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Abstract

We consider a production-inventory model operating in a stochastic environment that is
modulated by a finite state continuous-time Markov chain. When the inventory level
reaches zero, an order is placed from an external supplier. The costs (purchasing and
holding costs) are modulated by the state at the order epoch time. Applying a matrix
analytic approach, fluid flow techniques, and martingales, we develop methods to obtain
explicit equations for these cost functionals in the discounted case and under the long-run
average criterion. Finally, we extend the model to allow backlogging.
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1. Introduction

An important problem in inventory planning is how to effectively manage the inventory
control in a dynamic and stochastic environment. The simple economic order quantity (EOQ)
model (see, e.g. Nahmias (1997)) is the most fundamental of all inventory models. It describes
the trade-off between fixed ordering costs and variable holding costs. In this paper we study
a stochastic fluid EOQ model of a single infinite capacity buffer. The buffer content level
increases or decreases according to a fluid-flow rate modulated by an n-state continuous-time
Markov chain (CTMC). Whenever the buffer becomes empty, the environment state jumps to
another state instantaneously with a given probability (or it may stay unchanged). At the same
time the buffer is refilled to a state-dependent level instantaneously. In Figure 1, we illustrate
a sample path of the process (environment state and inventory level).

Our primary motivation for considering this model is to provide contributions to the study of
inventory systems modulated by a Markovian environment. The fluid process is the inventory
position or inventory level under continuous review where the environment process represents
the background state, for example, the production or sales season. A jump in the fluid level
represents an external order placement or an order arrival, and the transition at the background
state at the jump point can be the result of repairs or production facilities, etc.

In order to manage such an inventory model, one needs information about the holding cost
for the stock, the fixed cost of an order, and the purchasing cost. The main objective of this
paper is to develop techniques to determine explicit equations for all these costs under the
discounted as well as under the long-run average cost criterion.

Dynamic control of stochastic inventory systems are classified according to whether the
demand and production are discrete or continuous. In the case of continuous demand and
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Figure 1: A typical sample path of the background environment (J(t)) and the inventory level process
(I (t)).

production, fluid versions of these models were studied by Kulkarni et al. (2005) and Kulkarni
(2010). The closest papers to our analysis are Kulkarni and Yan (2007) and Yan and Kulkarni
(2008), where in both papers the authors consider a continuous fluid-flow system with jumps at
the boundary. More specifically, Kulkarni and Yan (2007) derived a system of first-order
nonhomogeneous linear differential equations for the limiting distribution of the bivariate
(buffer level, environment state) process and Yan and Kulkarni (2008) derived an EOQ policy
that minimized the long-run average cost; they also extended the state-space of the model by
allowing backlogging. Berman et al. (2006) studied a fluid EOQ-type model operating in a
Markovian random environment of alternating good and bad periods determining the demand
rates. They derived the steady-state mean of the content level and the expected cycle length.
Berman and Perry (2006) presented an EOQ-type model in which the demand rate is a function
of the inventory level. Later, Berman et al. (2008) assumed an EOQ model in which the content
level is modelled by a Brownian demand. They derived cost functionals for the discounted case
and for the long-run average case. Another related model is the so-called clearing system (see
Kella et al. (2003), Berman et al. (2005), and Perry et al. (2005)), which can be regarded as a
dual EOQ stochastic model. In a clearing system, the fluid process jumps back to zero when it
reaches a certain positive level.

Our analysis is based on a combination of a martingale technique and an application of fluid
flow theory. The martingale approach was introduced by Asmussen and Kella (2000) and was
frequently used in the study of inventory models, see, e.g. Perry et al. (2001) and Kella et al.
(2003) and the references therein. Fluid flows have been an active area of research in recent
years. Bean and O’Reilly (2008) studied the behavior of the fluid in a buffer with threshold
controls with a wide range of behaviors possible at the boundaries. Ramaswami (1999) initiated
a unified matrix-analytic algorithmic approach to fluid flows, and this was followed by a series
of papers by the author, Ahn, and others (see Ramaswami (2006), Ahn and Ramaswami (2003)–
(2006), and Ahn et al. (2007)). To the best of the author’s knowledge, fluid flow methods have
not been applied to inventory models and the associated cost-related quantities.
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In this paper we use E and Ei to represent expectation and conditional expectation operators,
respectively. We denote E to be a matrix (or a vector) of expectations. We denote by e a column
vector with ones, i.e. e = (1, 1, . . . , 1)�, by ei a row vector with the ith component equal to 1
and all the other components 0, by I the identity matrix and by 1{A} the indicator of an event A.

2. Mathematical description of the model

Let I (t) be the fluid level in the buffer at time t . The rate of change of the fluid level is
modulated by a CTMC {J(t) : t ≥ 0} on a finite state-space S = {1, 2, . . . , n} with a generator
matrix Q = [Qij ]. As long as J(t) is in state i, the production occurs continuously at rate pi ,
and there is a demand at rate di . The net production rate is, thus, ui = pi −di . Note that ui may
be either negative or positive. Accordingly, we have two disjoint sets (S1, S2), S = S1 ∪ S2,
where S1 is a nonempty set of increasing rates S1 = {i ∈ S : ui > 0} and S2 is a nonempty set
of the decreasing rates S2 = {i ∈ S : ui < 0}. Let |S1| = n1 and |S2| = n2; thus, n1 + n2 = n.
Let π = [π1, . . . , πn] be the limiting distribution of the J(t) process, i.e. π is the unique
solution to

πQ = 0, πe = 1.

The system is stable if and only if the expected input rate is negative, i.e.

n∑
i=1

πiui < 0

(see Kulkarni and Yan (2007)). We assume that the stability condition holds throughout the
paper.

Let γ = [γ1, γ2, . . . , γn] be the initial probability vector of J(t). When I (t) down-crosses
level 0 in state i ∈ S2, it is switched instantaneously to state j ∈ S with probability αij . Then
after changing to state j , the process places a state-dependent order of size qj > 0 from an
external supplier who delivers instantaneously. Thus, immediately after the down-crossing to
emptiness by the fluid in state i, the fluid process restarts in state qj with probability αij .

Let Tk be the time of the kth jump (T0 = 0) and Jk = J(Tk) be the environmental state
at Tk (just after the jump). We assume that over [Tk−1, Tk) k = 1, 2 . . . , the process {J(t), t ∈
[Tk−1, Tk)} is an irreducible CTMC on S. We call the points where the process jumps up (the
replenishment times) order points. They form a semi-renewal process where the Tks are the
semi-regenerative points of the process. Thus, αij is defined as

αij = P{Jk = j | J(T −
k ) = i}, i ∈ S2, j ∈ S.

The jump probabilities form a matrix A = [αij ]. Note that the case in which the environment is
not switched at the moment of an order arrival is a special case of the latter assumption by setting
A = I . Define the kth cycle as the time elapsed between Tk−1 and Tk, k = 1, 2, . . . Denote by
Lk = Tk − Tk−1, k = 1, 2 . . . (L0 = 0) the inter-replenishment times and let L = L1.

Next, we consider the cost functionals of the model. The total cost consists of three parts: a
fixed ordering cost, a purchasing cost, and a holding cost. The cost components are determined
by the environment at the order points. Thus, we assume that if the state at an order point is
Jk = i ∈ S, the fixed ordering cost is Ki for an order (typically, cost of ordering, shipping,
and handling), the cost to purchase one item from an external supplier is ci and the cost to
hold one item in inventory during a time interval of length dt is hidt during all the cycle k
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in which Jk = i (i.e. the holding cost for one unit is constant between two consecutive order
replacements, i.e. h(t) = hi for t ∈ [Tk, Tk+1) and Jk = i).

We derive in a closed form these cost functionals for the discounted case as well as for the
long-run average case. The crucial tools of our analysis are introduced in the next section.

3. Preliminaries

For the determination of the cost functionals, we use two tools: (a) the matrix-analytic ap-
proach and the theory of Markov-modulated fluid flows (MMFFs), initiated by a series of papers
by Ahn and Ramaswami (2003)–(2007) and Ramaswami (2006) and (b) an application of the
optional sampling theorem to the multi-dimensional martingale of Asmussen and Kella (2000).

3.1. The fluid inventory model

Introduce a modulating CTMC {J(t); t > 0} with state-space S = S1 ∪ S2. (|S1| =
n1, |S2| = n2). Its infinitesimal generator Q is given in a block form according to transitions
between the sets Si (i = 1, 2),

Q =
(

Q11 Q12
Q21 Q22

)
.

Now let F (t) be the content level of the fluid at time t ≥ 0 that is modulated as follows:
whenever the Markov chain is i ∈ S1, the fluid flow increases linearly at rate ui > 0 and
whenever it is in j ∈ S2, the fluid flow decreases linearly at rate uj > 0. The two-dimensional
stochastic process {F (t), J(t), t ≥ 0} is called a Markov-modulated fluid flow (MMFF)
process. Let U1, U2, and U be diagonal matrices,

Uj = diag{ui, i ∈ Sj }, U = diag(U1, U2), j = 1, 2.

Let τ(x) = inf(t > 0, F (t) = x) be the first passage time to level x. Let �(s) be an (n1 ×n2)

matrix whose ij th component is

[�(s)]ij = E{e−sτ (0), J(τ (0)) = j | F (0) = 0, J(0) = i}, i ∈ S1, j ∈ S2,

which is the LST (Laplace–Stieltjes transform) of τ(0) restricted to the event that the inventory
process hits level 0 in phase j ∈ S2 and given that F (0) = 0, J(0) = i ∈ S1. Ramaswami
(2006) shows how to compute �(s) and provides a good algorithm for this (note that there
are other algorithms including some quadratically convergent ones for computing that matrix;
see, e.g. Bean et al. (2008)). The following are some interesting first passage times of the
process F :

• τ(x, y) = first passage time of F from level x to level y,

• aτ (x, y) = first passage time of F from level x to level y avoiding a visit to levels in
[a, ∞) en route,

• aτ (x, y) = first passage time of F from level x to level y avoiding a visit to levels in
[0, a] en route,

• b
aτ (x, y) = first passage time of F from level x to level y avoiding a visit to levels in
[0, a] ∪ [b, ∞) en route.

We use the notation f̂ (x, y, s), af̂ (x, y, s), af̂ (x, y, s), and b
af̂ (x, y, s) to denote, respectively,

the matrices of LSTs of the joint distribution of the first passage times τ(x, y), aτ (x, y),
aτ (x, y), b

aτ (x, y), and the state of the phase process at each first passage time.
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Table 1: Transform matrices.

Quantity Matrix size

K(s) = U−1
1 (Q11 − sI ) + �(s)U−1

2 Q21 n1 × n1

H (s) = U−1
2 (Q22 − sI + Q21�(s)) n2 × n2

�(s, x) = �(s)
∫
(0,x) eH (s)y(U−1

2 Q21)eK(s)y dy n1 × n1

Table 2: Transform matrices of the reversed process.

Quantity Matrix size

Kr (s) = U−1
2 Q22 + �r(s)U−1

1 Q12 n2 × n2

H r (s) = U−1
1 (Q11 − sI + Q12�

r(s)) n1 × n1

�r(s, x) = �r(s)
∫
(0,x) eH r (s)y(U−1

1 Q12)eKr (s)y dy n2 × n2

Table 3: LST of first passage times.

LST First passage time Matrix size

0f̂12(x, 0, s) = �(s)eH (s)x from (x, S1) to (0, S2)

avoiding 0 in F
n1 × n2

0f̂22(x, 0, s) = eH (s)x from (x, S2) to (0, S2)

avoiding 0 in F
n2 × n2

0f̂11(0, x, s) = eK(s)x(I + �(s, x))−1 from (0, S1) to (x, S1)

avoiding 0 in F
n1 × n1

x�r(s) = �r(s) −0 f̂ r
22(0, x, s)�r(s)eH r (s)x from (0, S2) to (0, S1)

avoiding x in Fr
n2 × n1

0f̂
r
22(0, x, s) = eKr (s)x(I + �r(s, x))−1 from (0, S2) to (x, S2)

avoiding 0 in Fr
n2 × n2

An important variant of the fluid flow F , a reflected fluid flow, is particularly useful in the
analysis of our inventory level process. The reflected fluid flow F r is obtained by reversing
the roles of the up and down environment states. Analogously, �r(s) is the matrix (of order
(n2 × n1)) whose (i, j) component is the LST of the time to reach level 0 for the process F r

restricted to Jr (τ (0)) = j ∈ S1, given that F r (0) = 0 and Jr (0) = i ∈ S2, where Jr (t) is the
modulated state process for F r (we use notation f̂ r (x, y, s), af̂ r (x, y, s), af̂

r (x, y, s), and
b
af̂

r (x, y, s) to denote quantities similar to those defined above for F r ).
For the hitting times that we will use all these matrices are straightforward to evaluate once

we have computed �(s). We list these matrices and their sizes in Tables 1, 2, and 3. All
matrices have nice probabilistic interpretations. For more details; see Ahn and Ramaswami
(2005), Ramaswami (2006), and Ahn et al. (2007).

Analogous to the matrices considered above for F , we also introduce the matrices Kr (s),
H r (s), and �r(s) associated to the rate-reverse flow F r , by changing the index from 1 to 2,
and 2 to 1.
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In our model the bivariate process (I (t), J(t)), between two sequential order points, has
the same distribution as the MMFF process (F (t), J(t)); thus, we will use the quantities in
Table 3 for relevant functionals.

3.2. The multi-dimensional martingale

Let {X(t), t ≥ 0} be a right-continuous Markov modulated Lévy process with modulating
process {J (t), t ≥ 0} which is a right-continuous irreducible finite state-space CTMC. Let
{Y (t), t ≥ 0} be an adapted continuous process with a finite expected variation on finite intervals
and let Z(t) = X(t) + Y (t). Asmussen and Kella (2000) have shown that for such a process
the matrix with elements Ei{eαX(t); J (t) = j} has the form of etK(α) for some matrix K(α).
Theorem 2.1 ofAsmussen and Kella (2000) yields that under certain conditions on {Z(t), t ≥ 0},
the multi-dimensional process

M(α, t) =
∫ t

0
eaZ(s) 1{J (s)} dsK(α)+eaZ(0)1{J (0)} −eaZ(t)1{J (t)} +α

∫ t

0
eaZ(s) 1{J (s)} dY (s)

(3.1)
is a (row) vector-valued zero mean martingale. Some of the relevant functionals in this paper will
be obtained by applying the optional stopping theorem (OST) (or Doob’s optional sampling
theorem, see Doob (1953)) to appropriate special cases of (3.1). For our model X(t) has
piecewise linear sample paths with slope uj on intervals where J(t) = j .

In this paper for any matrix B, we shall denote its elements by (B)ij or by [B]ij and reserve
the notation Bij for the sub-matrix of B with row indices in Si and column indices in Sj .
Moreover, we use �q for a diagonal matrix as follows: �q = diag(q1, q2, . . . , qn).

4. The discounted model

Let us now introduce the functionals indicating the expected discounted costs in our model
using a discount factor β > 0: (a) the order cost, includes a fixed set up cost whenever an order
is placed and a purchasing cost, and (b) the holding cost for the stock.

4.1. Order cost

Assume that Jk = i ∈ S. Then an order of size qi is placed and I (Tk) = qi . The order
cost is Ki + ciqi . Let OC(β) be the expected discounted order cost and let Ô(β) be an (n × 1)

vector whose ith component Ôi(β) is given by

Ôi(β) = Ei

{ ∞∑
k=0

e−βTk (KJk
+ cJk

qJk
)

}
,

i.e. the expected discounted order cost, given J(0) = i ∈ S, I (0) = qi . Then, we have

OC(β) = γ · Ô(β).

Regarding Table 2, let 0f̂12(q, 0, s) be an (n1 × n2) matrix whose ij th component is

(0f̂12(q, 0, s))ij = (�(s)eH (s)qi )ij , i ∈ S1, j ∈ S2.

The ij th component (0f̂12(q, 0, s))ij represents the LST of the time until the content level
process hits level 0 in state j ∈ S2, given J(0) = i ∈ S1, I (0) = qi (for a proof; see Theorem 5
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of Ramaswami (2006)). Similarly, let 0f̂22(q, 0, s) be a matrix of order (n2 × n2) whose ij th
component is given by

(0f̂22(q, 0, s))ij = eH (s)qi , i ∈ S2, j ∈ S2.

The ij th component (0f̂22(q, 0, s))ij represents the LST of the time until the process hits level
0 in state j ∈ S2, given J(0) = i ∈ S2, I (0) = qi . Denote by f̂ (q, s) an (n × n2) matrix,

f̂ (q, s) =
[

0f̂12(q, 0, s)

0f̂22(q, 0, s)

]
.

Let A2 be an (n2 × n) matrix given by A2 = [A21, A22] (from last paragraph of Section 3.2,
Aij means the sub-matrix of A with row indicates in Si and column indicates in Sj ).

Lemma 4.1. The total expected discounted order cost vector Ô(β) of order (n × 1) satisfies
the following equation:

Ô(β) = (I − f̂ (q, β)A2)
−1�K+cqe. (4.1)

Proof. Recall that L is the time of the next order. We can write Ô(β) as

Ô(β) = �K+cqe + E(e−βL)A2Ô(β). (4.2)

We use E(e−βL) as a shorthand notation for the (n × n2) matrix whose ij th component is
given by

E{e−βL}ij = E{e−βL 1{level 0 hit at time L in phase j} | J(0) = i, I (0) = qi}
Applying the fluid model E(e−βL) = f̂ (q, β) and solving (4.2) for Ô(β), we obtain (4.1).

4.2. Holding cost

The expected discounted holding cost can be expressed as

HC(β) = E

{∫ ∞

0
h(t)e−βt I (t) dt

}
.

Let ĥ(β) be an (n × 1) vector whose ith component is given by

ĥi (β) = Ei

{∫ ∞

0
h(t)e−βt I (t) dt

}

i.e. the expected discounted holding cost, given J(0) = i ∈ S.Thus, we have HC(β) = γ ·ĥ(β).

Lemma 4.2. The vector ĥ(β) of order (n × 1) satisfies the following equation:

ĥ(β) = (I − f̂ (q, β)A2)
−1�hE

(∫ L

t=0
e−βt I (t) dt

)
.

Proof. In a similar manner to that of Lemma 4.1, we can write ĥ(β) as

ĥ(β) = �hE

(∫ L

t=0
e−βt I (t) dt

)
+ E(e−βL)A2ĥ(β).

The first vector E(
∫ L

t=0 e−βt I (t) dt) is the expected discounted inventory level of the first cycle.
From that point, the proof is similar to (4.2).
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Now, we have to find the (n × 1) vector E(
∫ L

t=0 e−βt I (t) dt) by applying the OST to the
multi-dimensional martingale. Assume that J(0) = i ∈ S, I (0) = qi . Consider a Lévy process
{Xi(t)},

Xi(t) = Xi(0) −
∫ t

s=0
uJ(s) ds, Xi(0) = −qi, 0 ≤ t < L.

Note that ui may be either negative or positive. It is not difficult to see that the latter process
up to time L, i.e. (Xi(t))0≤t<L, has the same distribution as (−Ii(t))0≤t<L. From Chapter XI,
p. 311 of Asmussen (2003) it follows that

Ei{eαXi(t); J(t) = j} = (etK(α))ij ,

where
K(α) = Q − αU .

Let Y (t) = −(β/α)t (for an arbitrary α > 0) and let Zi(t) = Xi(t) + Y (t). Since Y (t) is
adapted and has paths of a finite expected variation, the process

Mi (α, t) =
∫ t

0
eαZi(s)1{J(s)} dsK(α) + eαZi(0)1{J(0)}

− eαZi(t)1{J(t)} + α

∫ t

0
eαZi(s)1{J(s)} dY (s)

=
∫ t

0
eαXi(s)−βs1{J(s)} ds(K(α) − βI)

+ eαXi(0)1{J(0)} − eαXi(t)−βt1{J(t)} (4.3)

is an n-dimensional row vector-valued zero mean martingale. The OST yields EMi{α, 0} =
EMi{α, L} = 0, i.e.

Ei

{∫ L

0
eαXi(s)−βs ds

}
= [Ei (e

αXi(L)−βL1{J(L)}) − Ei (e
αXi(0)1{J(0)})](K(α) − βI)−1e. (4.4)

Obviously,
Ei (e

αXi(0)1{J(0)}) = e−αqi ei ,

or in an (n × n) matrix form

E(eαX(0)1{J(0)}) = e−αqi I = �−αq (4.5)

(note that we use X(t) as a shorthand notation for the vector (X1(t), . . . , Xn(t))
�). Next, we

have to derive Ei (eαXi(L)−βL1{J(L)}). Note that Xi(L) = 0 and applying the fluid method
leads to the (n × n) matrix form

E(e−βL1{J(L)}) = (
0n×n1 f̂ (q, β)

)
, (4.6)

where 0a×b is a shorthand notation for an (a × b) matrix with all entries equal to 0. For
convenience, we will drop the size (a × b) and apply 0 in the cases that were previously
mentioned (instead of 0a×b). Substituting (4.5) and (4.6) into (4.4), we obtain the (n × 1)

vector

E

(∫ L

0
eαX(s)−βs ds

)
=

((
0 f̂ (q, β)

) − �e−αq

)
(K(α) − βI)−1e. (4.7)
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Now, take the derivative of both sides of (4.7) with respect to α and let α = 0. This leads to

E

(∫ L

0
e−βsX(s) ds

)
= −E

(∫ L

0
e−βsI (s) ds

)
. (4.8)

Accordingly, the expected discounted total cost (TC) is

TC(β) = OC(β) + HC(β).

5. Long run average analysis

Let TC(t) be the total cost until time t . We are interested in the long-run average total cost
per time unit:

TC = lim
t→∞

TC(t)

t
.

Note that (Jk, Tk) is a Markov renewal process, and the content level process I (t) is a semi-
regenerative process with respect to (Jk, Tk). The Tks are semi-regenerative points of the
process. Thus, the process Jk, k = 0, 1, 2, . . . is an irreducible positive recurrent Markov
chain with transition probability matrix P

∗ and stationary probability vector π∗ where

π∗
P

∗ = π∗, π∗e = 1.

Recall that L denotes the first cycle length and let E{L} = π∗E(L) where E(L) is an (n × 1)

vector whose ith component is Ei{L} = E{L | J0 = i ∈ S}. Denote by N(t) = sup{n ≥
0 | L0 + · · · + Ln ≤ t}, t ≥ 0, the corresponding counting process. Let

OC(t) =
N(t)∑
k=0

(KJk
+ cJk

qJk
)

be the order cost up to time t and let

HC(t) =
∫ t

0
h(s)I (s) ds

be the inventory cost up to time t . Thus, the long-run average total cost per time unit

lim
t→∞

TC(t)

t
= lim

t→∞

(
OC(t)

t
+ HC(t)

t

)
.

Denote by O an (n×1) vector whose ith component is Ōi = Ki +ciqi, i ∈ S. Similarly, denote
by hc an (n × 1) vector whose ith component is hci = Ei{

∫ L

0 hiI (t) dt}. From Theorem 3.1
and Proposition 5.2 of Asmussen (2003) (see also Theorem 3.6.1 of Ross (1996)) it follows
that:

lim
t→∞

OC(t)

t
=

∑
i π∗

i (Ki + ciqi)

E{L} = π∗O
E{L} , (5.1)

lim
t→∞

HC(t)

t
=

∑
i π∗

i Ei{hi

∫ L

0 I (t) dt}
E{L} = π∗hc

E{L} . (5.2)

To complete the derivation of the long-run analysis, we have to find π∗, E{L}, and hc.
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5.1. Determination of π∗

Lemma 5.1. The stationary probability vector π∗ satisfies the following equations:

π∗ = π∗f̂ (q, 0)A2, π∗e = 1. (5.3)

Proof. Assume that J(0) = r ∈ S, I (0) = qr . The probability that at order point the state
is j ∈ S2 is f̂ (q, 0)rj . From that point the process switches to state i with probability αji and
restarts from level qi . Hence, we obtain

π∗
i =

∑
r∈S

π∗
r

∑
j∈S2

(f̂ (q, 0))rjαji,
∑
i∈S

π∗
i = 1. (5.4)

Applying (5.4) in a matrix form leads to (5.3).

5.2. The expected cycle length

Assume that i ∈ S. In order to obtain Ei{L}, we apply the theory of the Markov Additive
Process (MAP) as introduced in Section XI, p. 312–313 of Asmussen (2003). Consider a Lévy
process

X̃i(t) = X̃i(0) +
∫ t

s=0
uJ(s) ds, X̃i(0) = 0. (5.5)

Proposition 2.2 of Asmussen (2003) reads:

Ei{eαX̃i (t); J(t) = j} = (etK̃(α))ij ,

where
K̃(α) = Q + αU . (5.6)

The matrix K̃(α) has a real eigenvalue k̃(α) with maximal real part (cf. Chapter XI, p. 312 of
Asmussen (2003)). The corresponding left and right eigenvectors υα and hα may be chosen
with strictly positive components. Moreover, without loss of generality, it can be assumed that
υαhα = 1, and that πhα = 1 where π = υ0 is the stationary distribution of {J(t)} and h0 is
a column vector of 1s. Let h′ be the derivative of hα at α = 0. Corollary 2.6 of Asmussen
(2003) implies that for any stopping time L with Ei{L} < ∞,

Ei{X̃i(L)} = k̃′(0)Ei{L} + h′
i − Ei{h′

J(L)}. (5.7)

By Corollaries 2.7 and 2.8 of Asmussen (2003):

k̃′(0) =
∑
i∈S

πiui .

To find the vector h′, we apply the same technique as in Asmussen and Kella (2000, p. 385).
For k̃(α) the eigenvalue with the largest real part of K̃(α) and hα as the corresponding right-
normalized eigenvector, we have

k̃(α)hα = K̃(α)hα. (5.8)

Taking the derivative of (5.8) with respect to α, let α = 0 and noting that k̃(0) = 0, h0 = e,
K̃ ′(0) = U , and K̃(0) = Q yields

k̃′(0)e = Qh′ + Ue. (5.9)
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Note that πhα = 1, thus, πh′ = 0. Subtracting eπh′ = 0 from the two sides of (5.9) yields

h′ = (Q − eπ)−1[k′(0) − U ]e.

Now, let h′
2 be the sub-vector of h′ of order (n2 × 1) (with all entries corresponding to states

in S2). Regarding (5.7), we have

Ei{X̃i(L)} = −qi, Ei{h′
J(L)} = ei0f̂ (q, 0)h′

2. (5.10)

Substituting (5.10) into (5.7), we obtain the (n × 1) vector of expectations

E(L) = 0f̂ (q, 0)h′
2 − h′ − �qe

k′(0)
. (5.11)

5.3. Holding cost

We use the notation from Section 4.2 to obtain the n-column vector hc whose ith component
is Ei{

∫ L

0 hiI (t) dt}. Substitute β = 0 in (4.7) and take the derivative with respect to α. Then
set α = 0. Since K(α) is singular at α = 0, we conclude that

d

dα
([(0 f̂ (q, 0)

) − �e−αq ]K(α)−1e) −→ E

(∫ L

0
X(s) ds

)
(5.12)

as α → 0 through values for which K(α) is nonsingular. Relation (5.12) amounts to applying
twice L’Hôpital’s rule to determine the (n × 1) vector E{∫ L

0 X(s) ds} and, we obtain

hc = −�hE

(∫ L

0
X(s) ds

)
.

Example 5.1. We consider a Markov chain with n = 4 states with a generator matrix Q and a
probability matrix A,

Q =

⎛
⎜⎜⎝

−7 1.5 2.5 3
3 −9 2 4
2 4 −9 3
4 3 2 −9

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

0.7 0.1 0.1 0.1
0.2 0.6 0.15 0.05

0.02 0.08 0.8 0.1
0.05 0.05 0.2 0.7

⎞
⎟⎟⎠ .

The initial probability vector is γ = (0.2, 0.3, 0.35, 0.15). The vector of the net production
rates is u = (1, 1.5, −1.5, −2), thus, S1 = {1, 2} and S2 = {3, 4}. For simplicity, we assume
that the costs and quantities are equal; ki = 40 and ci = 5 for i ∈ S and a discount factor
β = 0.01. We assume that hi = h for i ∈ S and we let h vary in {0.25, 0.5, 0.75, 1, 1.5} and
q vary in {2, 3, 4 . . . , 11, 12}. In Figure 2(a), we present the expected discounted total cost,
TC(β), as a function of the ordered quantity q for values of h and in Figure 2(b), we present the
long-run average cost per time unit, TC, as a function of q for several values of h. We see that
the behavior of the plots in both figures is similar to the basic EOQ behavior; both costs, TC(β)

and TC, appear to be convex functions. Moreover, we can conclude that for each holding cost
there is an optimal order quantity which increases as the holding cost decreases.
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Figure 2: (a) The expected discounted total cost, TC(β), as a function of the order quantity, q. (b) The
long-run average cost per time unit, TC, as a function of the order quantity, q. The values for h are,

ascending vertically, 0.25, 0.5, 0.75, 1, and 1.5.

Figure 3: A sample path of the inventory process with backlogging.

6. Inventory model with backlogging

In the previous sections we considered a model where we place an order as soon as the
inventory on hand down-crosses level zero. Many businesses find it practical to operate with
planned backlogging. In this section we consider the same model as in the sections above, but
allow backlogging, and assume that unsatisfied demands are fully backlogged. Let I (t) be the
net inventory level at time t (i.e. the inventory on hand at time t minus backorders at time t).
We always use any inventory on hand to fill demands; backorders accumulate only when we
run out of stock entirely. Thus, if I (t) is positive, it represents the amount of inventory on hand.
If it is negative, it represents the negative amount of backorders at time t . Now, besides all the
previous costs, there is also a backlogging cost. We consider a policy under which we place
an order of size (qi − l) whenever the inventory level decreases to a reorder point l (l < 0).

Thus, we start a new cycle with state i ∈ S and with an inventory level qi . We assume zero lead
times, so the orders arrive instantaneously and the inventory level jumps to qi . In Figure 3, we
illustrate a typical sample path of the inventory process.

Note that the time of the kth jump is Tk = inf{t > Tk−1; I (t) = l} and T0 = 0. Obviously,
Jk = J(Tk) is the environmental state at Tk (just after the jump), (Jk, Tk) is a Markov renewal
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process with Tks as the semi-regenerative points. Let Ll
k = Tk − Tk−1 and Ll

0 = 0 be the
inter-replenishment times, and let Ll = Ll

1. We assume that during a cycle k in which Jk = i,

the shortage cost for one item during a time interval of length dt equals bi dt (i.e. b(t) = bi for
t ∈ [Tk, Tk+1) and Jk = i).

Without loss of generality, we assume that the inventory level at time 0 has a shortage of l

items (I (0−) = l). Given J(0) = i ∈ S we order (qi − l) items and, hence, I (0) = qi .

6.1. The expected discounted analysis

Let OC(β, l), HC(β, l), and BC(β, l) be the expected discounted order cost, holding cost,
and shortage cost as a function of the reorder point l, respectively. The expected discounted
total cost is given by

TC(β, l) = OC(β, l) + HC(β, l) + BC(β, l).

Similar to Section 4, let Ô(β, l), ĥ(β, l), and B̂(β, l) be (n×1) vectors whose ith component
is the expected discounted cost given J(0) = i, I (0) = qi . Clearly, OC(β, l) = γ Ô(β, l),
HC(β, l) = γ ĥ(β, l), and BC(β, l) = γ B̂(β, l). Note that the order cost Ô(β, l) vector is
obtained directly from Lemma 4.1 by setting (qi − l) instead of qi in (4.1). The computation
of the holding and backlogging costs are carried out in the next two subsections.

6.1.1. Holding cost. We modify the results of Lemma 4.2 to obtain

ĥ(β, l) = (I − f̂ (q − l, β)A2)
−1�hE

(∫ Ll

t=0
e−βt I (t)1{I (t)>0} dt

)
.

Regarding L, the first time that the process down-crosses level 0 (see Section 2), we obtain

E

(∫ Ll

t=0
e−βt I (t)1{I (t)>0} dt

)

= E

(∫ L

t=0
e−βt I (t) dt

)
+ E(e−βL)E

(∫ Ll−L

t=0
e−βt I (t)1{I (t)>0} dt

)
. (6.1)

Note that E(e−βL) = f̂ (q, β). The first term of (6.1) is given by (4.7) and (4.8). In order to
derive the right side term of (6.1), we shift the time origin to L. Denote by L̃ = Ll − L and let
Ẽ be an (n2 × 1) vector

Ẽ = E

(∫ L̃

t=0
e−βt I (t)1{I (t)>0} dt

)
.

We define two sets of stopping times {L̃k}k=0,1,... and {τ̃k}k=1,2... during the interval [0, L̃] by

L̃0 = 0, L̃k = inf{t : t > L̃k−1, I (t) = 0, J(t) ∈ S2},
τ̃k = inf{t : t > L̃k−1, I (t) = 0, J(t) ∈ S1 or I (t) = l, J(t) ∈ S2}

i.e. L̃k is the kth time that the process down-crosses level 0 and τ̃k is the kth time that the process
up-crosses level 0 or hits level l. Note that {L̃k}k=0,1,... are semi-regenerative points during the
interval [0, L̃]. Obviously, τ̃k ≤ L̃k for k > 0.
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Proposition 6.1. The (n2 × 1) vector Ẽ satisfies the following matrix equation:

Ẽ = [I − −l�r(β)�(β)]−1−l�r(β)E

(∫ L̃1−τ̃1

0
e−βt I (t) dt

)
. (6.2)

Proof. We reveal two cases after time L̃0 = 0.

(i) In the first case, the process up-crosses level 0 before it hits level l (thus, I (τ̃1) = 0). In
this case, the interval [0, L̃) can be divided into [0, τ̃1) ∪ [τ̃1, L̃1) ∪ [L̃1, L̃). From time
L̃1, the process starts again (as L̃1 is a semi-regenerative point).

(ii) In the second case, the process hits level l (thus, I (τ̃1) = l). In this case τ̃1 = L̃ and
[0, L̃) = [0, τ̃1).

Note that

E

(∫ τ̃1

t=0
e−βt I (t)1{I (t)>0,τ̃1<L̃} dt

)
= 0

and

E

(∫ τ̃1

t=0
e−βt I (t)1{I (t)>0,τ̃1=L̃} dt

)
= 0.

Applying the fluid parameters (−l�r(β) and �(β), see Table 3), we obtain

Ẽ = E

(∫ L̃1

t=τ̃1

e−βt I (t)1{I (t)>0,τ̃1<L̃} dt

)
+ E(e−βL̃1 1{τ̃1<L̃})Ẽ

= −l�r(β)E

(∫ L̃1−τ̃1

0
e−βt I (t) dt

)
+ −l�r(β)�(β)Ẽ. (6.3)

Solving (6.3), we obtain (6.2).

To complete our derivation, let �̃ and Ĩ be (n1 × n) matrices,

�̃ = (
0n1×n1 �(β)

)
, Ĩ = (

I 0n1×n2

)
.

Lemma 6.1. The (n1 × 1) vector E(
∫ L̃1−τ̃1

0 e−βt I (t) dt) satisfies the following:

d

dα

[
(�̃ − Ĩ )(K(α) − βI)−1e

]
|α=0 −→ −E

(∫ L̃1−τ̃1

0
e−βt I (t) dt

)
. (6.4)

Proof. By shifting the time original to τ̃1, it is easy to modify the method of Section 4.2.
For this, we apply again the optimal sampling theory to the martingale (4.3), this time to the
stopping time L̃1 − τ̃1 with qi = 0 (see also (4.4)–(4.7)) and obtain

E

(∫ L̃1−τ̃1

0
eαX(t)−βt I (t) dt

)
= (�̃ − Ĩ )(K(α) − βI)−1e. (6.5)

Now, derive (6.5) with respect to α and setting α = 0 leads to (6.4).
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6.1.2. Backlogging cost. We modify the renewal theory and the result of Lemma 4.2 yields

B̂(β, l) = −(I − f̂ (q − l, β)A2)
−1�bE

(∫ Ll

t=0
e−βt I (t)1{I (t)<0} dt

)
.

Obviously, I (t) > 0 during the time interval [0, L]. Regarding L̃ = Ll − L,, we introduce the
(n2 × 1) vector

B̃ = E

(∫ L̃

t=0
e−βt I (t)1{I (t)<0} dt

)
.

The term B̃ represents the expected discounted shortage level during [0, L̃). We obtain

E

(∫ Ll

t=0
e−βt I (t)1{I (t)<0} dt

)
= f̂ (q, β)B̃. (6.6)

Theorem 6.1. The vector B̃ satisfies the following matrix equation:

B̃ = [I − −l�r(β)�(β)]−1E

(∫ τ̃1

t=0
e−βt I (t) dt

)
. (6.7)

Proof. Similar to the proof of Proposition 6.1 (note that E(
∫ L̃1
τ̃1

e−βt I (t)1{I (t)<0,τ̃1<L̃} dt)

= 0).

For the final determination of (6.7), we have to derive E(
∫ τ̃1
t=0e−βt I (t) dt). Applying the

Lévy process {X̃i(t)} for i ∈ S2 (see (5.5) and (5.6)), it is not difficult to see that the latter process
up to time τ̃1, i.e. (X̃i(t))0≤t<τ̃1 , has the same distribution as (I (t))0≤t<τ̃1 . For Y (t) = −(β/α)t

let Zi(t) = X̃i(t) + Y (t). Applying Theorem 2.1 of Asmussen and Kella (2000) yields that the
process

Mi (α, t) =
∫ t

0
eαX̃i (s)−βs1{J(s)} ds(K̃(α) − βI) + eαX̃i (0)1{J(0)} − eαX̃i (t)−βt1{J(t)}

is an n-dimensional row vector-valued zero mean martingale. The OST yields EMi{α, 0} =
EMi{α, τ̃1} = 0. So, we obtain

E

[∫ τ̃1

0
eαX̃(s)−βs1{J(s)} ds

]
(K̃(α) − βI) = E(eαX̃(τ̃1)−βτ̃1 1J(τ̃1)) − E(eαX̃(0)1{J(0)}). (6.8)

Since X̃i(0) = 0, the (n2 × n) matrix E(eαX̃(0)1{J(0)}) = ( 0n2×n1 I ). Regarding the two cases
(τ̃1 < L̃ and τ̃1 = L̃) and applying the fluid model yields to

E(eαX̃(τ̃1)−βτ̃1 1{J(τ̃1)}) = E(e−βτ̃1 1{J(τ̃1),τ̃1<L̃}) + E(eαle−βτ̃1 1{J(τ̃1),τ̃1=L̃})

= (−l�r(β) 0n2×n2

) + eαl
(
0n2×n1 0f̂

r
22(0, −l, β)

)
. (6.9)

(Note that for τ̃1 < L̃, X̃(τ̃1) = 0 and for τ̃1 = L̃, X̃(τ̃1) = l.) Substituting (6.9) into (6.8),
multiplying by the vector e, we arrive at

E

(∫ τ̃1

0
eαX̃(s)−βs ds

)
= [(−l�r(β) 0

) + eαl
(
0 0f̂

r
22(0, −l, β)

) − (
0 I

)](K̃(α) − βI)−1e. (6.10)

Now, we can determine the (n2 ×1) vector E(
∫ τ̃1

0 e−βt I (t) dt) by taking the derivative of (6.10)
with respect to α and setting α = 0.

https://doi.org/10.1239/jap/1437658610 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658610


488 Y. BARRON

6.2. The long-run average analysis

Throughout this section we apply the same methods as in Section 5. We use the subscript l

to denote quantities similar to those above. Similar to (5.1) and (5.2), we obtain the following
proposition.

Proposition 6.2. It holds that

lim
t→∞

OCl (t)

t
=

∑
i (π

∗
l )i (Ki + ci(qi − l))

E{Ll} = π∗
l O l

E{Ll} ,

lim
t→∞

HCl (t)

t
=

∑
i (π

∗
l )iEi{

∫ Ll

0 hiI (t)1{I (t)>0} dt}
E{Ll} = π∗

l �hhcl

E{Ll} ,

lim
t→∞

BCl (t)

t
= − ∑

i (π
∗
l )iEi{

∫ Ll

0 biI (t)1{I (t)<0} dt}
E{Ll} = −π∗

l �bbcl

E{Ll} .

We now have explicit equations for all the components above.

(a) The stationary probability vector π∗
l is obtained by (5.4) with f̂ (q − l, 0) replacing

f̂ (q, 0).

(b) The average cycle length E{Ll} is obtained by (5.11) with q − l replacing q.

(c) To obtain hcl = E(
∫ Ll

0 I (t)1{I (t)>0} dt) set β = 0 in (6.1) (and, thus, in (4.7)), (6.2),
and (6.4). Then apply twice L’Hôpital’s rule (similar to Section 5.3).

(d) Similarly, to obtain bcl = E(
∫ Ll

0 I (t)1{I (t)<0} dt) set β = 0 in (6.6), (6.7), and (6.10)
and apply twice L’Hôpital’s rule.

Example 6.1. We consider the same data as in Example 5.1 with hi = 0.5 and qi = 5 for
i ∈ S. We assume that bi = b for i ∈ S and let b vary in {0.1, 0.25, 0.5, 1, 2, 5} and (−l) vary
in {0, 1, 2, 3, . . . , 11}. In Figure 4(a), we present the expected discounted total cost, TC(β, l),
as a function of the order point l for values of b and in Figure 4(b), we present the long-run
average cost per time unit, TCl , as a function of l for several values of b.

20 4 6 8 1210 20 4 6 8 1210

(a) (b)

,

_
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400
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Figure 4: (a) The expected discounted total cost, TC(β, l), as a function of l. (b) The long-run average
cost per time unit, TCl , as a function of l. The values of b are, ascending vertically, 0.1, 0.25, 0.5, 1, 2,

and 5.
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We see that the behavior of the plots in both figures is similar. Again, both costs, TC(β, l) and
TCl , appear to be convex functions. Moreover, we can conclude that as b increases, the optimal
value of −l decreases (due to the high cost of the shortage). Obviously, the case of the model
without backlogging is a special case when l = 0.
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