𝑓 −1, 𝑓 , 𝑔) = 𝑓 −1( 𝑓 𝑔).
Now observe that ( 𝑓 −1, 𝑓 𝑔) ∈ D via 𝑃 𝑓 , and apply Lemma 2.3(c) to obtain 𝑋 𝑓 𝑔 = ((𝑋 𝑓 ) 𝑓

−1
) 𝑓 𝑔 =

(𝑋 𝑓 )𝑔. �

The following result and its corollary are fundamental to the entire enterprise. The proof given here
is due to Bernd Stellmacher.

Proposition 2.5. Let (L,Δ) be an objective partial group. Suppose that Δ is a collection of subgroups
of some 𝑆 ∈ Δ . For each 𝑔 ∈ L, define 𝑆𝑔 to be the set of all 𝑥 ∈ D(𝑔) ∩ 𝑆 such that 𝑥𝑔 ∈ 𝑆. Then

(a) 𝑆𝑔 ∈ Δ . In particular, 𝑆𝑔 is a subgroup of S.
(b) The conjugation map 𝑐𝑔 : 𝑆𝑔 → (𝑆𝑔)

𝑔 is an isomorphism of groups, and 𝑆𝑔−1 = (𝑆𝑔)
𝑔.

(c) 𝑃𝑔 is defined and is a subgroup of S for every subgroup P of 𝑆𝑔. In particular, 𝑃𝑔 ∈ Δ for any
𝑃 ∈ Δ with 𝑃 ≤ 𝑆𝑔.

Proof. Fix 𝑔 ∈ L. Then the word (𝑔) of length 1 is in D by Definition 1.1(2), and since D = DΔ by (O1),
there exists 𝑋 ∈ Δ such that 𝑌 := 𝑋𝑔 ∈ Δ . Let 𝑎 ∈ 𝑆𝑔, and set 𝑏 = 𝑎𝑔. Then 𝑋𝑎 and 𝑌𝑏 are subgroups
of S (as 𝑎, 𝑏 ∈ 𝑆), so 𝑋𝑎 and 𝑌𝑏 are in Δ by (O2). Then (𝑎−1, 𝑔, 𝑏) ∈ D via 𝑋𝑎, so also (𝑔, 𝑏) ∈ D. Also
(𝑎, 𝑔) ∈ D via 𝑋𝑎−1 . Since 𝑔−1𝑎𝑔 = 𝑏, we get 𝑎𝑔 = 𝑔𝑏 by Lemma 2.4(a), and hence

𝑎−1𝑔𝑏 = 𝑎−1 (𝑔𝑏) = 𝑎−1 (𝑎𝑔) = (𝑎−1𝑎)𝑔 = 𝑔

by D-associativity. Since 𝑎−1𝑔𝑏 conjugates 𝑋𝑎 to𝑌𝑏 by Lemma 2.3(c), we draw the following conclusion.

(1) 𝑋𝑎 ≤ 𝑆𝑔 and (𝑋𝑎)𝑔 ∈ Δ for all 𝑎 ∈ 𝑆𝑔.
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Now let 𝑐, 𝑑 ∈ 𝑆𝑔. Then (1) shows that both 𝑋𝑐 and 𝑋𝑐𝑑 are members of Δ that are conjugated to
members of Δ by g. Setting 𝑤 = (𝑔−1, 𝑐, 𝑔, 𝑔−1, 𝑑, 𝑔), we conclude (by following 𝑋𝑔 along the chain of
conjugations given by w) that 𝑤 ∈ D via 𝑋𝑔. Then D-associativity yields

Π(𝑤) = (𝑐𝑑)𝑔 = 𝑐𝑔𝑑𝑔 . (2)

Since 𝑐𝑔 and 𝑑𝑔 are in S, we conclude that 𝑐𝑑 ∈ 𝑆𝑔. Since 𝑆𝑔 is closed under inversion by Lemma 1.6(b),
𝑆𝑔 is a subgroup of S. As 𝑋 ≤ 𝑆𝑔 ≤ 𝑆, where X and S are in Δ , (O2) now yields 𝑆𝑔 ∈ Δ . Thus (a) holds.

Since 𝑐𝑔−1 = (𝑐𝑔)
−1 by Lemma 1.6(c), it follows that 𝑆𝑔−1 = (𝑆𝑔)

𝑔. Points (b) and (c) are then
immediate from (a) and Lemma 2.3(b). �

Corollary 2.6. Assume the hypothesis of Proposition 2.5, let 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈ W(L), and define 𝑆𝑤
to be the set of all 𝑥 ∈ 𝑆 such that, for all k with 1 ≤ 𝑘 ≤ 𝑛, the composition 𝑐𝑔1 ◦ · · · ◦ 𝑐𝑔𝑘 is defined on
x and maps x into S. Then 𝑆𝑤 is a subgroup of S, and 𝑆𝑤 ∈ Δ if and only if 𝑤 ∈ D.

Proof. Let 𝑥0, 𝑦0 ∈ 𝑆𝑤 , and let 𝜎 = (𝑥0, · · · , 𝑥𝑛) and 𝜏 = (𝑦0, · · · , 𝑦𝑛) be the corresponding sequences
of elements of S, obtained from 𝑥0 and 𝑦0 via the sequence of maps 𝑐𝑔1 ◦ · · · ◦ 𝑐𝑔𝑘 . Set 𝑆 𝑗 = 𝑆𝑔 𝑗

(1 ≤ 𝑗 ≤ 𝑛). Then 𝑥𝑖−1 and 𝑦𝑖−1 are elements of 𝑆𝑖−1, so 𝑥𝑖−1𝑦𝑖−1 ∈ 𝑆𝑖−1 by Proposition 2.5(a). As 𝑐𝑔𝑖
restricts to a homomorphism on 𝑆𝑖−1 (see Lemma 2.3(b)), it follows that 𝑥𝑖𝑦𝑖 ∈ 𝑆𝑖 . Thus 𝑆𝑤 is closed
under the binary product in S. That 𝑆𝑤 is closed under inversion is given by Lemma 1.6(c), so 𝑆𝑤 is a
subgroup of S.

Suppose that 𝑆𝑤 ∈ Δ , set 𝑃0 = 𝑆𝑤 , and recursively define 𝑃𝑘 for 0〈𝑘 ≤ 𝑛 by 𝑃𝑘 = (𝑃𝑘−1)
𝑔𝑘 . Then

𝑃𝑘 is a subgroup of S by Proposition 2.5(c) and induction on k. Then (O2) yields 𝑃𝑘 ∈ Δ , so 𝑤 ∈ D by
(O1). Conversely, if 𝑤 ∈ D, then (O1) shows that 𝑃 ≤ 𝑆𝑤 for some 𝑃 ∈ Δ , and then 𝑆𝑤 ∈ Δ by (O2). �

Henceforth our focus will be on finite objective partial groups of a certain kind. Here is the main
definition.

Definition 2.7. Let p be a prime, and let L be a finite partial group. Then L is a locality if there exists a
p-subgroup S of L and a set Δ of subgroups of S such that

(L1) (L,Δ) is objective.
(L2) S is in Δ , and S is maximal in the set (partially ordered by inclusion) of p-subgroups of L.

As with Definition 2.1, we shall tend to over-emphasise the roles of S and of Δ by saying that
‘(L,Δ , 𝑆) is a locality’ when, strictly speaking, we mean only that L is a locality and that S and Δ fulfil
the conditions (L1) and (L2). (The extent to which S and Δ are determined by L is explored in Definition
2.15 and Proposition 2.16 below.)

Notice that if L is a locality, then the hypothesis of Proposition 2.5 and Corollary 2.6 is fulfilled and
we may therefore speak of the subgroups 𝑆𝑔 and 𝑆𝑤 of S for any 𝑔 ∈ L and any 𝑤 ∈ W(L).

Lemma 2.8. Let (L,Δ , 𝑆) be a locality, let 𝑤 = (𝑥1, · · · , 𝑥𝑛) ∈ D, and let (𝑔0, · · · , 𝑔𝑛) ∈ W(𝑁L (𝑆)).
Then

(𝑔0, 𝑥1, 𝑔
−1
1 , 𝑔1, 𝑥2, · · · , 𝑥𝑛−1, 𝑔

−1
𝑛−1, 𝑔𝑛−1, 𝑥𝑛, 𝑔𝑛) ∈ D. (*)

In particular, conjugation by 𝑔 ∈ 𝑁L (𝑆) is an automorphism of the partial group L.

Proof. Set 𝑃 = (𝑆𝑤 )
𝑔−1

0 . One then observes that the word displayed in (*) is in D via P. Now fix
𝑔 ∈ 𝑁L (𝑆). Applying (*) with ℓ(𝑤) = 1 and with 𝑔0 = 𝑔−1 and 𝑔 = 𝑔1, we conclude that there is a
well-defined mapping 𝛼 : L → L given by conjugation by g. To show that 𝛼 is a homomorphism, we
need to check that the induced map 𝛼∗ : W(L) → W(L) sends D into D and that

Π(𝑤𝛼∗) = Π(𝑤)𝛼. (**)
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Set

𝑢 = (𝑔−1, 𝑥1, 𝑔, 𝑔
−1, 𝑥2, · · · , 𝑥𝑛−1, 𝑔, 𝑔

−1, 𝑥𝑛, 𝑔).

Applying (*) with 𝑔−1 in the role of 𝑔𝑖 for all i then yields 𝑢 ∈ D via 𝑃𝑔. Now set 𝑣 = ((𝑥1)
𝑔, · · · , (𝑥𝑛)

𝑔).
Then Π(𝑣) = Π(𝑢) = Π(𝑤)𝑔 by D-associativity, and this yields (**). Replacing g with 𝑔−1 yields the
homomorphism 𝛼−1 by Lemma 1.6(c), and thus 𝛼 is an automorphism of L. �

Lemma 2.9. Let (L,Δ , 𝑆) be a locality, and let 𝑃 ∈ Δ . Then there exists 𝑔 ∈ L such that 𝑁𝑆 (𝑃) ≤ 𝑆𝑔
and such that 𝑁𝑆 (𝑃

𝑔) is a Sylow p-subgroup of 𝑁L (𝑃
𝑔).

Proof. Observe first of all that by (L2), the lemma holds for 𝑃 = 𝑆 and 𝑔 = 1. Among all P for which the
lemma fails to hold, choose P so that first |𝑃 | and then |𝑁𝑆 (𝑃) | is as large as possible. Set 𝑅 = 𝑁𝑆 (𝑃),
and let 𝑅∗ be a Sylow p-subgroup of 𝑁L (𝑃) containing R. Then 𝑅 < 𝑅∗ (proper subgroup), and then
also 𝑅 < 𝑁𝑅∗ (𝑅). We have 𝑃 ≠ 𝑅 as 𝑃 ≠ 𝑆, and then the maximality of |𝑃 | yields the existence of an
element 𝑓 ∈ 𝑁L (𝑅, 𝑆) with 𝑁𝑆 (𝑅

𝑓 ) ∈ 𝑆𝑦𝑙𝑝 (𝑁L (𝑅
𝑓 )).

By Lemma 2.3(b), f -conjugation induces an isomorphism

𝑁L (𝑅)
𝑐 𝑓
−−→ 𝑁L (𝑅

𝑓 ).

By Sylow’s theorem, there exists 𝑥 ∈ 𝑁L (𝑅
𝑓 ) such that (𝑁𝑅∗ (𝑅) 𝑓 )𝑥 ≤ 𝑁𝑆 (𝑅

𝑓 ). Here ( 𝑓 , 𝑥) ∈ D via R,
so Lemma 2.3(c) yields (𝑁𝑅∗ (𝑅) 𝑓 )𝑥 = 𝑁𝑅∗ (𝑅) 𝑓 𝑥 . Thus, by replacing f with 𝑓 𝑥, we may assume that f
was chosen to begin with so that 𝑁𝑅∗ (𝑅) 𝑓 ≤ 𝑁𝑆 (𝑅

𝑓 ). Since 𝑅∗ normalises P and 𝑐 𝑓 is an isomorphism,
it follows that 𝑁𝑅∗ (𝑅) 𝑓 normalises 𝑃 𝑓 , and thus |𝑁𝑆 (𝑃

𝑓 ) | > |𝑁𝑆 (𝑃) |. The maximality of |𝑁𝑆 (𝑃) | in
the choice of P then implies that 𝑃 𝑓 is not a counterexample to the lemma. Set 𝑄 = 𝑃 𝑓 . Thus there
exists ℎ ∈ 𝑁L (𝑁𝑆 (𝑄), 𝑆) such that 𝑁𝑆 (𝑄

ℎ) is a Sylow subgroup of 𝑁L (𝑄
ℎ). Here ( 𝑓 , ℎ) ∈ D via R, so

𝑄ℎ = 𝑃𝑔, where 𝑔 = 𝑓 ℎ, so P is not a counterexample to the lemma, and therefore no counterexample
exists. �

Proposition 2.10. Let (L,Δ , 𝑆) be a locality, and let H be a subgroup of L.

(a) There exists an object 𝑃 ∈ Δ such that 𝐻 ≤ 𝑁L (𝑃). Indeed, there exists a unique largest such P.
(All subgroups are ‘local subgroups’.)

(b) Let P be the largest 𝑃 ∈ Δ as in (a). Then there exists 𝑤 ∈ W(𝐻) such that 𝑃 = 𝑆𝑤 .
(c) If H is a p-subgroup of L, then there exists 𝑔 ∈ L such that 𝐻𝑔 ≤ 𝑆.

Proof. For any 𝑤 = (ℎ1, · · · , ℎ𝑛) ∈ W(𝐻), let 𝑤′ be the word (𝑔1, · · · , 𝑔𝑛) defined by 𝑔𝑖 = ℎ1 · · · ℎ𝑖 .
As H is finite, we may choose w so as to maximise the cardinality of the set 𝑋 = {𝑔1, · · · , 𝑔𝑛}. Suppose
that 𝑋 ≠ 𝐻, let 𝑔 ∈ 𝐻 − 𝑋 , and set ℎ = Π(𝑤)−1𝑔. Then the set of entries of (𝑤 ◦ (ℎ))′ is 𝑋 ∪ {𝑔},
contrary to the maximality of X. Thus 𝑋 = 𝐻.

We have W(𝐻) ⊆ D as H is a subgroup ofL, and thus𝑤 ∈ D via some 𝑃 ∈ Δ . Then 𝑃𝑔𝑖 = 𝑃ℎ1 · · ·ℎ𝑖 ≤ 𝑆
for all i, so 𝑃ℎ ≤ 𝑆 for all ℎ ∈ 𝐻. Set 𝑈 = 〈𝑃ℎ | ℎ ∈ 𝐻〉 (the subgroup of S generated by the union of all
𝑃ℎ for ℎ ∈ 𝐻). Then 𝑈 ∈ Δ by (O2). To complete the proof of (a) and (b) it now suffices to show that
𝐻 ≤ 𝑁L (𝑈), and for this it is enough to observe that, by Lemma 2.4(b), (𝑃 𝑓 )𝑔 is defined and is equal
to 𝑃 𝑓 𝑔 for all 𝑓 , 𝑔 ∈ 𝐻.

Assume now that H is a p-group. By Lemma 2.9, there exist 𝑉 ∈ Δ and 𝑔 ∈ L such that 𝑉 = 𝑈𝑔 and
𝑁𝑆 (𝑉) ∈ 𝑆𝑦𝑙𝑝 (𝑁L (𝑉)). Let 𝑐𝑔 : 𝑁L (𝑈) → 𝑁L (𝑉) be the isomorphism given by Lemma 2.3(b). Thus
𝐻𝑔 is a p-subgroup of 𝑁L (𝑉), so there exists 𝑥 ∈ 𝑁L (𝑉) with (𝐻𝑔)𝑥 ≤ 𝑁𝑆 (𝑉). Since (𝑔, 𝑥) ∈ D via U,
we may apply Lemma 2.3(c), obtaining (𝐻𝑔)𝑥 = 𝐻𝑔𝑥 . Thus (c) holds with 𝑔𝑥 in the role of g. �

The theory being developed here purports to be ‘p-local’, so it is important to be able to analyse the
structure of 𝑁L (𝑈) for U an arbitrary subgroup of S (not necessarily in Δ). Since our policy in this Part
I is to avoid bringing in the language of fusion systems, we shall obtain for now only the following very
limited result concerning such normalisers.
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Lemma 2.12. Let (L,Δ , 𝑆) be a locality, let 𝑅 ≤ 𝑆 be a subgroup of S, and set Γ = {𝑁𝑃 (𝑅) | 𝑃 ∈ Δ}.
Then

(a) 𝑁L (𝑅) is a partial subgroup of L.
(b) If Γ ⊆ Δ , then (𝑁L (𝑅), Γ) is an objective partial group.
(c) If Γ ⊆ Δ and 𝑁𝑆 (𝑅) is a maximal p-subgroup of 𝑁L (𝑅), then (𝑁L (𝑅), Γ, 𝑆) is a locality.

In particular, if 𝑅 � 𝑆, then (𝑁L (𝑅),Δ , 𝑆) is a locality.

Proof. Set L𝑅 = 𝑁L (𝑅). Then Lemma 2.3(c) shows that Π maps W(L𝑅) ∩ D into L𝑅, while Lemma
1.6(c) shows that L𝑅 is closed under the inversion in L. Thus L𝑅 is a partial subgroup of L.

Let D(L𝑅) be the domain of the product in the partial group L𝑅. Then D(L𝑅) = W(L𝑅) ∩ D, by
definition. Assume now that Γ ⊆ Δ , and let 𝑤 ∈ D(L𝑅) via some 𝑃 ∈ Δ . Then 𝑤 ∈ D(L𝑅) via 𝑁𝑃 (𝑅),
and thus L𝑅 satisfies the condition (O1) for objectivity in Definition 2.1. Also, as Γ ⊆ Δ , we have
Γ = {𝑃 ∈ Δ | 𝑃 ≤ 𝑁𝑆 (𝑅)}, so Γ is closed in the sense of condition (O2) in Definition 2.1. This yields
(b). Point (c) is then immediate from Definition 2.7. �

Lemma 2.13. Let (L,Δ , 𝑆) be a locality, and set

𝑂 𝑝 (L) =
⋂

{𝑆𝑤 | 𝑤 ∈ W(L)}.

Then 𝑂 𝑝 (L) is the unique largest subgroup of S that is a partial normal subgroup of L.

Proof. Set 𝑌 = 𝑂 𝑝 (L), let 𝑔 ∈ L, and let 𝑤 ∈ W(L). Then 𝑌 ≤ 𝑆𝑔 and 𝑌 ≤ 𝑆 (𝑔)◦𝑤 , so 𝑌𝑔 ≤ 𝑆𝑤 . Thus
𝑌𝑔 ≤ 𝑌 , so 𝑌 � L.

Now let 𝑋 ≤ 𝑆 with 𝑋 � L. Then 𝑋 � 𝑆. Let 𝑔 ∈ L, and set 𝑃 = 𝑆𝑔. Then conjugation by g is
defined on 𝑁L (𝑃) by Lemma 2.3(b), so 𝑁𝑋 (𝑃)

𝑔 is defined, and then 𝑁𝑋 (𝑃)
𝑔 ≤ 𝑋 as 𝑋 � L. Thus

𝑁𝑋 (𝑃)
𝑔 ≤ 𝑆, so 𝑁𝑋 (𝑃) ≤ 𝑆𝑔. As 𝑆𝑔𝑋 = 𝑃𝑋 is a subgroup of S, it follows that 𝑋 ≤ 𝑃, so 𝑋𝑔 = 𝑋 , and

𝑋 ≤ 𝑂 𝑝 (L). �

Given a locality L, there can be more than one choice for S and, after that, more than one choice for
Δ , such that D = DΔ .

Definition 2.14. Let L be a partial group. An automorphism 𝛼 of L is inner if there exists 𝑔 ∈ L such
that 𝛼 is given by conjugation by g. That is,

(1) 𝑥 ∈ L =⇒ 𝑥𝑔 is defined and is equal to 𝑥𝛼, and
(2) (𝑥1, · · · , 𝑥𝑛) ∈ D =⇒ (𝑥

𝑔
1 , · · · , 𝑥

𝑔
𝑛) ∈ D and 𝑥

𝑔
1 · · · 𝑥

𝑔
𝑛 = (𝑥1 · · · 𝑥𝑛)

𝑔.

Write 𝐼𝑛𝑛(L) for the set of all inner automorphisms of L.

Definition 2.15. Let L be a locality, and let S be a p-subgroup of L. Then S is a Sylow p-subgroup of
L if there exists a set Δ of subgroups of S such that (L,Δ , 𝑆) satisfies the conditions (L1) and (L2) of
Definition 2.7. Write 𝑆𝑦𝑙𝑝 (L) for the set of Sylow p-subgroups of L.

It will be convenient to introduce some notation regarding ‘conjugation’ by words 𝑤 ∈ (L) in the
case of a locality (L,Δ , 𝑆). Thus, let 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈ W(L), and let X be a subgroup of 𝑆𝑤 . For
each 𝑥 = 𝑥0 ∈ 𝑋 and each index i from 1 to n, there is then an element 𝑥𝑖 ∈ 𝑆 defined by 𝑥𝑖 = (𝑥𝑖−1)

𝑔𝑖 ,
and we may write 𝑥𝑤 for 𝑥𝑛. The mapping 𝑥 ↦→ 𝑥𝑤 may be written as

𝑐𝑤 : 𝑋 → 𝑋𝑤 .

Proposition 2.16. Let (L,Δ , 𝑆) be a locality, and let K be the set of all 𝑔 ∈ L such that conjugation by
g is an inner automorphism of L.
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(a) K is a subgroup of L.
(b) For each 𝑤 = (𝑥1, · · · , 𝑥𝑛) ∈ D and each (𝑔0, · · · , 𝑔𝑛) ∈ W(𝐾), we have

(𝑔0, 𝑥1, 𝑔
−1
1 , 𝑔1, 𝑥2, · · · , 𝑔

−1
𝑛−1, 𝑔𝑛−1, 𝑥𝑛, 𝑔𝑛) ∈ D. (*)

(c) Set 𝑄 = 𝑂 𝑝 (𝐾). Then 𝑄 ∈ Δ and 𝐾 = 𝑁L (𝑄). Moreover, for each 𝑤 ∈ D, there exists 𝑃 ≤ 𝑄 ∩ 𝑆𝑤
such that 𝑃 ∈ Δ and 𝑃𝑤 ≤ 𝑄.

(d) 𝑆𝑦𝑙𝑝 (L) = 𝑆𝑦𝑙𝑝 (𝐾).
(e) 𝐼𝑛𝑛(L) � 𝐴𝑢𝑡 (L), and every automorphism of L can be factored as an inner automorphism

followed by an automorphism that leaves S invariant.

Proof. Write S for 𝑆𝑦𝑙𝑝 (L). For 𝑆′ ∈ S, note that 𝑁L (𝑆
′) is a subgroup of L. By Lemma 2.8, the

condition (*) holds with 𝑁L (𝑆
′) in the role of K. Let U be the union (taken over all 𝑆′ ∈ S) of the groups

𝑁L (𝑆
′), and let H be the partial subgroup ofL generated byU. The above observation concerning Lemma

2.8 together with a straightforward argument by induction on word length then yields W(U) ⊆ D, and
thus H is a subgroup of L. Moreover, W(U) has the following property: For any (𝑔1, · · · , 𝑔𝑛) ∈ D(L)
and any (𝑢0, · · · , 𝑢𝑛) with each 𝑢𝑖 ∈ W(U), the word

𝑢0 ◦ 𝑔1 ◦ 𝑢−1
1 ◦ 𝑢1 ◦ 𝑔2 ◦ · · · ◦ 𝑢−1

𝑛−1 ◦ 𝑢𝑛−1 ◦ 𝑔𝑛 ◦ 𝑢𝑛

is in D by induction on the sum of the lengths of the words 𝑢𝑖 . The condition (*) then holds with H in
the role of K, by D-associativity. In particular, conjugation by 𝑔 ∈ 𝐻 is an automorphism of L, and thus
H is a subset of K.

Now let 𝑔 ∈ 𝐾 . Then (L,Δ𝑔, 𝑆𝑔) is a locality, so 𝑆𝑔 ∈ S. Then 𝑆𝑔 ∈ 𝑆𝑦𝑙𝑝 (𝐻), and there exists ℎ ∈ 𝐻
with 𝑆𝑔 = 𝑆ℎ . The product 𝑔ℎ−1 is defined, and then 𝑔ℎ−1 ∈ 𝑁L (𝑆). Thus 𝑔ℎ−1 ∈ 𝐻, so 𝑔 ∈ 𝐻, and we
conclude that 𝐻 = 𝐾 . This completes the proof of (a), (b) and (d). Point (e) is immediate from (d), so it
remains only to prove (c).

By Proposition 2.10(a), K normalises a member of Δ . Then, since 𝑆 ∈ 𝑆𝑦𝑙𝑝 (𝐾), we obtain 𝑄 :=
𝑂 𝑝 (𝐾) ∈ Δ . By Proposition 2.10(b), there exists a word 𝑢 ∈ W(𝐾) such that 𝑄 = 𝑆𝑢 . Then also
𝑄 = 𝑆𝑢−1 . Let 𝑤 ∈ D, and let 𝑓 ∈ 𝑁L (𝑄). The word 𝑣 := 𝑢 ◦ 𝑤 ◦ 𝑢 is in D by (*), and clearly 𝑆𝑣 ≤ 𝑄
and 𝑆𝑣−1 ≤ 𝑄. Set 𝑃 = (𝑆𝑣 )

Π (𝑢) . Then 𝑃 ≤ 𝑆𝑤 ∩𝑄 and 𝑃Π (𝑤) ≤ 𝑄. As 𝑆𝑣 ∈ Δ , we have 𝑃 ∈ Δ . Write
𝑤 = (𝑥1, · · · , 𝑥𝑛). Then

( 𝑓 −1, 𝑥1, 𝑓 , 𝑓
−1, · · · , 𝑓 , 𝑓 −1, 𝑥𝑛, 𝑓 ) ∈ D via 𝑃 𝑓 ,

and this shows that conjugation by f is an inner automorphism of L. Thus 𝐾 = 𝑁L (𝑄), and the proof is
complete. �

Lemma 2.17. Let L be a locality, and let S be a Sylow p-subgroup of L. Then there is a unique smallest
set Δ = Δ0 and a unique largest set Δ = Δ1 of subgroups of S such that the conditions (L1) and (L2) of
Definition 2.7 are satisfied by (L,Δ , 𝑆).

Proof. Take Δ0 to be the overgroup-closure in S of the set of all 𝑆𝑤 for 𝑤 ∈ D. Take Δ1 to be the union
of all the sets Γ of subgroups of S that fulfil (L1) and (L2). �

3. Partial normal subgroups

Throughout this section, we fix a locality (L,Δ , 𝑆) and a partial normal subgroup N � L. Recall that
this means that N ≤ L is a partial subgroup of L and Π(𝑔−1, 𝑥, 𝑔) ∈ N for all 𝑥 ∈ N and all 𝑔 ∈ L for
which (𝑔−1, 𝑥, 𝑔) ∈ D. Set 𝑇 = 𝑆 ∩N.
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Lemma 3.1.

(a) Let 𝑔 ∈ L, and let 𝑃 ≤ 𝑆𝑔. Then (𝑇 ∩ 𝑃)𝑔 = 𝑇 ∩ 𝑃𝑔. In particular, we have (𝑇 ∩ 𝑆𝑔)
𝑔 ≤ 𝑇 .

(b) Let 𝑥 ∈ N, and let P be a subgroup of 𝑆𝑥 . Then 𝑃𝑇 = 𝑃𝑥𝑇 .
(c) T is maximal in the poset of p-subgroups of N.

Proof.

(a) Let 𝑔 ∈ L, let 𝑃 ≤ 𝑆𝑔, and let 𝑡 ∈ 𝑇 ∩ 𝑃. Then 𝑡𝑔 ∈ 𝑆, and 𝑡𝑔 ∈ N as N � L. Thus 𝑡𝑔 ∈ 𝑇 , so

(𝑇 ∩ 𝑃)𝑔 ≤ 𝑇 ∩ 𝑃𝑔 . (*)

Now replace g with 𝑔−1 and replace P with the subgroup 𝑃𝑔 of 𝑆𝑔−1 . Then (*) becomes the statement

(𝑇 ∩ 𝑃𝑔)𝑔
−1

≤ 𝑇 ∩ 𝑃. (**)

Conjugating (**) by g yields 𝑇 ∩ 𝑃𝑔 ≤ (𝑇 ∩ 𝑃)𝑔, and thus (*) is an equality, as required.
(b) Let 𝑎 ∈ 𝑃. Then (𝑃𝑥)𝑎 ≤ 𝑆 and 𝑃𝑎 = 𝑃. Setting 𝑤 = (𝑎−1, 𝑥−1, 𝑎, 𝑥), we then have 𝑤 ∈ D via 𝑃𝑥𝑎.

Now Π(𝑤) = 𝑎−1𝑎𝑥 ∈ 𝑆, while also Π(𝑤) = (𝑥−1)𝑎𝑥 ∈ N, so Π(𝑤) ∈ 𝑇 . Then 𝑎𝑥 ∈ 𝑎𝑇 , and we
have thus shown that 𝑃𝑥 ≤ 𝑃𝑇 . Then 𝑃𝑥𝑇 ≤ 𝑃𝑇 . The reverse inequality is given (as in the proof of
(a)) by replacing x with 𝑥−1 and replacing P with 𝑃𝑥 .

(c) Let R be a p-subgroup of N containing T. By Proposition 2.10(c), there exists 𝑔 ∈ L with 𝑅𝑔 ≤ 𝑆,
and then 𝑅𝑔 ≤ 𝑆 ∩N = 𝑇 . As 𝑇𝑔 = 𝑇 and conjugation by g is injective, we conclude that 𝑅 = 𝑇 .

�

Lemma 3.2. Let 𝑥, 𝑦 ∈ N, and let 𝑓 ∈ 𝑁L (𝑇).

(a) If (𝑥, 𝑓 ) ∈ D, then ( 𝑓 , 𝑓 −1, 𝑥, 𝑓 ) ∈ D, 𝑥 𝑓 = 𝑓 𝑥 𝑓 , and 𝑆 (𝑥, 𝑓 ) = 𝑆 ( 𝑓 ,𝑥 𝑓 ) = 𝑆𝑥 ∩ 𝑆 𝑓 .
(b) If ( 𝑓 , 𝑦) ∈ D, then ( 𝑓 , 𝑦, 𝑓 −1, 𝑓 ) ∈ D, 𝑓 𝑦 = 𝑦 𝑓

−1
𝑓 , and 𝑆 ( 𝑓 ,𝑦) = 𝑆

(𝑦 𝑓 −1
, 𝑓 )

= 𝑆
𝑦 𝑓 −1 ∩ 𝑆 𝑓 .

Proof. Set 𝑄 = 𝑆 (𝑥, 𝑓 ) and 𝑃 = 𝑆𝑥 ∩ 𝑆 𝑓 . As 𝑥 ∈ N, we have 𝑄𝑥𝑇 = 𝑄𝑇 by Lemma 3.1(b). Then since
𝑓 ∈ 𝑁L (𝑇), we obtain 𝑄𝑇 ≤ 𝑆 𝑓 . Thus 𝑄 ≤ 𝑃. But also 𝑃𝑥𝑇 = 𝑃𝑇 , so 𝑃 = 𝑄. Now ( 𝑓 , 𝑓 −1, 𝑥, 𝑓 ) ∈ D
via Q, and Π( 𝑓 , 𝑓 −1, 𝑥, 𝑓 ) = 𝑥 𝑓 = 𝑓 𝑥 𝑓 . We have

𝑄 = 𝑆 𝑓 ∩ 𝑆𝑥 = 𝑆 ( 𝑓 , 𝑓 −1 ,𝑥, 𝑓 ) ≤ 𝑆 ( 𝑓 ,𝑥 𝑓 ) ,

so in order to complete the proof of (a), it remains to show that 𝑆 ( 𝑓 ,𝑥 𝑓 ) ≤ 𝑄.
On the other hand, in addressing (b), set 𝑅 = 𝑆 ( 𝑓 ,𝑦) . Then Lemma 3.1(b) yields 𝑅 𝑓 𝑦𝑇 = 𝑅 𝑓 𝑇 , so

that 𝑅 𝑓 𝑦𝑇 ≤≤ 𝑆 𝑓 −1 . Set 𝑣 = ( 𝑓 , 𝑦, 𝑓 −1, 𝑓 ). Then 𝑣 ∈ D via R, and we have 𝑅 = 𝑆𝑣 . Now D-associativity
yields 𝑓 𝑦 = Π(𝑣) = 𝑦 𝑓

−1
𝑓 . In the special case that 𝑦 = 𝑥 𝑓 , we obtain

𝑅 = 𝑆 ( 𝑓 ,𝑥 𝑓 ) = 𝑆 ( 𝑓 ,𝑥 𝑓 , 𝑓 −1 , 𝑓 ) ≤ 𝑆 (𝑥, 𝑓 ) = 𝑄,

completing the proof of (a). The remainder of (b) now follows as an application of (a) to (𝑦 𝑓
−1
, 𝑓 ), and

the remainder of (b) as an application of (a) to (𝑦 𝑓
−1
, 𝑓 ). �

Lemma 3.3. Let 𝑤 ∈ W(𝑁L (𝑇)) ∩ D, set 𝑔 = Π(𝑤), and let 𝑥, 𝑦 ∈ N.

(a) Suppose that (𝑥) ◦ 𝑤 ∈ D, and set 𝑃 = 𝑆 (𝑥)◦𝑤 . Then 𝑢 := 𝑤 ◦ 𝑤−1 ◦ (𝑥) ◦ 𝑤 ∈ D, and 𝑆𝑢 = 𝑃𝑔.
(b) Suppose that 𝑤 ◦ (𝑦) ∈ D, and set 𝑄 = 𝑆𝑤◦(𝑦) . Then 𝑣 := 𝑤 ◦ (𝑦) ◦ 𝑤−1 ◦ 𝑤 ∈ D, and 𝑆𝑣 = 𝑄.

Proof. We prove only (a), leaving it to the reader to supply a similar argument for (b). As 𝑃𝑥𝑇 = 𝑃𝑇 by
Lemma 3.1(b), and since both 𝑃𝑥 and T are contained in 𝑆𝑤 , we have 𝑃 ≤ 𝑆𝑤 . Then 𝑃𝑔 ≤ 𝑆 by Lemma
2.3(c), and 𝑃𝑔 ≤ 𝑆𝑢 . In particular, 𝑢 ∈ D via 𝑃𝑔. As 𝑆𝑢 ≤ 𝑆𝑤−1 , and (𝑆𝑢)

𝑔−1
≤ 𝑃, we obtain 𝑆𝑢 ≤ 𝑃𝑔.

Thus 𝑆𝑢 = 𝑃𝑔. �
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Lemma 3.4. Let 𝑤 = ( 𝑓1, 𝑔1, · · · , 𝑓𝑛, 𝑔𝑛) ∈ D, with 𝑓𝑖 ∈ 𝑁L (𝑇) and with 𝑔𝑖 ∈ N for all i. Set
𝑢 = ( 𝑓1, · · · , 𝑓𝑛). Then there exists 𝑔 ∈ N such that

𝑆𝑤 ≤ 𝑆𝑢◦(𝑔) and Π(𝑤) = Π(𝑢 ◦ (𝑔)). (*)

Similarly, there exists 𝑔′ ∈ N such that

𝑆𝑤 ≤ 𝑆 (𝑔′)◦𝑢 and Π(𝑤) = Π((𝑔′) ◦ 𝑢). (**)

Proof. The case 𝑛 = 1 is given by Lemma 3.2. For the general case, write

𝑤 = ( 𝑓1, 𝑔1) ◦ 𝑤1,

and set 𝑢1 = ( 𝑓2, · · · , 𝑓𝑛). Induction on n implies that there exists 𝑥1 ∈ N such that 𝑆𝑤1 ≤ 𝑆𝑢1◦(𝑥1) and
Π(𝑤1) = Π(𝑢1 ◦ (𝑥1)). Set

𝑤′ = ( 𝑓1, 𝑔1) ◦ 𝑢1 ◦ (𝑥1).

Thus 𝑆𝑤 ≤ 𝑆𝑤′ , and we have Π(𝑤) = Π(𝑤′) by D-associativity. Apply Lemma 3.3(a) to the word
(𝑔1) ◦ 𝑢1 to obtain (*). A similar argument in which one begins by writing 𝑤 = 𝑤𝑛 ◦ ( 𝑓𝑛, 𝑔𝑛) yields
(**). �

The following result will be of fundamental importance in Part III.

Lemma 3.5. Suppose that

𝐶𝑁L (𝑃) (𝑂 𝑝 (𝑁L (𝑃))) ≤ 𝑂 𝑝 (𝑁L (𝑃)) for all 𝑃 ∈ Δ with 𝑇 ≤ 𝑃. (*)

Then 𝑁N (𝑇) ≤ 𝑁L (𝐶𝑆 (𝑇)𝑇) ≤ 𝑁L (𝐶𝑆 (𝑇)).

Proof. Let 𝑔 ∈ 𝑁N (𝑇), and set 𝑃 = 𝑆𝑔. Then 𝑃𝑔 = 𝑃 by Lemma 3.1(b). Set 𝑀 = 𝑁L (𝑃), 𝐾 = N ∩ 𝑀
and 𝐷 = 𝑁𝐶𝑆 (𝑇 ) (𝑃). Here M is a subgroup of L as 𝑃 ∈ Δ , and then K is a normal subgroup of M
by Definition 1.7(d). We have 𝑇 � 𝑀 by Lemma 3.1(a), so 𝐷 ≤ 𝐶𝑀 (𝑇), and then [𝐾, 𝐷] ≤ 𝐶𝐾 (𝑇).
Notice that 𝑇 ∈ 𝑆𝑦𝑙𝑝 (𝐾) by Lemma 3.1(c), so that 𝐾/𝑇 is a 𝑝′-group. Then 𝐶𝐾 (𝑇) = 𝑍 (𝑇) ×𝑌 , where
Y is a 𝑝′-group; and thus Y is a normal 𝑝′-subgroup of M. Then [𝑂 𝑝 (𝑀), 𝑌 ] = 1, so 𝑌 ≤ 𝑂 𝑝 (𝑀) by
hypothesis, and thus 𝑌 = 1. We then have [𝐾, 𝐷] ≤ 𝑇 , so [𝑔, 𝐷] ≤ 𝑇 , and 𝐷 ≤ 𝑃. As 𝐶𝑆 (𝑇)𝑃 is a
p-group we thereby obtain 𝐶𝑆 (𝑇) ≤ 𝑃. This shows that 𝐶𝑆 (𝑇) is g-invariant for all 𝑔 ∈ NN (𝑇) and
yields the lemma. �

Definition 3.6. Let L ◦Δ be the set of all pairs ( 𝑓 , 𝑃) ∈ L×Δ such that 𝑃 ≤ 𝑆 𝑓 . Define a relation ↑ on
L ◦Δ by ( 𝑓 , 𝑃) ↑ (𝑔, 𝑄) if there exist elements 𝑥 ∈ 𝑁N (𝑃,𝑄) and 𝑦 ∈ 𝑁N (𝑃 𝑓 , 𝑄𝑔) such that 𝑥𝑔 = 𝑓 𝑦.

This relation may be indicated by means of a commutative square

𝑄
𝑔

−−−−−−→ 𝑄𝑔

𝑥

�
⏐⏐

�
⏐⏐𝑦

𝑃
𝑓

−−−−−−→ 𝑃 𝑓

(*)

of conjugation maps, labeled by the conjugating elements, and in which the horizontal arrows are
isomorphisms and the vertical arrows are injective homomorphisms. The relation ( 𝑓 , 𝑃) ↑ (𝑔, 𝑄) may
also be expressed by

𝑤 := (𝑥, 𝑔, 𝑦−1, 𝑓 −1) ∈ D via 𝑃, and Π(𝑤) = 1.
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It is easy to see that ↑ is reflexive and transitive. We say that ( 𝑓 , 𝑃) is maximal in L◦Δ if ( 𝑓 , 𝑃) ↑ (𝑔, 𝑄)

implies that |𝑃 | = |𝑄 |. As S is finite, there exist maximal elements in L ◦ Δ . Since ( 𝑓 , 𝑃) ↑ ( 𝑓 , 𝑆 𝑓 )

for ( 𝑓 , 𝑃) ∈ L ◦ Δ , we have 𝑃 = 𝑆 𝑓 for every maximal ( 𝑓 , 𝑃). For this reason, we will say that f is
↑-maximal in L (with respect to N) if ( 𝑓 , 𝑆 𝑓 ) is maximal in L ◦ Δ .

Lemma 3.7. Let 𝑓 ∈ L.

(a) If 𝑓 ∈ 𝑁L (𝑆), then f is ↑-maximal.
(b) If f is ↑-maximal, then so is 𝑓 −1.
(c) If f is ↑-maximal and ( 𝑓 , 𝑆 𝑓 ) ↑ (𝑔, 𝑄), then g is ↑-maximal, 𝑄 = 𝑆𝑔, and (𝑔, 𝑄) ↑ ( 𝑓 , 𝑆 𝑓 ).

Proof. Point (a) is immediate from Definition 3.6. Now suppose that f is ↑-maximal, and let 𝑔 ∈ L with
( 𝑓 −1, 𝑆 𝑓 −1 ) ↑ (𝑔−1, 𝑆𝑔−1 ). Since 𝑆 𝑓 −1 = (𝑆 𝑓 )

𝑓 and 𝑆𝑔−1 = (𝑆𝑔)
𝑔, one obtains a diagram

(𝑆𝑔)
𝑔 𝑔−1

−−−−−−→ 𝑆𝑔

𝑥

�
⏐⏐

�
⏐⏐𝑦

(𝑆 𝑓 )
𝑓 𝑓 −1

−−−−−−→ 𝑆 𝑓

as in Definition 3.6, from which it is easy to read off the relation ( 𝑓 , 𝑆 𝑓 ) ↑ (𝑔, 𝑆𝑔). Then |𝑆 𝑓 | = |𝑆𝑔 |
as f is ↑-maximal, and then also |𝑆 𝑓 −1 | = |𝑆𝑔−1 |. Thus 𝑓 −1 is ↑-maximal, and (b) holds. Point (c) is
immediate from the transitivity of ↑. �

Lemma 3.8. Let (𝑔, 𝑄), (ℎ, 𝑅) ∈ L ◦Δ with (𝑔, 𝑄) ↑ (ℎ, 𝑅), and suppose that 𝑇 ≤ 𝑅. Then there exists
a unique 𝑦 ∈ N with 𝑔 = 𝑦ℎ. Moreover,

(a) 𝑄𝑦 ≤ 𝑅, and 𝑄 ≤ 𝑆 (𝑦,ℎ) .
(b) If 𝑁𝑇 (𝑄

𝑔) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑄𝑔)), then 𝑁𝑇 (𝑄
𝑦) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑄𝑦)).

Proof. By definition of the relation ↑, there exist elements 𝑢 ∈ 𝑁N (𝑄, 𝑅) and 𝑣 ∈ 𝑁N (𝑄𝑔, 𝑅ℎ) such
that (𝑢, ℎ, 𝑣−1, 𝑔−1) ∈ D via Q and Π(𝑤) = 1.

𝑅
ℎ

−−−−−−→ 𝑅ℎ

𝑢

�
⏐⏐

�
⏐⏐𝑣

𝑄 −−−−−−→
𝑔

𝑄𝑔

In particular, 𝑢ℎ = 𝑔𝑣. Since 𝑇 ≤ 𝑅, points (a) and (b) of Lemma 3.1 yield

𝑇 = 𝑇ℎ , 𝑄𝑢𝑇 = 𝑄𝑇 ≤ 𝑅, and 𝑄𝑔𝑇 = 𝑄𝑔𝑣𝑇 ≤ 𝑅ℎ .

Then

𝑤 := (𝑢, ℎ, 𝑣−1, ℎ−1) ∈ D v𝑖𝑎 (𝑄,𝑄𝑢 , 𝑄𝑢ℎ , 𝑄𝑢ℎ𝑣−1
= 𝑄𝑔, 𝑄𝑔ℎ−1

).

Set 𝑦 = Π(𝑤). Then 𝑦 = 𝑢(𝑣−1)ℎ
−1

∈ 𝑁N(𝑄, 𝑅). Since (𝑢, ℎ, 𝑣−1, ℎ−1, ℎ) and (𝑔, 𝑣, 𝑣−1) are in D (as
L is a partial group), we get 𝑦ℎ = 𝑢ℎ𝑣−1 = 𝑔. This yields (a). The uniqueness of y is given by right
cancellation.

Suppose now that 𝑁𝑇 (𝑄
𝑔) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑄𝑔)). As 𝑁𝑇 (𝑄

𝑦)ℎ = 𝑁𝑇 (𝑄
𝑔), it follows from Lemma

2.3(b) that 𝑁𝑇 (𝑄
𝑦) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑄𝑦)). �

Proposition 3.9. Let 𝑔 ∈ L and suppose that g is ↑-maximal with respect to N. Then 𝑇 ≤ 𝑆𝑔.
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Proof. Set 𝑃 = 𝑆𝑔 and 𝑄 = 𝑃𝑔. We first show

(1) Let 𝑦 ∈ 𝑁N (𝑃, 𝑆). Then |𝑇∩𝑃 | = |𝑇∩𝑃𝑦 | and (𝑔, 𝑃) ↑ (𝑦−1𝑔, 𝑃𝑦). In particular, 𝑦−1𝑔 is ↑-maximal.

We have |𝑇 ∩ 𝑃 | = |𝑇 ∩ 𝑃𝑦 | by Lemma 3.1(a). The following diagram

𝑃𝑦 𝑦−1𝑔
−−−−−−→ 𝑃𝑔

𝑦

�
⏐⏐

�
⏐⏐1

𝑃 −−−−−−→
𝑔

𝑃𝑔

(*)

shows that (𝑔, 𝑃) ↑ (𝑦−1𝑔, 𝑃𝑦), and then 𝑦−1𝑔 is ↑-maximal by Lemma 3.7(c). Thus (1) holds.
Suppose next that 𝑁𝑇 (𝑃) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑃)). Then 𝑁𝑇 (𝑃)

𝑔 ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑄)), by Lemma 2.3(b),
and there exists 𝑥 ∈ 𝑁N (𝑄) such that 𝑁𝑇 (𝑄)𝑥 ≤ 𝑁𝑇 (𝑃)

𝑔. Here (𝑥, 𝑔−1) ∈ D via Q, and we get
𝑁𝑇 (𝑄)𝑥𝑔

−1
≤ 𝑁𝑇 (𝑃) ≤ 𝑆. Thus (𝑔−1, 𝑄) ↑ (𝑥𝑔−1, 𝑁𝑇 (𝑄)𝑄). As 𝑔−1 is ↑-maximal by Lemma 3.7, it

follows that 𝑁𝑇 (𝑄) ≤ 𝑄. As 𝑇𝑄 is a p-group, we then have 𝑇 ≤ 𝑄, so 𝑇 ≤ 𝑃. We have thus shown

(2) If 𝑇 � 𝑃, then 𝑁𝑇 (𝑃) ∉ 𝑆𝑦𝑙𝑝 (𝑁N (𝑃)).

We next show

(3) Suppose that there exists 𝑦 ∈ N such that 𝑃 ≤ 𝑆𝑦 and such that 𝑁𝑇 (𝑃
𝑦) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑃𝑦)). Then

𝑇 ≤ 𝑃.

Indeed, under the hypothesis of (3), we have (𝑔, 𝑃) ↑ (𝑦−1𝑔, 𝑃𝑦) by (1). Then (𝑦−1𝑔, 𝑃𝑦) is maximal in
L ◦ Δ , and 𝑃𝑦 = 𝑆𝑦−1𝑔. If 𝑇 � 𝑃, then 𝑇 � 𝑃𝑦 , and then (2) applies to (𝑦−1𝑔, 𝑃𝑦) in the role of (𝑔, 𝑃)
and yields a contradiction. So, (3) holds.

Among all counterexamples, let g be chosen so that |𝑃 | is as large as possible. By Lemma 2.9, there
exists 𝑓 ∈ L so that 𝑄 𝑓 ≤ 𝑆 and 𝑁𝑆 (𝑄

𝑓 ) ∈ 𝑆𝑦𝑙𝑝 (𝑁L (𝑄
𝑓 )). Set ℎ = 𝑔 𝑓 (where the product is defined

via P) and set 𝑅 = 𝑃ℎ . Let (ℎ′, 𝑃′) be maximal in L ◦ Δ with (ℎ, 𝑃) ↑ (ℎ′, 𝑃′). We note that since
𝑅 = 𝑃ℎ = 𝑄 𝑓 , we have 𝑁𝑇 (𝑅) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑅)). So, if 𝑇 ≤ 𝑃′, then Lemma 3.8(b) applies and yields
ℎ = 𝑦ℎ′ for some 𝑦 ∈ N such that 𝑃 ≤ 𝑆𝑦 and such that 𝑁𝑇 (𝑃

𝑦) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑃𝑦)). The existence of
such an element y contradicts (3), so we conclude that 𝑇 � 𝑃′. Then (ℎ′, 𝑃′) is a counterexample to the
proposition, and the maximality of |𝑃 | yields |𝑃 | = |𝑃′ |. Then (ℎ, 𝑃) is maximal in L ◦Δ , as is (ℎ−1, 𝑅)
by Lemma 3.7(b), so 𝑇 � 𝑅. But 𝑁𝑇 (𝑅) ∈ 𝑆𝑦𝑙𝑝 (𝑁N (𝑅)), so (2) applies with (ℎ−1, 𝑅) in the role of
(𝑔, 𝑃) and yields 𝑇 ≤ 𝑅. Then 𝑇 ≤ 𝑃, and the proof is complete. �

Lemma 3.10. Suppose that 𝑁N (𝑇) ≤ 𝑁L (𝑆). Then every element of 𝑁L (𝑇) is ↑-maximal with respect
to N.

Proof. Let 𝑓 ∈ 𝑁L (𝑇), and set 𝑃 = 𝑆 𝑓 . Then 𝑇 ≤ 𝑃 and 𝑇 ≤ 𝑃 𝑓 . Let (𝑔, 𝑄) ∈ L ◦ Δ with
( 𝑓 , 𝑃) ↑ (𝑔, 𝑄), and let 𝑥, 𝑦 ∈ N be chosen as in Definition 3.6. Then 𝑃 ≤ 𝑄 by Proposition 3.9, and
we have 𝑃 = 𝑃𝑥 and (𝑃 𝑓 )𝑦 = 𝑃 𝑓 ≤ 𝑄𝑔 by Lemma 3.1(b). To show that f is ↑-maximal, it suffices now
to show that 𝑃 = 𝑄, and hence it suffices to show that 𝑁𝑄 (𝑃) ≤ 𝑃.

Set 𝐷 = 𝑁𝑄 (𝑃). Then 𝑇 ≤ 𝑃 ≤ 𝐷 ≤ 𝑆𝑥 , so Lemma 3.1(b) implies that 𝑥 ∈ 𝑁L (𝐷). Since
𝑦 ∈ 𝑁N (𝑇) ≤ 𝑁L (𝑆), we obtain (𝑥, 𝑔, 𝑦−1) ∈ D via D. As 𝑥𝑔 = 𝑓 𝑦 by the setup of Definition 3.6, we
then have 𝑥𝑔𝑦−1 = 𝑓 by Lemma 1.3(g), and thus 𝐷 ≤ 𝑆 𝑓 . That is, we have 𝑁𝑄 (𝑃) ≤ 𝑃, as required. �

If X and Y are subsets of L, then one has the notion of the product 𝑋𝑌 , introduced in Section 1, as
the set of all Π(𝑥, 𝑦) with (𝑥, 𝑦) ∈ D ∩ (𝑋 × 𝑌 ).

Corollary 3.11 (Frattini lemma). Let (L,Δ , 𝑆) be a locality, let N � L be a partial normal subgroup,
and let Λ be the set of ↑-maximal elements of L with respect to N. Then L = NΛ = ΛN. In particular,
we have L = 𝑁L (𝑇)N = N𝑁L (𝑇).
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Proof. Let 𝑓 ∈ L, set 𝑃 = 𝑆 𝑓 , and choose (𝑔, 𝑄) ∈ L ◦ Δ so that ( 𝑓 , 𝑃) ↑ (𝑔, 𝑄) and g is ↑-maximal.
By Proposition 3.9, we have Λ ⊆ 𝑁L (𝑇) and 𝑇 ≤ 𝑆𝑔 = 𝑄, so Lemma 3.8 yields 𝑓 = 𝑥𝑔 for some 𝑥 ∈ N,
and then Lemma 3.2 shows that 𝑓 = 𝑔𝑦, where 𝑦 = 𝑥𝑔. �

The following result will be seen to play a crucial role in the theory being developed here. It was
discovered and proved by Stellmacher in his reading of an early draft of [Ch1]. The proof given here is
his.

Lemma 3.12 (splitting lemma). Let (𝑥, 𝑓 ) ∈ D with 𝑥 ∈ N and with 𝑓 ↑-maximal with respect to N.
Then 𝑆 (𝑥, 𝑓 ) = 𝑆𝑥 𝑓 = 𝑆 ( 𝑓 ,𝑥 𝑓 ) .

Proof. Set 𝑄 = 𝑆 (𝑥, 𝑓 ) . Since 𝑓 ∈ 𝑁L (𝑇) by Proposition 3.9, we may appeal to Lemma 3.2(a) and obtain

(1) 𝑦 := 𝑥 𝑓 is defined and, upon setting 𝑔 = 𝑥 𝑓 , we have 𝑔 = 𝑓 𝑦 and 𝑄 = 𝑆 ( 𝑓 ,𝑦) .

Thus, the problem is to show that 𝑄 = 𝑆𝑔. By (1), we have 𝑄 ≤ 𝑆 𝑓 ∩ 𝑆𝑔, and Lemma 3.2(a) yields the
further result that 𝑄 = 𝑆 𝑓 ∩ 𝑆𝑥 . Set

𝑃0 = 𝑁𝑆 𝑓 (𝑄), 𝑃1 = 𝑁𝑆𝑔 (𝑄), 𝑃 = 〈𝑃0, 𝑃1〉,

and set 𝑅 = 𝑃0 ∩ 𝑃1. Then 𝑄 ≤ 𝑅. In fact, Lemma 2.3(b) shows that 𝑦 = 𝑓 −1𝑔 and that (𝑅 𝑓 )𝑦 = 𝑅𝑔,
so 𝑅 ≤ 𝑄, and thus 𝑃0 ∩ 𝑃1 = 𝑄.

Assume now that (𝑥, 𝑓 ) is a counterexample to the lemma. That is, assume𝑄 < 𝑆𝑔 (proper inclusion).
Then 𝑄 < 𝑃1, so 𝑃1 � 𝑃0. Thus

(2) 𝑃1 � 𝑆 𝑓 .

We consider two cases, as follows.

Case 1. 𝑥 ∈ 𝑁L (𝑇).

Among all counterexamples to case 1, take (𝑥, 𝑓 ) so that |𝑄 | is as large as possible. As 𝑓 ∈ 𝑁L (𝑇)
(Lemma 3.5), we have 𝑇 ≤ 𝑄, and then 𝑥 ∈ 𝑁L (𝑄) by Lemma 3.1(b). Thus 𝑄𝑔 = 𝑄𝑥 𝑓 = 𝑄 𝑓 . Set
𝑄 ′ = 𝑄𝑔. Then Lemma 2.3(b) yields an isomorphism 𝑐 𝑓 : 𝑁L (𝑄) → 𝑁L (𝑄

′). Here 𝑓 = 𝑥−1𝑔 so
𝑐 𝑓 = 𝑐𝑥−1 ◦ 𝑐𝑔 by Lemma 2.3(c). As 𝑥 ∈ 𝑁N (𝑄) � 𝑁L (𝑄), we obtain (𝑃1)

𝑥−1
≤ 𝑁N(𝑄)𝑃1, and then

(𝑃1)
𝑓 = ((𝑃1)

𝑥−1
)𝑔 ≤ (𝑁N (𝑄)𝑃1)

𝑔 ≤ 𝑁N (𝑄 ′)𝑁𝑆 (𝑄
′).

Also (𝑃0)
𝑓 ≤ 𝑁𝑆 (𝑄

′), so

(3) 𝑃 𝑓 ≤ 𝑁N (𝑄 ′)𝑁𝑆 (𝑄
′).

Since 𝑇 ≤ 𝑄 ′, T is a Sylow p-subgroup of 𝑁N (𝑄 ′) by Lemma 3.1(c), and thus 𝑁𝑆 (𝑄
′) is a Sylow

p-subgroup of 𝑁N (𝑄 ′)𝑁𝑆 (𝑄
′). By (3) and Sylow’s theorem, there is then an element 𝑣 ∈ 𝑁N (𝑄 ′) such

that 𝑃 𝑓 𝑣 ≤ 𝑁𝑆 (𝑄
′). In particular, we have

(4) 𝑃0 ≤ 𝑆 ( 𝑓 ,𝑣) and 𝑃 ≤ 𝑆 𝑓 𝑣 .

Set 𝑢 = 𝑣 𝑓
−1 . Then (𝑢, 𝑓 ) ∈ D, and we have 𝑢 𝑓 = 𝑓 𝑣 and 𝑆 (𝑢, 𝑓 ) = 𝑆 ( 𝑓 ,𝑣) by Lemma 3.2. If

𝑆 ( 𝑓 ,𝑣) = 𝑆 𝑓 𝑣 , then ( 𝑓 , 𝑣) ∈ D via P, so that 𝑃 ≤ 𝑆 𝑓 , contrary to (2). Thus 𝑆 ( 𝑓 ,𝑣) ≠ 𝑆 𝑓 𝑣 , so (𝑢, 𝑓 )
is a counterexample to the lemma. Then (4) and the maximality of |𝑄 | in the choice of (𝑥, 𝑓 ) yields
𝑄 = 𝑃0 = 𝑁𝑆 𝑓 (𝑄), so 𝑄 = 𝑆 𝑓 . As ( 𝑓 , 𝑄) ↑ (𝑔, 𝑃) via (𝑥−1, 1), we have contradicted the ↑-maximality
of f.

Case 2. The case 𝑥 ∉ 𝑁L (𝑇).

Again, among all counterexamples, take (𝑥, 𝑓 ) so that |𝑄 | is as large as possible. Let h be ↑-maximal,
with (𝑔, 𝑆𝑔) ↑ (ℎ, 𝑆ℎ). Then 𝑇 ≤ 𝑆ℎ by Proposition 3.9, and by Lemma 3.8 there exists 𝑟 ∈ N with
𝑔 = 𝑟ℎ. Note that Lemma 3.8(a) also yields 𝑆𝑔 = 𝑆 (𝑟 ,ℎ) ≥ 𝑄 = 𝑆 (𝑥,𝑔) .
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Set 𝑤 = ( 𝑓 −1, 𝑥−1, 𝑟, ℎ), observe that 𝑤 ∈ D via 𝑄𝑔, and find

Π(𝑤) = ( 𝑓 −1𝑥−1) (𝑟ℎ) = 𝑔−1𝑔 = 1.

Then ℎ = 𝑟−1𝑥 𝑓 and ℎ 𝑓 −1 = 𝑟−1𝑥 by Lemma 2.4(a). Since both f and h are in 𝑁L (𝑇), we obtain
𝑟−1𝑥 ∈ 𝑁L (𝑇), so 𝑟−1𝑥 ∈ 𝑁N (𝑇). Now case 1 applies, with (𝑟−1𝑥, 𝑓 ) in the role of (𝑥, 𝑓 ), and thus
𝑆ℎ = 𝑆 (𝑟−1𝑥, 𝑓 ) ≤ 𝑆 𝑓 (using Lemma 3.2). By definition of ↑, there exist 𝑎, 𝑏 ∈ N such that one has the
usual commutative diagram:

𝑆ℎ
ℎ

−−−−−−→ 𝑆ℎ−1

𝑎

�
⏐⏐

�
⏐⏐𝑏

𝑆𝑔 −−−−−−→
𝑔

𝑆𝑔−1

As 𝑇 ≤ 𝑆ℎ , Lemma 3.1(b) yields

𝑆𝑔 ≤ 𝑆𝑔𝑇 = (𝑆𝑔)
𝑎𝑇 ≤ 𝑆ℎ ,

so 𝑆𝑔 ≤ 𝑆 𝑓 . This again contradicts (1) and completes the proof. �

The splitting lemma yields a useful criterion for partial normality, as follows.

Corollary 3.13. Let L be a locality, let N � L, and let K � N be a partial normal subgroup of N.
Suppose that K is 𝑁L (𝑇)-invariant. That is, suppose that 𝑥ℎ ∈ K for all (ℎ−1, 𝑥, ℎ) ∈ D such that 𝑥 ∈ K
and ℎ ∈ 𝑁L (𝑇). Then K � L.

Proof. Let 𝑥 ∈ K, and let 𝑓 ∈ L such that 𝑥 𝑓 is defined. By the Frattini lemma, we may write 𝑓 = 𝑦𝑔
with 𝑦 ∈ N and with 𝑔 ↑-maximal, and then the splitting lemma yields 𝑆 𝑓 = 𝑆 (𝑦,𝑔) . Set 𝑢 = ( 𝑓 −1, 𝑥, 𝑓 )
and 𝑣 = (𝑔−1, 𝑦−1, 𝑥, 𝑦, 𝑔). Then 𝑆𝑢 = 𝑆𝑣 ∈ Δ , and 𝑥 𝑓 = Π(𝑢) = Π(𝑣) = (𝑥𝑦)𝑔. Thus 𝑥 𝑓 ∈ K, and
K � L. �

In the notation introduced following Lemma 1.4, for each 𝑓 ∈ L, we have the coset N 𝑓 of N
consisting of the elements Π(𝑥, 𝑓 ) such that 𝑥 ∈ N and (𝑥, 𝑓 ) ∈ D. A coset N 𝑓 is called maximal if it
is not a proper subset of any coset of N.

Proposition 3.14. The following hold.

(a) N 𝑓 = 𝑓N for all 𝑓 ∈ 𝑁L (𝑇), and if f is ↑-maximal with respect to N, then N 𝑓 = N 𝑓N = 𝑓N.
(b) Let 𝑓 , 𝑔 ∈ L, and assume that f is ↑-maximal. Then

(𝑔, 𝑆𝑔) ↑ ( 𝑓 , 𝑆 𝑓 ) ⇐⇒ N𝑔 ⊆ N 𝑓 ⇐⇒ 𝑔 ∈ N 𝑓 .

(c) If 𝑔 ∈ L is ↑-maximal relative to N, then N𝑔 is a maximal coset of N. Moreover, every maximal
coset of N is of the form N 𝑓 for some ↑-maximal element f.

(d) L is partitioned by the set L/N of maximal cosets of N.
(e) Let 𝑢 := (𝑔1, · · · , 𝑔𝑛) ∈ D, and let 𝑣 := ( 𝑓1, · · · , 𝑓𝑛) be a sequence of ↑-maximal elements of L

such that 𝑔𝑖 ∈ N 𝑓𝑖 for all i. Then 𝑣 ∈ D via 𝑇𝑆𝑢 , and Π(𝑢) ∈ NΠ(𝑣).

Proof.

(a) That N 𝑓 = 𝑓N for 𝑓 ∈ 𝑁L (𝑇) is given by Lemma 3.2. Now let f be ↑-maximal (relative to N).
Then 𝑓 ∈ 𝑁L (𝑇) by Proposition 3.9. Let 𝑥, 𝑦 ∈ N such that (𝑥, 𝑓 , 𝑦) ∈ D. Then (𝑥, 𝑓 𝑦) ∈ D, and
(𝑥, 𝑓 𝑦) = (𝑥, 𝑦′ 𝑓 ), where 𝑦′ = 𝑓 𝑦 𝑓 −1. The splitting lemma (Lemma 3.12) then yields (𝑥, 𝑦′, 𝑓 ) ∈ D,
and thus N 𝑓N ⊆ N 𝑓 . The reverse inclusion is obvious and yields (a).
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(b) Suppose that (𝑔, 𝑆𝑔) ↑ ( 𝑓 , 𝑆 𝑓 ). By Definition 3.6, there then exist 𝑎, 𝑏 ∈ N such that both (𝑎, 𝑓 )
and (𝑔, 𝑏) are in D via 𝑆𝑔 and with 𝑎 𝑓 = 𝑔𝑏. Then (𝑎, 𝑓 , 𝑏−1) ∈ D via 𝑆𝑔, and 𝑎 𝑓 𝑏−1 = 𝑔.
Thus 𝑔 ∈ N 𝑓N, so 𝑔 ∈ N 𝑓 by (a). Write 𝑔 = 𝑥 𝑓 with 𝑥 ∈ N. Then Lemma 3.12 yields
𝑆𝑔 = 𝑆 (𝑥, 𝑓 ) ≤ 𝑆 𝑓 . Let 𝑦 ∈ N with (𝑦, 𝑔) ∈ D. Since (𝑆 (𝑦,𝑔) )

𝑦 ≤ 𝑆𝑔 = 𝑆 (𝑥, 𝑓 ) , we get (𝑦, 𝑥, 𝑓 ) ∈ D,
and 𝑦𝑔 = (𝑦𝑥) 𝑓 ∈ N 𝑓 . Thus (𝑔, 𝑆𝑔) ↑ ( 𝑓 , 𝑆 𝑓 ) =⇒ N𝑔 ⊆ N 𝑓 . Clearly N𝑔 ⊆ N 𝑓 =⇒ 𝑔 ∈ N 𝑓 .
The required circle of implications is then completed by Lemma 3.12.

(c) Let g be ↑-maximal, and let 𝑓 ∈ L with N𝑔 ⊆ N 𝑓 . We aim to show that N𝑔 = N 𝑓 , so as to
conclude that N𝑔 is a maximal coset. To that end, choose 𝑔′ ∈ L so that 𝑔′ is ↑-maximal and
( 𝑓 , 𝑆 𝑓 ) ↑ (𝑔′, 𝑆𝑔′ ). Then (b) yields N 𝑓 ⊆ N𝑔′, and thus N𝑔 ⊆ N𝑔′. Another application of (b) then
yields (𝑔, 𝑆𝑔) ↑ (𝑔′, 𝑆𝑔′ ). As g is ↑-maximal, we now get (𝑔′, 𝑆′𝑔) ↑ (𝑔, 𝑆𝑔) from Lemma 3.7(c), and
then N𝑔′ ⊆ N𝑔 by (b). As N 𝑓 ⊆ N𝑔′, we conclude that N 𝑓 = N𝑔, and thus N𝑔 is a maximal coset.

Now suppose instead that 𝑔 ∈ L is given so that N𝑔 is a maximal coset, and let 𝑓 ∈ L be ↑-
maximal with (𝑔, 𝑆𝑔) ↑ ( 𝑓 , 𝑆 𝑓 ). Then (b) yields N𝑔 ⊆ N 𝑓 , and then N𝑔 = N 𝑓 by maximality.
Thus (c) holds.

(d) Let X and Y be maximal cosets of N, and let ℎ ∈ 𝑋 ∩ 𝑌 . By (c), we have 𝑋 = N 𝑓 and 𝑌 = N𝑔
for some ↑-maximal elements f and g. Thus there exist 𝑥, 𝑦 ∈ N with (𝑥, 𝑓 ) ∈ D, (𝑦, 𝑔) ∈ D, and
with ℎ = 𝑥 𝑓 = 𝑦𝑔. Then also (𝑥−1, 𝑥, 𝑓 ) ∈ D, so (𝑥−1, 𝑦𝑔) = (𝑥−1, 𝑥 𝑓 ) ∈ D. The splitting lemma
(Lemma 3.12) then yields (𝑥−1, 𝑦, 𝑔) ∈ D, and we thereby obtain 𝑓 = 𝑥−1𝑦𝑔 ∈ N𝑔. Now (b) implies
that N 𝑓 ⊆ N𝑔, and symmetry gives the reverse inclusion. Thus N 𝑓 = N𝑔 if N 𝑓 ∩N𝑔 ≠ ∅.

(e) Let 𝑥𝑖 ∈ N with 𝑔𝑖 = 𝑓𝑖𝑥𝑖 , and set 𝑤 = ( 𝑓1, 𝑥1, · · · , 𝑓𝑛, 𝑔𝑛). Then 𝑆𝑔𝑖 = 𝑆 ( 𝑓𝑖 ,𝑥𝑖) by Lemma 3.12,
so 𝑆𝑤 = 𝑆𝑢 . Thus 𝑤 ∈ D, so by Lemma 3.4 there exists 𝑥 ∈ N such that 𝑆𝑤 = 𝑆𝑣◦(𝑥) , and with
Π(𝑤) = Π(𝑣)𝑥. Here𝑇 ≤ 𝑆𝑣 by Proposition 3.9, so𝑇𝑆𝑢 ≤ 𝑆𝑣 . As Π(𝑢) = Π(𝑤) by D-associativity,
we have Π(𝑢) = Π(𝑣)𝑥 ∈ Π(𝑣)N. Then Π(𝑢) ∈ NΠ(𝑣) by (a). �

Lemma 3.15. Let H be a partial subgroup of the locality L containing the partial normal subgroup
N � L. Then H is the disjoint union of the maximal cosets of N contained in H.

Proof. Let 𝑓 ∈ H. Apply the Frattini lemma (Corollary 3.11) to obtain 𝑓 = 𝑥ℎ for some 𝑥 ∈ N and
some ℎ ∈ 𝑁L (𝑇) such that h is ↑-maximal with respect to N. Then ℎ = 𝑥−1 𝑓 by Lemma 1.4(d), and thus
ℎ ∈ H as N ≤ H. Then also Nℎ ⊆ H, where Nℎ is a maximal coset of N by Proposition 3.14(c). �

The set L/N of maximal cosets of N may also be denoted L̄. Let 𝜌 : L → L̄ be the mapping that
sends 𝑔 ∈ L to the unique maximal coset of N containing g. Set W := W(L) and W̄ = W(L̄), and let
𝜌∗ : W → W̄ be the induced mapping of free monoids. For any subset or element X of W, write �̄� for
the image of X under 𝜌∗. Similarly, if Y is a subset or element of L, write 𝑌 for the image of Y under 𝜌.
In particular, D̄ denotes the image of D under 𝜌∗. Set Δ̄ = {�̄� | 𝑃 ∈ Δ}.

For 𝑤 ∈ W, we shall say that w is ↑-maximal (relative to N) if every entry of w is ↑-maximal.

Lemma 3.16. There is a unique mapping Π̄ : D̄ → L̄, and a unique involutory bijection �̄� ↦→ �̄�−1 on
L̄ such that L̄, with these structures, is a partial group and 𝜌 is a homomorphism of partial groups.
Moreover, 1̄ is then the identity element of L̄, and the homomorphism of free monoids 𝜌∗ : W(L) →
W(L̄) maps D onto D̄.

Proof. Let 𝑢 = (𝑔1, · · · , 𝑔𝑛) and 𝑣 = (ℎ1, · · · , ℎ𝑛) be members of D such that �̄� = �̄�. By Proposition
3.14(d), there exists, for each i, an ↑-maximal 𝑓𝑖 ∈ L with 𝑔𝑖 , ℎ𝑖 ∈ N 𝑓𝑖 . Set 𝑤 = ( 𝑓1, · · · , 𝑓𝑛). Then
𝑤 ∈ D by Proposition 3.14(e), which also shows that Π(𝑢) and Π(𝑣) are elements of NΠ(𝑤). Thus

¯Π(𝑢) = ¯Π(𝑤) = ¯Π(𝑣), and there is a well-defined mapping Π̄ : D̄ → L̄ given by

Π̄(𝑢) = ¯Π(𝑢) for all 𝑢 ∈ D. (*)

For any subset X of L, write 𝑋−1 for the set of inverses of elements of X. For any 𝑓 ∈ L, we
then have (N 𝑓 )−1 = 𝑓 −1N−1 by Definition 1.1(4). Here N−1 = N as N is a partial group, and then
(N 𝑓 )−1 = N 𝑓 −1 by Proposition 3.14(a). The inversion map N 𝑓 ↦→ N 𝑓 −1 is then well-defined and is an
involutory bijection on L̄. Set 1̄ = N.
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We now check that the axioms in Definition 1.1, for a partial group, are satisfied by the above
structures. Since D̄ is the image of D under 𝜌∗, we get L̄ ⊆ D̄. Now let �̄� = �̄� ◦ �̄� ∈ D̄, let 𝑢, 𝑣 be ↑-
maximal preimages in W of �̄� and �̄�, and set 𝑤 = 𝑢 ◦ 𝑣. Then w is ↑-maximal, so 𝑤 ∈ D by Proposition
3.14(e). Then u and v are in D, so �̄� and �̄� are in D̄. Thus D̄ satisfies Definition 1.1(1). Clearly, (*)
implies that Π̄ restricts to the identity on L̄, so Π̄ satisfies Definition 1.1(2).

Next, let �̄� ◦ �̄� ◦ �̄� ∈ D̄, and choose corresponding ↑-maximal preimages 𝑢, 𝑣, 𝑤. Set 𝑔 = Π(𝑣). Then
�̄� = Π̄(�̄�) by (*). By Definition 1.1(3), we have both 𝑢 ◦ 𝑣 ◦𝑤 and 𝑢 ◦ (𝑔) ◦𝑤 in D, and these two words
have the same image under Π. Applying 𝜌∗, we obtain words in D̄ having the same image under Π̄, and
thus Π̄ satisfies Definition 1.1(3). By definition, Π̄(∅) = 1̄, and then the condition Definition 1.1(4) is
readily verified. Thus, L̄ is a partial group.

By definition, D̄ is the image of D under 𝜌∗. So, in order to check that 𝜌 is a homomorphism of
partial groups, it suffices to show that if 𝑤 ∈ D, then Π̄(𝑤𝜌∗) = Π(𝑤)𝜌. But this is simply the statement
(*). Moreover, it is this observation that establishes that the given partial group structure on L̄ is the
unique one for which 𝜌 is a homomorphism of partial groups. We have 𝑓 ∈ 𝐾𝑒𝑟 (𝜌) if and only if
𝑓 𝜌 = 1̄ = N. Since N 𝑓 ⊆ N implies 𝑓 ∈ N, and since N is the maximal coset of L containing 1, we
obtain 𝐾𝑒𝑟 (𝜌) = N. �

4. Quotient localities

We continue the setup in which (L,Δ , 𝑆) is a fixed locality and N � L is a partial normal subgroup.
We have seen in Lemma 3.16 that the set L/N of maximal cosets of N inherits from L a partial group
structure via the projection map 𝜌 : L → L/N. The aim now is to go further and show that L/N is a
locality. The argument for this involves some subtleties: the main problem lies in showing that D(L/N)

contains DΔ̄ (see Definition 2.1), where Δ̄ is the set of all 𝑃𝜌 with 𝑃 ∈ Δ . The following two lemmas
are intended as steps toward addressing this point.

Lemma 4.1. Let (L,Δ , 𝑆) be a locality, and let N � L. Then (N𝑆,Δ , 𝑆) is a locality.

Proof. By Lemma 3.4, N𝑆 is a partial subgroup of L. One observes that D(N𝑆) is the subset DΔ of
W(N𝑆), as defined in (Definition 2.1), and this suffices to show that (N𝑆,Δ) is objective. As S is a
maximal p-subgroup of N𝑆, there is nothing more that needs to be shown. �

Lemma 4.2. Let P be a subgroup of S, let Γ be a nonempty set of S-conjugates of P, and set 𝑋 =
⋃

Γ.
Assume that 𝑃𝑥 ∈ Γ for all 𝑥 ∈ 𝑋 . Then either Γ = {𝑃} or 𝑁𝑆 (𝑃) ∩ 𝑋 � 𝑃.

Proof. Let § be the set of overgroups Q of P in S such that 𝑋 ∩𝑄 = 𝑃. Thus 𝑃 ∈ §. Regard § as a poset
via inclusion, and let Q be maximal in §. If 𝑄 = 𝑆, then 𝑋 = 𝑃 and Γ = {𝑃}. On the other hand, suppose
that 𝑄 ≠ 𝑆. Then Q is a proper subgroup of 𝑁𝑆 (𝑄), and the maximality of Q implies that there exists
𝑥 ∈ 𝑁𝑆 (𝑄) ∩ 𝑋 with 𝑥 ∉ 𝑃. Since 𝑃𝑥 ≤ 𝑄, and since 𝑃𝑥 ⊆ 𝑋 by hypothesis, we conclude that 𝑃𝑥 = 𝑃.
Thus 𝑁𝑆 (𝑃) ∩ 𝑋 � 𝑃. �

Theorem 4.3. Let (L,Δ , 𝑆) be a locality, let L̄ be a partial group, and let 𝛽 : L → L̄ be a homomorphism
of partial groups such that the induced map 𝛽∗ : W(L) → W(L̄) sends D(L) onto D(L̄). Set N =
𝐾𝑒𝑟 (𝛽) and 𝑇 = 𝑆 ∩ N. Further, set D = D(L), D̄ = D(L̄), 𝑆 = 𝑆𝛽, and Δ̄ = {𝑃𝛽 | 𝑃 ∈ Δ}. Then
(L̄, Δ̄ , 𝑆) is a locality. Moreover,

(a) The fibres of 𝛽 are the maximal cosets of N.
(b) For each �̄� ∈ W(L̄), there exists 𝑤 ∈ W(L) such that �̄� = 𝑤𝛽∗ and each entry of w is ↑-maximal

relative to the partial normal subgroup N of L. For any such w, we then have 𝑤 ∈ D if and only if
�̄� ∈ D̄.

(c) Let 𝑃,𝑄 ∈ Δ with 𝑇 ≤ 𝑃 ∩ 𝑄. Then 𝛽 restricts to a surjection 𝑁L (𝑃,𝑄) → 𝑁L̄ (𝑃𝛽, 𝑄𝛽) and a
surjective homomorphism if 𝑃 = 𝑄.

(d) 𝛽 is an isomorphism if and only if N = 1.
(e) We have (𝑆𝑔)𝛽 = 𝑆𝑔𝛽 for each 𝑔 ∈ L such that g is ↑-maximal with respect to N.
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Proof. As D𝛽∗ = D̄, it follows that 𝛽∗ maps the set of words of length 1 in L onto the set of words of
length 1 in L̄. Thus 𝛽 is surjective.

For any subgroup M of L, there is a homomorphism of partial groups 𝛽𝑀 : 𝑀 → 𝑀𝛽 given by
restriction of 𝛽, and then 𝛽𝑀 is a homomorphism of groups by Lemma 1.13. In particular, we have the
homomorphism 𝛽𝑆 : 𝑆 → 𝑆, so 𝑆 is a p-group, and Δ̄ is a set of subgroups of 𝑆.

We have N � L by Lemma 1.14. Let Λ be the set of elements 𝑔 ∈ L such that g is ↑-maximal relative
to N. For any 𝑔 ∈ Λ, 𝛽 is constant on the maximal coset N𝑔 (see Proposition 3.14) of N, so 𝛽 restricts
to a surjection of Λ onto L̄, and hence 𝛽∗ restricts to a surjection of W(Λ) onto W(L̄). If �̄� ∈ D̄, then
there exists 𝑤 ∈ D with 𝑤𝛽∗ = �̄�, and then Proposition 3.14(e) shows that such a w may be chosen to
be in W(Λ). In particular, (b) holds, and

(1) 𝛽∗ maps D ∩ W(Λ) onto D̄.

Let �̄� ∈ 𝑆, let 𝑎 ∈ 𝑆 be a 𝛽𝑆-preimage of �̄�, and let ℎ ∈ L be any 𝛽-preimage of �̄�. Then (ℎ, 𝑎−1, 𝑎) ∈ D
via 𝑆ℎ , and we have ℎ = (ℎ𝑎−1)𝑎 ∈ N𝑎. Thus

(2) The 𝛽-preimage of an element �̄� ∈ 𝑆 is a maximal coset N𝑎, where 𝑎 ∈ 𝑆.

Fix �̄� ∈ L̄, let 𝑔 ∈ Λ with 𝑔𝛽 = �̄�, set 𝑃 = 𝑆𝑔, and set

𝑆�̄� = {𝑥 ∈ 𝑆 | 𝑥�̄� ∈ 𝑆}.

Let �̄� ∈ 𝑆�̄�, set �̄� = �̄�−1�̄��̄�, and choose 𝑎, 𝑏 ∈ 𝑆 so that 𝑎𝛽 = �̄� and 𝑏𝛽 = �̄�. As (𝑔−1, 𝑔, 𝑏) ∈ D, we may
apply left cancellation within L̄ and obtain �̄��̄� = �̄��̄�. A further, similar, left cancellation then yields
�̄�−1�̄��̄� = �̄�. Let 𝑥 ∈ 𝑆𝑔, and set 𝑣 = (𝑏−1, 𝑔−1, 𝑎, 𝑎−1, 𝑥, 𝑎, 𝑎−1, 𝑔, 𝑏). Then 𝑣 ∈ D by Lemma 2.8, so
�̄� ∈ D̄. Set �̄�′ = (�̄�−1, �̄�−1, 𝑥, �̄�, �̄�). Then �̄�′ ∈ D̄ and Π̄(�̄�′) = Π̄(�̄�) by D̄-associativity. Thus

(𝑥 �̄�)�̄� = 𝑥 �̄��̄� = 𝑥�̄��̄� = (𝑥�̄�) �̄� ∈ 𝑆.

This shows

(�̄��̄�)�̄� = �̄��̄��̄� ≤ 𝑆. (*)

Thus, the set Γ of all 𝑆�̄�-conjugates of �̄� is a set of subgroups of 𝑆 contained in the set 𝑆�̄�. Setting
𝑋 =

⋃
Γ, we thus have the setup of Lemma 4.2.

Assume now that �̄� ≠ 𝑆�̄�. Then Lemma 4.2 yields an element 𝑥 ∈ 𝑆�̄� − �̄� such that 𝑥 normalises �̄�.
Let Q be the 𝛽-preimage of �̄�〈𝑥〉 in S. Then 𝑄𝑔 is defined (and is a subgroup of 𝑁L (𝑃

𝑔)) by Lemma
2.3(b). As �̄��̄� ≤ 𝑆, we obtain 𝑄𝑔 ≤ N𝑆. As N𝑆 is a locality by Lemma 4.1, it follows from Proposition
2.10(b) that there exists 𝑓 ∈ N with (𝑄𝑔) 𝑓 ≤ 𝑆. Here (𝑔, 𝑓 ) ∈ D via P, so 𝑄 ≤ 𝑆𝑔 𝑓 , and this contradicts
the ↑-maximality of g. We conclude

(3) (𝑆𝑔)𝛽 = 𝑆𝑔𝛽 for each 𝑔 ∈ Λ.

Thus (e) holds.
Next, let 𝑤 ∈ W(Λ), and define 𝑆�̄� to be the set of all 𝑥 ∈ 𝑆 such that 𝑥 is conjugated successively

into 𝑆 by the entries of �̄�. If w is not the empty word, then we may write 𝑤 = (𝑔) ◦ 𝑢 for some 𝑔 ∈ Λ
and 𝑢 ∈ W(Λ), and then 𝑆𝑤 = {𝑥 ∈ 𝑆𝑔 | 𝑥𝑔 ∈ 𝑆𝑢}. Then (3) together with induction on ℓ(𝑤) yields

¯𝑆𝑤 = {𝑥 ∈ 𝑆�̄� | 𝑥�̄� ∈ 𝑆�̄�} = 𝑆�̄� .

Thus

(4) (𝑆𝑤 )𝛽 = 𝑆𝑤𝛽∗ for all 𝑤 ∈ W(Λ).

We next verify that (L̄, Δ̄) is objective. Let DΔ̄ be the set of all �̄� ∈ W(L̄) with 𝑆�̄� ∈ Δ̄ . Let �̄� ∈ DΔ̄ ,
and let 𝑤 ∈ W(Λ) with 𝑤𝛽∗ = �̄�. We have 𝑇 ≤ 𝑆𝑤 by Proposition 3.9, and 𝑇 = 𝑆 ∩ 𝐾𝑒𝑟 (𝛽), so 𝑆𝑤 is
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the 𝛽𝑆-preimage of (𝑆𝑤 )𝛽. Then 𝑆𝑤 ∈ Δ , so 𝑤 ∈ D, and then (4) yields �̄� ∈ D̄. Thus DΔ̄ ⊆ D̄. On the
other hand, let �̄� ∈ D̄, and let 𝑣 ∈ W(Λ) with 𝑣𝛽∗ = �̄�. Then (b) yields 𝑣 ∈ D, so 𝑆𝑣 ∈ Δ , and �̄� ∈ DΔ̄ .
Thus D̄ = DΔ̄ , and (L̄, Δ̄) satisfies the condition (O1) in Definition 2.1 of objectivity.

Let �̄� ∈ Δ̄ , and let �̄� ∈ L̄ with �̄� ≤ 𝑆�̄�. Choose 𝑔 ∈ Λ with 𝑔𝛽 = �̄�, and let P be the 𝛽𝑆-preimage
of �̄�. Then 𝑃 ∈ Δ , by the definition of Δ̄ , and we have 𝑃 ≤ 𝑆𝑔 by (3). Then 𝑃𝑔 ∈ Δ , so �̄��̄� ∈ Δ̄ . All
overgroups of �̄� in 𝑆 are in Δ̄ via the analogous property for P and S, so we have verified the condition
(O2) in Definition 2.1. Thus (L̄, Δ̄) is objective.

To prove (c): Let 𝑃,𝑄 ∈ Δ with 𝑇 ≤ 𝑃 ∩ 𝑄, set �̄� = 𝑃𝛽 and �̄� = 𝑄𝛽, and let �̄� ∈ L̄ such that
�̄��̄� is defined and is a subset of �̄�. Let 𝑔 ∈ Λ be a preimage of �̄�. Then 𝑃 ≤ 𝑆𝑔 by (4). As 𝛽𝑆 is a
homomorphism, (𝑃𝑔)𝛽 = �̄��̄� is a subgroup of �̄�. Then 𝑃𝑔 ≤ 𝑄 since 𝑇 = 𝐾𝑒𝑟 (𝛽𝑆) ≤ 𝑃. That is, we
have 𝑔 ∈ 𝑁L (𝑃,𝑄), and thus 𝛽 restricts to a surjection 𝛽𝑃,𝑄 : 𝑁L (𝑃,𝑄) → 𝑁L̄ (�̄�, �̄�). If 𝑃 = 𝑄, then
𝛽𝑃,𝑄 is the homomorphism 𝛽𝑃 , so we have (c). Moreover, in the special case that 𝑃 = 𝑄 = 𝑆, we obtain
in this way an epimorphism of 𝑁L (𝑆) onto 𝑁L̄ (𝑆). As S is a Sylow subgroup of 𝑁L (𝑆), it follows that 𝑆
is a Sylow p-subgroup of 𝑁L̄ (𝑆), whence 𝑆 is a maximal p-subgroup of L̄. Thus (L̄, Δ̄ , 𝑆) is a locality.

To prove (a): Let 𝑓 ∈ L, and let ℎ ∈ Λ with 𝑓 𝛽 = ℎ𝛽. By Proposition 3.14, there exists 𝑔 ∈ Λ with
𝑓 ∈ N𝑔, and then 𝑓 𝛽 = 𝑔𝛽. Then 𝑆𝑔 = 𝑆ℎ by (3), so (𝑔, ℎ−1) ∈ D, and (𝑔ℎ−1)𝛽 = 1̄. Thus 𝑔ℎ−1 ∈ N.
As (𝑔, ℎ−1, ℎ) ∈ D, we obtain 𝑔 ∈ Nℎ. Then N𝑔 = Nℎ by Proposition 3.14(d), and thus 𝑓 ∈ Nℎ. This
yields (a), and it remains only to prove (d).

If 𝛽 is an isomorphism, then 𝛽 is injective, and N = 1. On the other hand, suppose that N = 1. Then
(a) shows that 𝛽 is injective, so 𝛽 is a bijection, and D = D̄. Set 𝛾 = 𝛽−1, and let 𝑤 ∈ D. Then 𝑤𝛾∗ ∈ D
as 𝛽∗ is a bijection with inverse 𝛾∗. We have Π(𝑤𝛾∗)𝛽 = Π(𝑤) since 𝛽 is a homomorphism, and thus
Π(𝑤𝛾∗) = (Π(𝑤))𝛾. This shows that 𝛾 is a homomorphism, so (d) holds, and the proof is complete. �

Definition 4.4. Let L and L′ be partial groups, and let 𝛽 : L → L′ be a homomorphism. Then 𝛽 is a
projection if D(L)𝛽∗ = D(L′).

Corollary 4.5. Let (L,Δ , 𝑆) be a locality, letN � L be a partial normal subgroup, and let 𝜌 : L → L/N
be the mapping that sends 𝑔 ∈ L to the unique maximal coset of N containing g. Set L̄ = L/N, set
𝑆 = 𝑆𝜌, and let Δ̄ be the set of images under 𝜌 of the members of Δ . Regard L̄ as a partial group
in the unique way (given by Lemma 3.16) that makes 𝜌 into a homomorphism of partial groups. Then
(L̄, Δ̄ , 𝑆) is a locality, and 𝜌 is a projection.

Proof. Immediate from Lemma 3.16 and Theorem 4.3. �

Theorem 4.6 (‘First isomorphism theorem’). Let (L,Δ , 𝑆) and (L′,Δ ′, 𝑆′) be localities, let 𝛽 : L → L′

be a projection, and letN � L be a partial normal subgroup ofL contained in𝐾𝑒𝑟 (𝛽). Let 𝜌 : L → L/N
be the projection given by Corollary 4.5. Then there exists a unique homomorphism

𝛾 : L/N → L′

such that 𝜌 ◦ 𝛾 = 𝛽, and then 𝛾 is a projection. Moreover, we have 𝐾𝑒𝑟 (𝛾) = 𝐾𝑒𝑟 (𝛽)/N, and 𝛾 is an
isomorphism if and only if N = 𝐾𝑒𝑟 (𝛽).

Proof. Let Λ(N) be the set of all 𝑓 ∈ L such that f is ↑-maximal relative to N. Set M = 𝐾𝑒𝑟 (𝛽), and
similarly define Λ(M). By Proposition 3.14(c), the maximal cosets of N in L are the sets N 𝑓 with
𝑓 ∈ Λ(N), and similarly for the maximal cosets of M. For any 𝑔 ∈ L, we haveN𝑔 ⊆ M𝑔 asN ≤ M, so
each maximal coset of N is contained in a maximal coset of M. Since the maximal cosets of N form the
partition L/N of L, it follows that each maximal coset of M is a union of maximal cosets of N. That is,

(*) The partition L/N of L is a refinement of the partition L/M.

By Theorem 4.3(a), 𝛽 induces a bijection L/M → L′. Set L̄ = L/N. Then (*) yields a mapping
𝛾 : L̄ → L′ that sends the maximal coset N 𝑓 to 𝑓 𝛽. Clearly, 𝛾 is the unique mapping L̄ → L′ such that
𝜌 ◦ 𝛾 = 𝛽.
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Let �̄� ∈ D(L̄). Then Theorem 4.3(b) yields a word 𝑤 ∈ D such that 𝑤𝜌∗ = �̄� and the entries of w
are ↑-maximal relative to N. We have �̄�𝛾∗ = 𝑤𝛽∗, so 𝛾∗ maps D(L̄) into D(L′). Let Π′ and Π̄ be the
products in L′ and L̄, respectively. As 𝛽 and 𝜌 are homomorphisms, we get

Π′(�̄�𝛾∗) = Π′(𝑤𝛽∗) = (Π(𝑤))𝛽 = ( ¯Π(𝑤))𝛾 = (Π̄(�̄�))𝛾,

and thus 𝛾 is a homomorphism. As 𝛽 = 𝜌 ◦ 𝛾 is a projection, and since 𝛽∗ = 𝜌∗ ◦ 𝛾∗, 𝛾∗ maps D(L̄)
onto D(L′). That is, 𝛾 is a projection.

Clearly M/N ≤ 𝐾𝑒𝑟 (𝛾). On the other hand, if N 𝑓 is a maximal coset of N with N 𝑓 ∈ 𝐾𝑒𝑟 (𝛾),
then 𝑓 ∈ 𝐾𝑒𝑟 (𝛽), so N 𝑓 ⊆ M, and N 𝑓 ∈ M/N. Thus 𝐾𝑒𝑟 (𝛾) = M/N. We have M = N if and only
if 𝐾𝑒𝑟 (𝛾) = 1. Then Theorem 4.3(d) shows that 𝛾 is an isomorphism if and only if M = N; completing
the proof. �

Proposition 4.7 (Partial subgroup correspondence). Let (L,Δ , 𝑆) and (L̄, Δ̄ , 𝑆) be localities, and let
𝛽 : L → L̄ be a projection. Set N = 𝐾𝑒𝑟 (𝛽), and set 𝑇 = 𝑆 ∩N. Then 𝛽 induces a bijection 𝜎 from the
set ℌ of partial subgroups H of L containing N to the set ℌ̄ of partial subgroups H̄ of L̄. Moreover, for
any H ∈ ℌ, we have H𝛽 � L′ if and only if H � L.

Proof. Any partial subgroup of L containing N is a union of maximal cosets of N by Lemma 3.15.
Then Theorem 4.3(a) enables the same argument that one has for groups, for proving that 𝜌 induces a
bijection ℌ → ℌ̄. Since each maximal coset of N contains an element that is ↑-maximal with respect to
N, one may apply Theorem 4.3(b) to show that a partial subgroup H ∈ ℌ is normal in L if and only if
its image is normal in L̄. The reader should have no difficulty with the details of the argument. �

Remark 4.8. One may ask whether the ‘other two’ isomorphism theorems hold, in any sense, for
localities. Let us formulate these for groups, rather than localities, as follows.

(1) Let G be a group, let 𝑁 � 𝐺 be a normal subgroup, and let 𝐻 ≤ 𝐺 be an arbitrary subgroup. Then
the quotient map 𝐺 → 𝐺/𝑁 restricts to an epimorphism 𝐻 → 𝐻𝑁/𝑁 with kernel 𝐻 ∩ 𝑁 .

(2) Let G be a group, let 𝑁 � 𝐺 be a normal subgroup, and let 𝐾 � 𝐺 with 𝑁 ≤ 𝐾 . Then the quotient
map 𝐺 → 𝐺/𝐾 factors through an epimorphism 𝐺/𝑁 → 𝐺/𝐾 with kernel 𝑁/𝐾 .

A comprehensive version of (1) for localities appears to be out of reach for two reasons. First, given a
partial subgroup H ≤ L and a partial normal subgroup N � L, there appears to be no reason for the
image of H under the projection 𝜌 : L → L/N to be a partial subgroup of L/N, other than in special
cases. Second, there seems to be no way, in general, to define the quotient of H over the partial normal
subgroup H ∩N of H.

On the other hand, one does indeed have the analogue of (2) for localities. Namely, let L be a locality,
and let N � L and K � L be partial normal subgroups with N ≤ K. Then the projection L → L/K
factors through the projection L → L/N by Theorem 4.6, yielding a projection L/N → L/K with
kernel N/K. (We shall not need this result, and we leave the details to the reader.)

Lemma 4.9. Let N � L, and let 𝜌 : L → L/N be the canonical projection. Further, let H be a partial
subgroup of L containing N, and let X be an arbitrary subset of L. Then (𝑋 ∩H)𝜌 = 𝑋𝜌 ∩H𝜌.

Proof. By Lemma 3.15, H is a union of maximal cosets of N, and then H𝜌 is the set of those maximal
cosets. On the other hand 𝑋𝜌 is the set of all maximal cosets N𝑔 of N such that 𝑋 ∩ N𝑔 ≠ ∅. Thus
𝑋𝜌 ∩H𝜌 ⊆ (𝑋 ∩H)𝜌. The reverse inclusion is obvious. �

Corollary 4.10. Let N � L, and let M be a partial normal subgroup of L containing N. Let 𝜌 : L →

L/N be the canonical projection. Then (𝑆 ∩M)𝜌 is a maximal p-subgroup of M𝜌.

Proof. Write (L̄, Δ̄ , 𝑆) for the quotient locality given by Corollary 4.5, and set M̄ = M𝜌. Applying
Lemma 4.9 with S in the role of X, we obtain (𝑆 ∩ M)𝜌 = 𝑆 ∩ M̄. Since M̄ � L̄, it follows from
Proposition 2.10(c) that 𝑆∩M̄ is maximal in the poset of p-subgroups of M̄, completing the proof. �
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Proposition 4.11. Let N � L, set 𝑇 = 𝑆∩N, and set L𝑇 = 𝑁L (𝑇). Set L̄ = L/N, and let 𝜌 : L → L̄ be
the canonical projection. Then the partial subgroup L𝑇 of L is a locality (L𝑇 ,Δ , 𝑆), and the restriction
of 𝜌 to L𝑇 is a projection L𝑇 → L̄.

Proof. That L𝑇 is a partial subgroup of L having the structure of a locality (L𝑇 ,Δ , 𝑆) is given by
Lemma 2.12. Let 𝜌𝑇 be the restriction of 𝜌 to L𝑇 . Then 𝜌𝑇 is a homomorphism of partial groups, and
Theorem 4.3(b) shows that 𝜌𝑇 maps D(L𝑇 ) onto D(L̄). That is, 𝜌𝑇 is a projection. �

We end this section with an application. For G a finite group, 𝑂 𝑝′ (𝐺) denotes the largest normal
subgroup of G having order prime to p, and 𝑂 𝑝 (𝐺) is the smallest normal subgroup K of G such
that 𝐺/𝐾 is a p-group. Recall that, by definition, G is of characteristic p if 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).
We assume that the reader is familiar with the definition of a fusion system over a finite p-group. For
(L,Δ , 𝑆) a locality one has the fusion system F𝑆 (L) on S, whose isomorphisms are the conjugation
maps 𝑐𝑤 (for 𝑤 ∈ W(L)) that were introduced following Definition 2.15.

Proposition 4.12. Let (L,Δ , 𝑆) be a locality. For each 𝑃 ∈ Δ set Θ(𝑃) = 𝑂 𝑝′ (𝑁L (𝑃)), and set
Θ =

⋃
{Θ(𝑃)}𝑃∈Δ . Assume

(*) 𝑃 ∈ Δ =⇒ 𝐶𝑆 (𝑃) ≤ 𝑃.

Then Θ � L, 𝑆 ∩ Θ = 1, and the canonical projection 𝜌 : L → L/Θ restricts to an isomorphism
𝑆 → 𝑆𝜌. Moreover, upon identifying S with 𝑆𝜌,

(a) (L/Θ,Δ , 𝑆) is a locality.
(b) F𝑆 (L/Θ) = F𝑆 (L).
(c) For each 𝑃 ∈ Δ , the restriction

𝜌𝑃 : 𝑁L (𝑃) → 𝑁L/Θ(𝑃)

of 𝜌 induces an isomorphism

𝑁L/Θ(𝑃) � 𝑁L (𝑃)/Θ(𝑃),

and 𝑁L/Θ(𝑃) is of characteristic p.

Proof. We first show

(1) For each 𝑃 ∈ Δ , we have 𝐶L (𝑃) = 𝑍 (𝑃) × Θ(𝑃).

Indeed, let 𝑃 ∈ Δ . By Lemma 2.9, there exists 𝑔 ∈ L with 𝑃 ≤ 𝑆𝑔 and such that 𝑁𝑆 (𝑃
𝑔) is a Sylow

p-subgroup of 𝑃𝑔. Set 𝑄 = 𝑃𝑔. Then 𝑄 ∈ Δ , so 𝐶𝑆 (𝑄) ≤ 𝑄, and then 𝑍 (𝑄) is a Sylow p-subgroup of
𝐶L (𝑄). Burnside’s theorem on normal p-complement’s (39.1 in [Asch], or 7.2.1 in [KS]) then yields
𝐶L (𝑄) = 𝑍 (𝑄) × Θ(𝑄), and then (1) follows from Lemma 2.3(b).

Next, let 𝑥 ∈ Θ. Then there exists 𝑄 ∈ Δ with 𝑥 ∈ Θ(𝑄). Choose such a Q so that |𝑄 | is as large as
possible, and set 𝑅 = 𝑁𝑆𝑥 (𝑄). Then [𝑅, 𝑥] ≤ 𝑅𝑅𝑥 ≤ 𝑆. But also

[𝑅, 𝑥] ≤ [𝑁L (𝑄),Θ(𝑄)] ≤ Θ(𝑄),

so [𝑅, 𝑥] = 1, and then 𝑥 ∈ Θ(𝑅) by (1). The maximality of |𝑄 | then yields 𝑄 = 𝑅. Thus 𝑄 = 𝑆𝑥 , and
we have thus shown that 𝑥 ∈ Θ(𝑆𝑥). Let 𝑃 ∈ Δ with 𝑃 ≤ 𝑆𝑥 . Then x is a 𝑝′-element of 𝐶L (𝑃), so (1)
yields 𝑥 ∈ Θ(𝑃). Thus

(2) Let 𝑥 ∈ Θ, and let 𝑃 ∈ Δ with 𝑃 ≤ 𝑆𝑥 . Then 𝑥 ∈ Θ(𝑃).

Clearly, 1 ∈ Θ, and Θ is closed under inversion. Let

𝑤 = (𝑥1, · · · , 𝑥𝑛) ∈ W(Θ) ∩ D,

https://doi.org/10.1017/fms.2022.31 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.31


26 Andrew Chermak

and set 𝑃 = 𝑆𝑤 . By (2), and by induction on n, we obtain 𝑥𝑖 ∈ Θ(𝑃) for all i, and hence Π(𝑤) ∈ Θ(𝑃).
Thus Θ is a partial subgroup of L. Now let 𝑥 ∈ Θ, and let 𝑔 ∈ L be given such that (𝑔−1, 𝑥, 𝑔) ∈ D via
some 𝑄 ∈ Δ . Then 𝑄𝑔−1

≤ 𝑆𝑥 , so (2) yields 𝑥 ∈ Θ(𝑄𝑔−1
), and then 𝑥𝑔 ∈ Θ(𝑄) by Lemma 2.3(b). This

completes the proof that Θ � L.
Set L̄ = L/Θ and adopt the usual ‘bar’-convention for images of elements, subgroups and collections

of subgroups under the quotient map 𝜌 : L → L̄. Since Θ is a set of 𝑝′-elements ofL, we have 𝑆∩Θ = 1,
and we may therefore identify S with 𝑆 and Δ with Δ̄ . Point (a) is then given by Corollary 4.5.

For each 𝑃 ∈ Δ let 𝜌𝑃 be the restriction of 𝜌 to 𝑁L (𝑃). Then 𝜌𝑃 is an epimorphism 𝑁L (𝑃) → 𝑁L̄ (𝑃)
by Theorem 4.3(c), with kernel Θ(𝑃). This yields point (c).

By Theorem 4.3(c), the conjugation maps 𝑐𝑔 : 𝑃 → 𝑄 in F, with 𝑃,𝑄 ∈ Δ and with 𝑔 ∈ L, are the
same as the conjugation maps 𝑐�̄� : 𝑃 → 𝑄 with �̄� ∈ L/Θ. Since F𝑆 (L) is Δ-generated (by Definition
2.11), we obtain F𝑆 (L) = F𝑆 (L/Θ). That is, (b) holds, and the proof is complete. �

5. Products of partial normal subgroups

There are two main results in this section. The first (Theorem 5.1) concerns products of partial normal
subgroups in a locality. The second (Proposition 5.5) is an application of essentially all of the results
preceding it, and it will play a vital role in Part III of the series.

Theorem 5.1. Let (L,Δ , 𝑆) be a locality, and let M � L and N � L be partial normal subgroups. Set
𝑈 = 𝑆 ∩M and 𝑉 = 𝑆 ∩N, and assume

(*) M normalises V, and N normalises U.

Then MN = NM � L, and 𝑆 ∩MN = 𝑈𝑉 .

The proof will require the following version of the splitting lemma (Lemma 3.12).

Lemma 5.2. Assume the hypothesis of Theorem 5.1, and let 𝑔 ∈ MN. Then there exists (𝑥, 𝑦) ∈ D with
𝑥 ∈ M, 𝑦 ∈ N, 𝑔 = 𝑥𝑦, and 𝑆𝑔 = 𝑆 (𝑥,𝑦) .

Proof. Consider the set of all triples (𝑔, 𝑥, 𝑦) ∈ MN ×M ×N such that g is a counterexample to the
lemma and 𝑔 = 𝑥𝑦. Among all such triples, let (𝑔, 𝑥, 𝑦) be chosen so that |𝑆 (𝑥,𝑦) | is as large as possible.
Set 𝑄 = 𝑆 (𝑥,𝑦) , and set 𝑃 = 𝑁𝑆𝑔 (𝑄). It suffices to show that 𝑃 = 𝑄 in order to obtain the lemma.

By Lemma 3.2, we have (𝑦, 𝑦−1, 𝑥, 𝑦) ∈ D and 𝑔 = 𝑦𝑥𝑦 , with 𝑆 (𝑥,𝑦) = 𝑆 (𝑦,𝑥𝑦 ) . Suppose that 𝑃 ≤ 𝑆𝑦 .
Then 𝑃𝑦 ≤ 𝑆, and since 𝑃𝑔 ≤ 𝑆, we conclude that 𝑃 ≤ 𝑆 (𝑦,𝑥𝑦 ) , and hence 𝑃 = 𝑄, as desired. Thus we
may assume

(1) 𝑃 � 𝑆𝑦 .

Let h be ↑-maximal (with respect to M) in the maximal coset of M containing g. By Proposition
3.14(c), there exists 𝑟 ∈ M such that 𝑔 = 𝑟ℎ, and Lemma 3.12 yields 𝑆𝑔 = 𝑆 (𝑟 ,ℎ) . Then 𝑄 ≤ 𝑆 (𝑟 ,ℎ) , so
(𝑦−1, 𝑥−1, 𝑟, ℎ) ∈ D via 𝑄𝑔 and Π(𝑦−1, 𝑥−1, 𝑟, ℎ) = Π(𝑔−1, 𝑔) = 1. Thus

ℎ = 𝑟−1𝑥𝑦 and 𝑟−1𝑥 = ℎ𝑦−1. (*)

We have 𝑦 ∈ 𝑁L (𝑈) by Theorem 5.1(*) and ℎ ∈ 𝑁L (𝑈) by Proposition 3.9. Hence 𝑟−1𝑥 ∈ 𝑁M (𝑈),
and then ℎ = (𝑟−1𝑥)𝑦 ∈ MN.

Suppose that h does not provide a counterexample to the lemma. That is, suppose that there exists
𝑥 ′ ∈ M and 𝑦′ ∈ N such that (𝑥 ′, 𝑦′) ∈ D, 𝑥 ′𝑦′ = ℎ, and 𝑆 (𝑥′,𝑦′) = 𝑆ℎ . As 𝑟−1𝑥𝑦 = ℎ = 𝑥 ′𝑦′,
we get 𝑥𝑦 = 𝑟𝑥 ′𝑦′, and (𝑟, 𝑥 ′, 𝑦′) ∈ D with 𝑟𝑥 ′𝑦′ = 𝑟ℎ = 𝑔. The idea now is to replace (𝑥, 𝑦) with
(𝑟𝑥 ′, 𝑦′) and contradict the assumption that 𝑆𝑔 ≠ 𝑄. To achieve this, observe first that 𝑆𝑔 ≤ 𝑆𝑟 since
𝑆 (𝑟 ,ℎ) = 𝑆𝑟ℎ = 𝑆𝑔. Then observe that (𝑆𝑔)

𝑟 ≤ 𝑆ℎ and 𝑆ℎ = 𝑆 (𝑥′,𝑦′) ≤ 𝑆𝑥′ . Thus (𝑆𝑔)
𝑟 ≤ 𝑆𝑥′ , so

𝑆𝑔 ≤ 𝑆𝑟 𝑥′ . As 𝑟𝑥 ′𝑦′ = 𝑔, we conclude that 𝑆𝑔 ≤ 𝑆 (𝑟 𝑥′,𝑦′) , which yields the desired contradiction. We
conclude that h is itself a counterexample to the lemma.
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Recall that we have 𝑟−1𝑥 ∈ 𝑁M (𝑈). Then 𝑈 ≤ 𝑆 (𝑟−1𝑥,𝑦) since ℎ ∈ 𝑁L (𝑈). Note furthermore that
𝑄 = 𝑆 (𝑥,𝑦) ≤ 𝑆𝑔 = 𝑆 (𝑟 ,ℎ) ≤ 𝑆𝑟 , and thus 𝑄𝑟𝑈 ≤ 𝑆 (𝑟−1𝑥,𝑦) . The maximality of |𝑄 | in our initial choice
of (𝑔, 𝑥, 𝑦) then yields 𝑄𝑟 = 𝑄𝑟𝑈 = 𝑆 (𝑟−1𝑥,𝑦) . Thus 𝑈𝑟 ≤ 𝑄𝑟 , and conjugation by 𝑟−1 yields 𝑈 ≤ 𝑄.
A symmetric argument yields 𝑉 ≤ 𝑄. Setting 𝐻 = 𝑁L (𝑄), it now follows from Lemma 3.1(b) that
𝑥, 𝑦 ∈ 𝐻.

Set 𝑋 = 𝐻 ∩M and 𝑌 = 𝐻 ∩N. Then 𝑋,𝑌 and 𝑈𝑉 are normal subgroups of H, and 𝑋𝑌/𝑈𝑉 is a
𝑝′-group. Set �̄� = 𝐻/(𝑋 ∩ 𝑌 )𝑈𝑉 . Here 𝑃 ≤ 𝐻 and [𝑃, 𝑔] ≤ 𝑆. Since 𝑔 ∈ 𝑋𝑌 , we obtain

[�̄�, �̄�] = [�̄�, 𝑥 �̄�] ≤ �̄�𝑌 ,

and since �̄�𝑌 is a 𝑝′-group we get [�̄�, �̄�] = 1. As �̄� ∩ 𝑌 = 1, we have 𝐶�̄��̄� (�̄�) = 𝐶�̄� (�̄�) × 𝐶�̄� (�̄�). As
�̄� = 𝑥�̄�, it follows that 𝑥 and �̄� centralise �̄�. Thus 𝑃𝑥 ≤ (𝑋 ∩𝑌 )𝑃 and 𝑃 ∈ 𝑆𝑦𝑙𝑝 ((𝑋 ∩𝑌 )𝑃). By Sylow’s
theorem, there exists 𝑧 ∈ 𝑋 ∩ 𝑌 with 𝑃𝑥 = 𝑃𝑧 . We then get 𝑔 = (𝑥𝑧−1) (𝑧𝑦) and 𝑃 ≤ 𝑆 (𝑥𝑧−1 ,𝑧𝑦) . This
contradicts the maximality of Q and yields a final contradiction, proving the lemma. �

Proof of Theorem 5.1. Let 𝑤 = (𝑔1, · · · , 𝑔𝑛) ∈ W(MN) ∩D via 𝑄 ∈ Δ . By Lemma 5.2, we may write
𝑔𝑖 = 𝑥𝑖𝑦𝑖 with 𝑥𝑖 ∈ M, 𝑦𝑖 ∈ N, and with 𝑆𝑔𝑖 = 𝑆 (𝑥𝑖 ,𝑦𝑖 ) . Set 𝑤′ = (𝑥1, 𝑦1, · · · , 𝑥𝑛, 𝑦𝑛). Then 𝑤′ ∈ D via
Q and Π(𝑤) = Π(𝑤′). Since each 𝑦𝑖 normalises U, it follows from Lemma 3.4 that Π(𝑤′) = Π(𝑤′′) for
some 𝑤′′ ∈ D such that 𝑤′′ = (𝑥) ◦ (𝑦1, · · · , 𝑦𝑛)), where 𝑥 ∈ M. Thus MN is closed under Π. To show
thatMN = (MN)−1, we note that if (𝑥, 𝑦) ∈ D∩(M×N), then (𝑦−1, 𝑥−1) ∈ D, and that 𝑦−1𝑥−1 ∈ MN
by Lemma 3.2. Thus MN is a partial subgroup of L. Moreover, we have shown that MN = NM.

Let 𝑔 ∈ MN, and let 𝑓 ∈ L with ( 𝑓 −1, 𝑔, 𝑓 ) ∈ D. By Lemma 3.12, we may write 𝑓 = ℎ𝑟 with 𝑟 ∈ N,
ℎ ∈ 𝑁L (𝑉) and 𝑆 𝑓 = 𝑆 (ℎ,𝑟 ) . Write 𝑔 = 𝑥𝑦 as in Lemma 5.2. By assumption, we have ( 𝑓 −1, 𝑔, 𝑓 ) ∈ D
via some 𝑃 ∈ Δ . Setting 𝑣 = (𝑟−1, ℎ−1, 𝑥, 𝑦, ℎ, 𝑟), it follows that 𝑣 ∈ D via P and 𝑔 𝑓 = Π(𝑣). Here
(ℎ−1, ℎ, 𝑦, ℎ) ∈ D via 𝑆 (𝑦,ℎ) by Lemma 3.2, so 𝑣′ := (𝑟−1, ℎ−1, 𝑥, ℎ, ℎ−1, 𝑦, ℎ, 𝑟) ∈ D via P. Then

𝑔 𝑓 = Π(𝑣) = Π(𝑣′) = (𝑥ℎ𝑦ℎ)𝑟 ∈ (MN)𝑟 .

Since 𝑟 ∈ N and MN is a partial group, we conclude that 𝑔 𝑓 ∈ MN. Thus MN � L.
Set 𝑀 = 𝑁M (𝑆), 𝑁 = 𝑁N (𝑆), and let 𝑠 ∈ 𝑆 ∩MN. Then Lemma 5.2 yields 𝑠 = 𝑓 𝑔 with 𝑓 ∈ M,

𝑔 ∈ N and with 𝑆 = 𝑆 ( 𝑓 ,𝑔) . Thus 𝑓 ∈ 𝑀 and 𝑔 ∈ 𝑁 , where M and N are normal subgroups of the group
𝑁L (𝑆). Then 𝑈𝑉 is a normal Sylow p-subgroup of 𝑀𝑁 , and since 𝑠 = 𝑓 𝑔 ∈ 𝑀𝑁 , we obtain 𝑠 ∈ 𝑈𝑉 .
Thus 𝑆 ∩MN = 𝑈𝑉 , and the proof is complete. � �

Lemma 5.3. Let (L,Δ , 𝑆) be a locality, let M and N be partial normal subgroups of L, and set
𝑈 = 𝑆 ∩M and 𝑉 = 𝑆 ∩N. Suppose that M ∩N ≤ 𝑆. Then M ≤ 𝑁L (𝑉) and N ≤ 𝑁L (𝑈).

Proof. Let 𝑔 ∈ M, set 𝑃 = 𝑆𝑔, and let 𝑥 ∈ 𝑁𝑉 (𝑃). Then (𝑥−1, 𝑔−1, 𝑥, 𝑔) ∈ D via 𝑃𝑔𝑥 , and then
𝑥−1𝑔−1𝑥𝑔 ∈ M ∩N. The hypothesis then yields 𝑥𝑔 ∈ 𝑆, and thus 𝑁𝑉 (𝑃) ≤ 𝑃. Since 𝑃𝑉 is a subgroup
of S, we conclude that 𝑉 ≤ 𝑃, and then 𝑉𝑔 = 𝑉 by Lemma 3.1(a). Thus M ≤ 𝑁L (𝑉), and a symmetric
argument shows that N ≤ 𝑁L (𝑈). �

Corollary 5.4. Let M,N � L and suppose that M ∩ N ≤ 𝑆. Then MN � L, and 𝑆 ∩ MN =
(𝑆 ∩M) (𝑆 ∩N).

Proof. Immediate from Theorem 5.1 and Lemma 5.3. �

Recall that a finite group G is of characteristic p if 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).

Proposition 5.5. Let (L,Δ , 𝑆) be a locality, let N � L be a partial normal subgroup, set 𝑇 = 𝑆 ∩N,
set L𝑇 = 𝑁L (𝑇), and let K be a partial normal subgroup of L𝑇 . Assume

(1) Each of the groups 𝑁L (𝑃) for 𝑃 ∈ Δ is of characteristic p, and
(2) K ≤ 𝐶L (𝑇).

Then 〈K,N 〉 � L, and 𝑆 ∩ 〈K,N 〉 = (𝑆 ∩K)𝑇 . Moreover, if 𝑆 = 𝐶𝑆 (𝑇)𝑇 , then 〈K,N 〉 = KN = NK.
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Proof. Set N𝑇 = 𝑁N (𝑇). Then N𝑇 � L𝑇 by Lemma 1.8. View L𝑇 as a locality (L𝑇 ,Δ , 𝑆) as in
Lemma 2.12. The condition (1) allows us to apply Lemma 3.7 and thereby conclude that N𝑇 normalises
𝐶𝑆 (𝑇)𝑇 . Set 𝑈 = 𝑆 ∩ K. Then 𝑈 ≤ 𝐶𝑆 (𝑇) by (2), and then [𝑈,N𝑇 ] ≤ 𝐶𝑆 (𝑇)𝑇 ∩ K = 𝑈. Thus N𝑇

normalises U. Since K normalises T, we conclude from Theorem 5.1 that KN𝑇 � L𝑇 .
Let L̄ be the quotient locality L/N, and let 𝜌 : L → L̄ be the canonical projection. Then the

restriction of 𝜌 to L𝑇 is a projection L𝑇 → L̄ by Proposition 4.11, and (KN𝑇 )𝜌 = K𝜌. Then K𝜌 � L̄
by partial subgroup correspondence (Proposition 4.7). The 𝜌-preimage of K𝜌 in L is then a partial
normal subgroup of L containing the partial subgroup 〈K,N 〉 of L generated by K and N.

By Lemma 1.9, 〈K,N 〉 is the union of its subsets 𝑌𝑖 , where 𝑌0 = K ∪ N and (for 𝑘 > 0) 𝑌𝑘 is the
set of all Π(𝑤) with 𝑤 ∈ W(𝑌𝑘−1) ∩ D. Clearly 𝜌 maps 𝑌0 into K𝜌, and a straightforward induction
on k then shows that 𝜌 maps each 𝑌𝑘 into K𝜌. Thus 〈K,N 〉 is mapped onto K𝜌, and partial subgroup
correspondence then implies that 〈K,N 〉 is the preimage of K𝜌. As K𝜌 � L̄, a further application of
partial subgroup correspondence yields 〈K,N 〉 � L.

Set 𝑈 = 𝑆 ∩K, and set 𝑉 = 𝑆 ∩ 〈K,N 〉. Then the restriction of 𝜌 to V is a homomorphism of groups
by Lemma 1.16, with kernel T. Here U is a maximal p-subgroup of K by Lemma 3.1(c), and both 𝑉𝜌
and 𝑈𝜌 are maximal p-subgroups of K𝜌 by Corollary 4.10. Then 𝑉𝜌 = 𝑈𝜌 and 𝑉 = 𝑈𝑇 .

Suppose now that 𝑆 = 𝐶𝑆 (𝑇)𝑇 . Then each element of K is ↑-maximal with respect to N, by
Lemma 3.10. Let 𝑤 ∈ W(KN) ∩ D, write 𝑤 = (𝑥1𝑦1, · · · , 𝑥𝑛𝑦𝑛) with 𝑥𝑖 ∈ K and 𝑦𝑖 ∈ N, and set
𝑤′ = (𝑥1, 𝑦1, · · · , 𝑥𝑛, 𝑦𝑛). Then 𝑤′ ∈ D by the splitting lemma (Lemma 3.12), and Π(𝑤) = Π(𝑤′).
Here Π(𝑤′) ∈ KN by Lemma 3.4, so 〈K,N 〉 = KN in this case. One similarly has 〈K,N 〉 = NK,
completing the proof. �

Remark 5.6. In the proof of Proposition 5.5, hypothesis (2) serves no other purpose than to guarantee
that KN𝑇 is a partial normal subgroup of L𝑇 . In fact, by [He, Theorem A in], the product of partial
normal subgroups of a locality is always a partial normal subgroup, so (2) is redundant.

Appendix A. Limits and colimits in the category of partial groups

This appendix was inspired by some remarks of Edoardo Salati, who identified a serious gap in the
author’s earlier treatment of colimits and who has himself shown [Sal] that the category of partial
groups is complete (has all limits) and co-complete (has all colimits). The discussion here will establish
a somewhat weaker result.

By a pointed set, we mean a set with a distinguished base-point. There is then a category 𝑆𝑒𝑡∗ of
pointed sets with base-point-preserving maps. Let 𝑃𝑎𝑟𝑡 be the category of partial groups. There is then
a forgetful functor 𝑃𝑎𝑟𝑡 → 𝑆𝑒𝑡∗, given by regarding a partial group as a pointed set having the identity
element as its base-point.

To discuss limits and colimits in 𝑃𝑎𝑟𝑡 (and their relation with limits and colimits in 𝑆𝑒𝑡∗), we begin
by reviewing the relevant definitions.

Definition Appendix A.1. Let J be a small category, and let C be a category. By a J-shaped diagram in
C, we mean a covariant functor 𝐹 : 𝐽 → C.

As always, composition of mappings will be written from left to right.

Definition Appendix A.2. Let 𝐹 : 𝐽 → C be a J-shaped diagram in C. A cone to F consists of an object
M of C together with a family 𝜙 = (𝜙𝑋 : 𝑀 → 𝐹 (𝑋))𝑋 ∈𝑂𝑏 (𝐽 ) of C-morphisms, such that for each
J-morphism 𝑓 : 𝑋 → 𝑌 , we have 𝜙𝑌 = 𝜙𝑋 ◦ 𝐹 ( 𝑓 ). The cone (𝑀, 𝜙) is a limit of F if for every cone
(𝑁, 𝜓) to F, there exists a unique C-morphism 𝑢 : 𝑁 → 𝑀 such that 𝜓𝑋 = 𝑢 ◦ 𝜙𝑋 for all 𝑋 ∈ 𝑂𝑏(𝐽).

Consider now the case in which C is the category of sets (and mappings of sets), and let 𝐹 : 𝐽 → C
be a J-shaped diagram. If the only J-morphisms are identity morphisms, then the direct product 𝑀 of
the sets 𝐹 (𝑋) for 𝑋 ∈ 𝑂𝑏(𝐽), together with the set 𝜙 of associated projection maps, is a limit of F.
More generally, let M be the subset of 𝑀 consisting of all 𝑂𝑏(𝐽)-tuples (𝑎𝑋 )𝑋 ∈𝑂𝑏 (𝐽 ) such that, for each
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J-morphism 𝑓 : 𝑋 → 𝑌 , we have 𝑎𝑌 = (𝑎𝑋 )𝐹 ( 𝑓 ) (𝑎𝑌 is equal to the image of 𝑎𝑋 under 𝐹 ( 𝑓 )). Then
M, together with the set 𝜙 of maps 𝜙𝑋 : 𝑀 → 𝐹 (𝑋), where 𝜙𝑋 is the restriction to M of the projection
𝜙𝑋 : 𝑀 → 𝐹 (𝑋), is a limit of F. If instead C is taken to be the category 𝑆𝑒𝑡∗ of pointed sets, then 𝑀
and M are pointed sets (via the 𝑂𝑏(𝐽)-tuple of base-points ∗𝑋 ∈ 𝐹 (𝑋)), and one observes that (𝑀, 𝜙)
is again a limit of F.

Theorem Appendix A.3. Let 𝑃𝑎𝑟𝑡 be the category of partial groups, let 𝑆𝑒𝑡∗ be the category of pointed
sets, let J be a small category, and let 𝐹 : 𝐽 → 𝑃𝑎𝑟𝑡 be a J-shaped diagram. Let 𝐹0 : 𝐽 → 𝑆𝑒𝑡𝑠∗ be the
composition of F with the forgetful functor 𝑃𝑎𝑟𝑡 → 𝑆𝑒𝑡𝑠∗. Then there exists a limit (M, 𝜙) of F, and
the forgetful functor 𝑃𝑎𝑟𝑡 → 𝑆𝑒𝑡∗ sends (M, 𝜙) to a limit of 𝐹0.

Proof. We shall only outline the steps to the proof, leaving most details to the reader. Let M̂ be the
direct product (as sets) of the partial groups 𝐹 (𝑋) for 𝑋 ∈ 𝑂𝑏(𝐽). Regard M̂ as a pointed set whose
base-point is 𝑂𝑏(𝐽)-tuple of identity elements. Also, for 𝑋 ∈ 𝑂𝑏(𝐽), regard D(𝐹 (𝑋)) as a pointed set
whose base-point is the empty word. Let D̂ be the direct product of the pointed sets D(𝐹 (𝑋)). Thus the
members of D̂ are 𝑂𝑏(𝐽)-tuples (𝑤𝑋 )𝑋 ∈𝑂𝑏 (𝐽 ) , with 𝑤𝑋 ∈ D(𝐹 (𝑋)). Let Π𝑋 : D(𝐹 (𝑋)) → 𝐹 (𝑋) be
the product. There is then a mapping

Π̂ : D̂ → M̂

that sends (𝑤𝑋 )𝑋 ∈𝑂𝑏 (𝐽 ) to (Π𝑋 (𝑤𝑋 ))𝑋 ∈𝑂𝑏 (𝐽 ) . It is now straightforward to check that M̂ is a partial
group via the product Π̂ and via the inversion map that sends an element (𝑔𝑋 ) of M̂ to the 𝑂𝑏(𝐽)-tuple
(𝑔−1

𝑋 ) of inverses.
LetM be the subset ofM̂ consisting of all𝑂𝑏(𝐽)-tuples (𝑔𝑋 )𝑋 ∈𝑂𝑏 (𝐽 ) such that, for each J-morphism

𝑓 : 𝑋 → 𝑌 , we have 𝑔𝑌 = (𝑔𝑋 )𝐹 ( 𝑓 ). Let 𝜙 be the 𝑂𝑏(𝐽)-tuple (𝜙𝑋 ) of maps 𝜙𝑋 : M → 𝐹 (𝑋)

obtained by restriction to M of the projection 𝜙𝑋 : M̂ → 𝐹 (𝑋). One observes that each 𝜙𝑋 is a
homomorphism of partial groups and that (M̂, 𝜙) is a cone of F.

Now let (N, 𝜓) be any cone of F. For 𝑔 ∈ N, define 𝑔𝜇 to be the 𝑂𝑏(𝐽)-tuple (𝑔𝜓𝑋 ). One checks
that each such 𝑔𝜇 is an element of M and then that the mapping 𝜇 : N → M is a homomorphism of
partial groups. Finally, one observes that 𝜓𝑋 = 𝑢 ◦ 𝜙𝑋 for all 𝑋 ∈ 𝑂𝑏(𝐽) and that u is necessarily the
unique homomorphism N → M having this property. Thus (M, 𝜙) is a limit of F. Since also (M, 𝜙)
is a limit of 𝐹0, the proof is complete. �

The situation for colimits of partial groups is not as straightforward as that of limits.

Definition Appendix A.4. Let 𝐹 : 𝐽 → C be a J-shaped diagram in C. A co-cone to F consists of an
object M of C together with a family 𝜙 = (𝜙𝑋 : 𝐹 (𝑋) → 𝑀)𝑋 ∈𝑂𝑏 (𝐽 ) of C-morphisms, such that for
each J-morphism 𝑓 : 𝑋 → 𝑌 , we have 𝜙𝑋 = 𝐹 ( 𝑓 ) ◦ 𝜙𝑌 . The co-cone (𝑀, 𝜙) is a colimit of the diagram
F if for every co-cone (𝑁, 𝜓) to F, there exists a unique C-morphism 𝑢 : 𝑀 → 𝑁 such that 𝜓𝑋 = 𝜙𝑋 ◦ 𝑢
for all 𝑋 ∈ 𝑂𝑏(𝐽).

Again, it may be useful to review the case where C is the category of sets. Thus, let 𝐹 : 𝐽 → 𝑆𝑒𝑡𝑠 be
a J-shaped diagram. Let 𝑀 be the disjoint union of the sets 𝐹 (𝑋) for 𝑋 ∈ 𝑂𝑏(𝐽). Let ∼ be the relation
on 𝑀 given by 𝑎 ∼ 𝑏 if there exists a J-morphism 𝑓 : 𝑋 → 𝑌 such that 𝑎 ∈ 𝐹 (𝑋), 𝑏 ∈ 𝐹 (𝑌 ), and
𝑏 = (𝑎)𝐹 ( 𝑓 ) is the image of a under 𝐹 ( 𝑓 ). Then ∼ is reflexive, since F sends identity morphisms of J
to identity maps of sets. Let ≈ be the symmetrisation of ∼ (so that 𝑎 ≈ 𝑏 if either 𝑎 ∼ 𝑏 or 𝑏 ∼ 𝑎). As ∼
is transitive, ≈ is then an equivalence relation. Let M be the set 𝑀/≈ of equivalence classes, and let 𝜙
be the set of all 𝜙𝑋 : 𝐹 (𝑋) → 𝑀 , where 𝜙𝑋 is the mapping that sends 𝑎 ∈ 𝐹 (𝑋) to the ≈-equivalence
class of a in 𝑀 . Then (𝑀, 𝜙) is a colimit of F.

Next, take C to be the category 𝑆𝑒𝑡∗, and let 𝐹 : 𝐽 → C be a J-shaped diagram in C. Here we take 𝑀
to be the pointed set obtained from the disjoint union of the pointed sets 𝐹 (𝑋) (over all 𝑋 ∈ 𝑂𝑏(𝐽)) by
identifying base-points. For any J-morphism 𝑓 : 𝑋 → 𝑌 , the morphism 𝐹 ( 𝑓 ) of pointed sets sends the
base-point of 𝐹 (𝑋) to the base-point of 𝐹 (𝑌 ), and we may therefore define the equivalence relation ≈
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on 𝑀 as in the preceding paragraph. Take 𝑀 = 𝑀/≈. Again, for each 𝑋 ∈ 𝑂𝑏(𝐽) one has the mapping
𝜙𝑋 : 𝑋 → 𝑀 that sends 𝑎 ∈ 𝑋 to the ≈-equivalence class of a in 𝑀 , and (𝑀, 𝜙) is a colimit of F.

In passing now to the case where C is the category of partial groups, we face the problem that, in
general, there will be no partial normal subgroup and no ‘quotient’ partial group corresponding to the
equivalence relation ≈. For this reason, we shall place restrictions on the sort of diagrams 𝐹 : 𝐽 → 𝑃𝑎𝑟𝑡
to be considered.
Theorem Appendix A.5. Let 𝑃𝑎𝑟𝑡 be the category of partial groups, let 𝑆𝑒𝑡∗ be the category of pointed
sets, let J be a small category, and let 𝐹 : 𝐽 → 𝑃𝑎𝑟𝑡 be a J-shaped diagram. Assume
(1) For each ordered pair (𝑋,𝑌 ) of objects of J, there exists at most one J-morphism 𝑋 → 𝑌 .
(2) For each J-morphism 𝑓 : 𝑋 → 𝑌 the kernel of the homomorphism 𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 ) of partial

groups is trivial.
Let 𝐹0 : 𝐽 → 𝑆𝑒𝑡𝑠∗ be the composition of F with the forgetful functor. Then there exists a colimit (M, 𝜙)
of F, and the forgetful functor sends (M, 𝜙) to a limit of 𝐹0.
Proof. Let M̂ be the pointed set obtained as the disjoint union of all of the partial groups 𝐹 (𝑋), for
𝑋 ∈ 𝑂𝑏(𝐽), with base-points identified. There are then inclusion maps 𝜄𝑋 : D(𝐹 (𝑋)) → W(M̂) of
pointed sets (and where the base-points are empty words). Define D̂ to be the union of the images of
the maps 𝜄𝑋 . Thus, D̂ is the disjoint union of the domains D(𝐹 (𝑋)), with base-points identified. There
is then a mapping Π̂ : D̂ → M̂ whose restriction to D(𝐹 (𝑋)) is the product Π𝑋 on 𝐹 (𝑋). The union
of the inversion maps on the partial groups 𝐹 (𝑋) is an involutory bijection on M̂, and one may check
that M̂ is a partial group via these structures.

Let ∼ be the relation on M̂ given by 𝑎 ∼ 𝑏 if there exists a J-morphism 𝑓 : 𝑋 → 𝑌 such that
𝑎 ∈ 𝐹 (𝑋), 𝑏 ∈ 𝐹 (𝑌 ) and 𝐹 ( 𝑓 ) : 𝑎 ↦→ 𝑏. As in the discussion concerning colimits of sets, we find that ∼
is reflexive, and there is an equivalence relation≈ given by Lsymmetrising∼. Extend≈ to an equivalence
relation on W(M̂) in the component-wise way. That is, if 𝑢 = (𝑎1, · · · , 𝑎𝑚) and 𝑣 = (𝑏1, · · · , 𝑏𝑛) are
words in the alphabet M̂, then 𝑢 ≈ 𝑣 if and only if 𝑚 = 𝑛 and 𝑎𝑖 ≈ 𝑏𝑖 for all i. For 𝑎 ∈ M̂, we write [𝑎]
for the ≈-class of a. Then the ≈-class of a word 𝑢 = (𝑎1, · · · , 𝑎𝑛) is the word ([𝑎1], · · · , [𝑎𝑛]). Let M
be the pointed set M̂/≈ (whose base-point is the equivalence class of the base-point of M̂, and let D
be the set of all words ([𝑎1], · · · , [𝑎𝑛]) having a representative (𝑎1, · · · , 𝑎𝑛) ∈ D̂.

Let 𝑢 = (𝑎1, · · · , 𝑎𝑛) ∈ D̂, and assume that there exists at least one index k such that 𝑎𝑘 is not
the identity element of M̂. Then there is a unique object X of J such that 𝑢 ∈ D(𝐹 (𝑋)). Let also
𝑣 = (𝑏1, · · · , 𝑏𝑛) ∈ D̂, and assume 𝑢 ≈ 𝑣. Then (2) implies that 𝑏𝑘 is not the identity element of M̂, and
there is a unique object Y of J with 𝑣 ∈ D(𝐹 (𝑌 )). Let i be any index from 1 to n such that not both 𝑎𝑖 and
𝑏𝑖 are identity elements. Then neither 𝑎𝑖 nor 𝑏𝑖 is an identity element, and (1) implies that either there
is a unique J-morphism 𝑓 : 𝑋 → 𝑌 and 𝐹 ( 𝑓 ) : 𝑎𝑖 ↦→ 𝑏𝑖 , or there is a unique J-morphism 𝑔 : 𝑌 → 𝑋
and 𝐹 (𝑔) : 𝑏𝑖 ↦→ 𝑎𝑖 . If there exist both a J-morphism 𝑓 : 𝑋 → 𝑌 and a J-morphism 𝑔 : 𝑌 → 𝑋 ,
then (1) implies that f and g are isomorphisms and are inverse to each other, whence 𝐹 ( 𝑓 ) : 𝑎𝑖 ↦→ 𝑏𝑖
if and only if 𝐹 (𝑔) : 𝑏𝑖 ↦→ 𝑎𝑖 . We may therefore assume without loss of generality that there exists
a J-morphism 𝑓 : 𝑋 → 𝑌 and that 𝐹 ( 𝑓 ) maps u to v component-wise. As 𝐹 ( 𝑓 ) is a homomorphism
𝐹 (𝑋) → 𝐹 (𝑌 ) of partial groups we then have Π̂(𝑢) = Π̂(𝑣). We have thus shown that Π̂ induces a
mapping Π : D → M, and the reader may check that Π is a product, as defined in Definition 1.1. If
𝜆 : H → K is a homomorphism of partial groups and 𝑎 ∈ H, then (𝑎−1)𝜆 = (𝑎𝜆)−1, so there is a well-
defined inversion mapping M → M given by [𝑎]−1 = [𝑎−1]. Again it is left to the reader to check that
with these structures, M is a partial group.

For each 𝑋 ∈ 𝑂𝑏(𝐽), define 𝜙𝑋 : 𝐹 (𝑋) → M by 𝑎𝜙𝑋 = [𝑎]. Then 𝜙𝑋 is a homomorphism. If
𝑎′ ∈ 𝐹 (𝑋) with [𝑎] = [𝑎′], then 𝑎 = 𝑎′, since the only J-morphism 𝑋 → 𝑋 is the identity morphism.
Thus 𝜙𝑋 is injective. For any J-morphism 𝑓 : 𝑋 → 𝑌 and any 𝑎 ∈ 𝐹 (𝑋), we have [(𝑎)𝐹 ( 𝑓 )] = [𝑎], so
(M, 𝜙) is a co-cone of F.

Let (N, 𝜓) be an arbitrary co-cone of F. Thus 𝜓𝑋 = 𝐹 ( 𝑓 )◦𝜓𝑌 whenever 𝑓 : 𝑋 → 𝑌 is a J-morphism.
That is, we have 𝑎𝜓𝑋 = 𝑏𝜓𝑌 if 𝐹 ( 𝑓 ) : 𝑎 ↦→ 𝑏, and thus there is a well-defined mapping 𝜎 : M → N
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given by [𝑎] ↦→ [𝑎𝜓𝑋 ] for 𝑎 ∈ 𝐹 (𝑋). Moreover, we have 𝜙𝑋 ◦ 𝜎 = 𝜓𝑋 , and 𝜎 is the unique such
mapping M → N. One checks that 𝜎 is a homomorphism of partial groups, in order to complete the
proof that (M, 𝜙) is a colimit of F. �
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