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Abstract

Background. Depression is closely associated with abnormalities in brain function. Traditional
static functional connectivity analyses offer limited insight into the temporal variability of brain
activity. Recent advances in dynamic analyses enable a deeper understanding of how depression
relates to temporal fluctuations in brain activity.

Methods. This study utilized a large resting-state functional magnetic resonance imaging dataset
(N'=696) to examine the association between brain dynamics and depression. Two complementary
approaches were employed. Hidden Markov modeling (HMM) was used to identify discrete brain
states and quantify their temporal switching patterns; temporal variability was computed
within and between large-scale functional networks to capture time-varying fluctuations in functional
connectivity.

Results. Depression scores were positively associated with switching rate and negatively
associated with maximum fractional occupancy. Furthermore, depression scores were sig-
nificantly associated with greater temporal variability both within and between networks, with
particularly strong effects observed in the default mode network, ventral attention network,
and frontoparietal network. Together, these findings suggest that individuals with higher
depression scores exhibit more unstable brain dynamics.

Conclusion. Our findings reveal that individuals with higher depression levels exhibit greater
instability in brain state transitions and increased temporal variability in functional connectivity
across large-scale networks. This instability in brain dynamics may contribute to difficulties in
emotion regulation and cognitive control. By capturing whole-brain temporal patterns, this
study offers a novel perspective on the neural basis of depression.

Introduction

Depression represents a significant global mental health burden, exerting profound impacts on
societal well-being and public health. In recent years, the total number of depression cases has
steadily increased, with a rising incidence particularly observed in high-income countries and
specific regions (Ren et al., 2020; Xiang et al., 2024). Notably, younger populations are more
vulnerable to depression (Thapar, Eyre, Patel, & Brent, 2022). Despite continuous advancements
in medical and psychological interventions, a substantial proportion of individuals with depression
remain undiagnosed and untreated in the early stages, exacerbating the overall disease burden.
Consequently, the early identification and intervention of at-risk populations to reduce the incidence
of depression have become critical challenges in depression prevention and management
(Funkhouser et al., 2024; Petito et al., 2020).

Due to the complexity and high heterogeneity of depression, relying solely on behavioral
assessments and clinical scales may be insufficient to comprehensively capture its pathological
characteristics (Wu et al., 2023). Therefore, investigating its neural underpinnings not only
facilitates a deeper understanding of the underlying mechanisms but also provides a neurobio-
logical basis for early intervention. Existing research has demonstrated that depression is closely
associated with abnormalities in brain function, particularly in key regions involved in emotion
regulation, cognitive control, and self-referential processing, such as the prefrontal cortex,
anterior cingulate cortex, and amygdala (Ebneabbasi et al., 2021; Hagen et al., 2025; Veer
et al, 2010). However, most studies have primarily employed traditional static functional
connectivity (sFC) analyses, which often overlook the dynamic changes and transient fluctu-
ations in brain states during moment-to-moment transitions (Hutchison et al., 2013). In contrast,
dynamic analysis captures the continuous temporal variations in brain activity, effectively
overcoming the constraints of static analyses and providing novel insights into transient network
reorganization and its relationship with clinical symptoms (Chang & Glover, 2010; Zhang et al., 2016).
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Brain dynamics have been increasingly recognized in recent years as a
crucial aspect of understanding brain functional organization (Fran¢a
et al,, 2024; Rolls, Cheng, & Feng, 2021).

Temporal variability in brain activity provides a more precise
characterization of the interactions and coordination flexibility
between different brain regions, capturing the spontaneous recur-
rence of functional connectivity patterns (Sun et al.,, 2019; Zhang
et al,, 2016). Given the moment-to-moment variability observed in
depressive symptoms, such as shifts in affective state and attentional
focus, dynamic measures are well-suited to capture the fluctuating
nature of brain function in depression. As such, it serves as an
effective tool for understanding the cognitive demands and emo-
tional processing mechanisms in individuals with depression (Kaiser
et al, 2016; Sun et al., 2024; Wu et al, 2022). Furthermore, the
integration of machine learning with dynamic functional connectiv-
ity (dFC) analysis holds promise for enhancing early diagnosis and
treatment assessment of depression —an advantage that sFC struggles
to achieve (Dini et al., 2021; Wu et al,, 2011). However, existing dFC
studies have reported inconsistent findings regarding abnormalities
in depression-related brain networks, with divergent results on
whether dFC is increased or decreased in different regions, leaving
the pathological mechanisms insufficiently understood (Sun et al,
2024). Therefore, further investigation into the dynamic character-
istics of brain function in depression is of critical importance.

To deepen our understanding of these dynamic processes, it is
necessary to further explore how depression relates to brain stability
and variability. Moderate variability in brain functional dynamics
plays a crucial role in maintaining a balance between information
integration and flexible adaptation, thereby supporting cognitive
function and emotion regulation (Cohen, 2018). Similarly, an optimal
duration of state dwell time helps sustain metastability, allowing for
more efficient and comprehensive information processing (Li, Lu, &
Yan, 2020; Safron, Klimaj, & Hipdlito, 2022). However, while greater
brain flexibility is generally associated with improved cognitive func-
tion, excessive flexibility may also have negative consequences. When
variability exceeds an optimal range, the coordination of neural net-
works may decline, leading to continuous redistribution of cognitive
resources, which not only increases cognitive load but also contributes
to emotional distress (Dinstein, Heeger, & Behrmann, 2015; Kucyi
etal,, 2017). For instance, Betzel et al. reported that positive emotions
are associated with reduced flexibility in the dorsal attention network
(DAN), suggesting that lower flexibility in certain contexts may
facilitate emotional stability (Betzel, Satterthwaite, Gold, & Bassett,
2017). Additionally, excessively rapid state switching has been linked
to attentional lapses, emotional instability, and increased cognitive
load (Mora-Sanchez, Dreyfus, & Vialatte, 2019). Furthermore, exces-
sive fluctuations within specific brain regions or between networks
may undermine functional stability, making individuals more suscep-
tible to emotional disturbances and cognitive impairments, ultimately
increasing the risk of psychiatric disorders (Demirtas et al., 2016; Dini
et al,, 2021; Gao et al., 2024; Long et al., 2020).

In summary, this study aims to investigate the dynamic charac-
teristics of brain activity associated with depression. To this end, we
employed two complementary approaches to characterize brain
dynamics. First, we applied a hidden Markov model (HMM) to estimate
the frequency of brain state transitions. Second, we used the conven-
tional sliding-window method to quantify temporal variability in brain
activity. While HMM provides detailed information on brain state
switching, temporal variability further elucidates the dynamic fluctu-
ations within and between brain networks. By integrating these two
approaches, we can simultaneously capture transient state transitions
and track the evolution of network structures over time, offering
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a multidimensional perspective on the neural dynamics underlying
depression. We hypothesize that depression may be associated with
instability in brain states, characterized by frequent state transitions, a
lack of dominant states, and greater variability in functional connectivity
(FC) within and between networks, particularly in key systems such as
the default mode network (DMN).

Methods
Participants

The brain imaging and psychological questionnaire data used in this
study were derived from our ongoing gene-brain behavior (GBB)
project. For more details, refer to previous studies(Chen et al., 2019;
Liu et al.,, 2024). All participants were recruited from Southwest
University, Chongqing, China. They self-reported no history of mental
illness or brain injury and received financial compensation upon
completing all assessments. The study was approved by the Ethics
Committee of the Brain Imaging Center at Southwest University. After
excluding participants with mean head motion exceeding 0.2 mm, a
total of 696 participants were included in the final analysis, comprising
204 males and 492 females, with a mean age of 19.42 + 1.38 years.

Measures

Beck Depression Inventory-Second Edition(Beck, Steer, & Brown,
1996). The Beck Depression Inventory-Second Edition (BDI-II)
was used to measure participants’ depression scores in the current
study. The BDI-II comprises 21 items, each rated on a 4-point
Likert scale ranging from 0 (“none”) to 3 (“extremely severe”).
Previous research has demonstrated good reliability for this scale
in similar age groups, with a Cronbach’s alpha of 0.90 (Storch,
Roberti, & Roth, 2004).

Image acquisition and preprocessing

Brain imaging data were obtained using a Siemens 3 T Trio scanner
(Siemens Medical System, Erlangen, Germany) at the Brain
Imaging Center of Southwest University. Resting-state fMRI data were
obtained using a gradient-echo echo-planar imaging (GRE-EPI)
sequence with the following parameters: repetition time (TR) =
2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, field of
view (FOV) = 220 x 220 mm?>, slices = 32, thickness = 3 mm,
interslice gap = 1 mm, and voxel size = 3.4 x 3.4 x 4 mm’. Using a
magnetisation-prepared rapid acquisition gradient-echo (MPRAGE)
sequence, three-dimensional T1-weighted structural images with
high resolution were acquired: TR = 1900 ms, TE = 2.52 ms, FA = 9°,
segments = 176, FOV = 256 x 256 mm?, thickness = 1 mm, and voxel
size=1x1x 1 mm’.

FMRIPrep (Esteban et al., 2019) based on Nipype (Gorgolewski
etal., 2011) was used to preprocess the functional image data with the
following parameters. Slice-timing correction was performed with
AFNT’s 3dTshift(RRID: SCR_005927), followed by head motion cor-
rection using estimated motion parameters. The corrected BOLD
time series were resampled to native space, and the BOLD reference
image was co-registered to the T1-weighted structural image using
boundary-based registration (FreeSurfer) and FLIRT with six degrees
of freedom (Greve & Fischl, 2009). Physiological noise was addressed
using CompCor (Behzadi, Restom, Liau, & Liu, 2007), extracting five
principal components each from white matter and cerebrospinal fluid
masks. Framewise displacement (FD) and DVARS were calculated as
motion-related metrics. Nuisance regression was then performed to
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remove motion parameters, physiological noise components, and
linear trends. Temporal filtering was applied with a bandpass range
of 0.008-0.09 Hz to reduce low-frequency and high-frequency
noise(Hallquist, Hwang, & Luna, 2013). After preprocessing, the
BOLD data were normalized to the MNI152NLin2009cAsym tem-
plate and spatially smoothed with a Gaussian kernel of 6-mm full-
width at half-maximum.

Hidden Markov model

The Schaefer 400 Parcels Atlas (17 networks) was employed to
define cortical regions of interest, dividing the cortex into 17 distinct
functional networks(Schaefer et al., 2018). The preprocessed time
series data were standardized and concatenated into a matrix with
dimensions of (696 participants x 242 volumes) x 17, where
17 corresponds to the mean signal extracted from the respective
network masks. This resulting matrix was subsequently used as
input for the Hidden Markov Model (HMM).

The present study used the HMM-MAR toolbox (Vidaurre et al.,
2016) to infer an HMM from resting-state time series data (https://
github.com/OHBA-analysissy HMM- MAR). HMM is an unsuper-
vised machine learning method that segments observed time series
into discrete hidden functional states, which are mutually exclu-
sive in time and recur intermittently. These states are mutually
exclusive in time and recur intermittently. Model parameters were
estimated using a variational Bayes approach and optimized by
minimizing free energy to ensure robust model fitting(Zhang
et al,, 2024). The HMM assigns state probabilities to each time
point in the time series and estimates the parameters of the states,
as illustrated in Figure 1.

Previous studies have suggested that selecting 8—12 states for
modeling fMRI dynamics achieves a balance between model com-
plexity and reproducibility(Vidaurre et al., 2018; Vidaurre, Smith,
& Woolrich, 2017). Based on this, we conducted 10 independent
runs of the HMM for model orders ranging from 8 to 12 states to
account for variability between iterations. As shown in Supplemen-
tary Figure S1, the eight-state solution demonstrated the highest
stability across all iterations. Therefore, we selected an eight-state
configuration for the final analysis. To ensure robust estimation, we
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performed 10 iterations of the model and selected the iteration with
the lowest free energy as the optimal solution. The HMM-MAR
toolbox generates a range of outputs to estimate the characteristics
of different HMM states. This study focused on two key metrics.
The first is fractional occupancy (FO), which quantifies the pro-
portion of total time spent in a specific state. The second is switch-
ing rate (SR), representing the frequency of state transitions within
an individual’s time series and serving as an indicator of network
stability (Toffoli et al., 2024).

Network temporal variability

The temporal variability reflects the dynamic reorganization of
brain activity over time, as captured by changes in FC across
successive time windows(Zhang et al., 2016). Within-network vari-
ability quantifies the extent to which the FCs within a specific brain
network change across time, while between-network variability
measures the consistency of FC patterns between two distinct brain
networks over time. Higher variability indicates greater differences
in FCs across time windows, reflecting increased flexibility or
instability of the network. In this study, the Schaefer400 parcella-
tion template was employed to calculate both the within-network
and between-network variability for 17 predefined networks. For a
specific network m, the BOLD time series of all k ROIs within the
network were extracted and divided into n non-overlapping time
windows of length I. Within each time window i, the FCs within the
network were calculated as F,,, ;. The within-network variability of
network m is defined as:(see Figure 4a)

Vw,, =1— corrcoef (Fmy, Fm;) i,j=1,2,3,...,n,i #]

Similarly, for two networks [ and p, the FCs between these two
networks in each time window i were represented as Fm; m; . The
between-network variability is defined as:(see Figure 4c)

Vb, = 1 — corrcoef (Fmi,lmi,j,ij,lmj,P) j=1,2,3,..,m,i%j

To avoid the influence of specific window size selection on the
results, multiple window lengths were tested, ranging from I = 20,

Probability of states activation

S i S B

Observation model

Figure 1. Workflow of fMRI data preprocessing and dynamic state analysis using HMM. MRI data were acquired and preprocessed to generate time-series signals. These signals were
segmented into regional time series using a brain atlas template, and subsequently integrated into functional network time series. Functional network parcellation was based on
the Schaefer 400 Parcel Atlas, which divides the entire brain into 17 specific functional networks. The resulting time-series data were subsequently analyzed using the HMM model.
HMM assumes that the time series can be described by a finite number of hidden states, which are mutually exclusive in time and recur intermittently (as shown in the figure, with
red, yellow, and blue representing three distinct states). The HMM output includes state activation probabilities at each time point and state-specific parameter estimates, revealing
the dynamic properties of neural activity. Additionally, the probability of the hidden state at the current time point (X;) depends on the state at the previous time point (X; _ ,),

reflecting the temporal dependencies inherent to the model.
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22, 24, ..., 40, and the mean variability across all tested window
lengths was computed as the final value(Sun et al., 2019).

Results

Association between depression scores and dynamic metrics
from HMM models

We successfully identified 8 HMM states, with the fMRI signal
distributions for each state shown in Figure 2 and Supplementary
Figure S3. Some states, such as State 5 and State 6, exhibit significant
positive activation in specific regions, including the prefrontal and
frontotemporal areas, which may be associated with the high integra-
tion of local functions such as executive control, language processing,
or emotion regulation. Other states, such as State 3, display complex
cross-regional connectivity patterns, including significant connections
between the DMN and the DAN, potentially reflecting dynamic
coordination between large-scale brain networks involved in attention
allocation or task switching.
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The dynamic metrics of HMM states are derived from the temporal
evolution of state probabilities inferred by the model. Supplementary
Figure S2 illustrates the temporal dynamics of these states. SR quan-
tifies the frequency of transitions between states over time and is
calculated by dividing the total number of state switches by the total
number of time points. A higher SR indicates more frequent state
transitions, reflecting greater dynamic flexibility and possibly a less
stable system. FO measures the proportion of time each hidden state is
expressed during the entire time series. A higher FO indicates that the
state is more stable or frequently expressed. Maximum Fractional
Occupancy (MaxFO), an extension of FO, represents the highest FO
among all states, providing a global perspective on the dominance of a
single state over the entire time series. A lower MaxFO reflects a more
dynamic and distributed system, where no single state dominates,
whereas a higher MaxFO indicates a system predominantly remaining
in one state with reduced flexibility. These metrics collectively describe
the balance between dynamic flexibility and stability in brain activity,
offering a quantitative framework to study individual differences and
clinical conditions.
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Figure 2. Spatial and functional connectivity profiles of brain states identified by the hidden Markov model during the scan. For each brain state, the left panel displays the spatial
distribution of average activation, representing the relative loading with respect to the mean activation. Blue indicates negative activation, while red indicates positive activation.
The right panel illustrates the top 5% of positive functional connectivity, highlighting the strongest connections associated with each state.
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We calculated the correlation between the FO of each state and
depression scores, controlling for sex, age, and mean head motion.
The results showed that the FO of State 1 was positively associated
with depression scores (r = 0.12, py, = 0.010). In contrast, the FO of
States 4, 5, and 8 was negatively associated with depression scores,
with 7 values ranging from —0.09 to —0.11 and py;, values between
0.015 and 0.030. Supplementary Figure 54 illustrates the FO of each
state, and detailed statistical results are provided in Supplementary
Table S1. Furthermore, we found that MaxFO was negatively asso-
ciated with depression scores (r = —0.09, p = 0.023). In contrast, SR
was positively associated with depression scores (r = 0.13, p < 0.001).
These results are visualized in Figure 3.

Association between depression scores and network temporal
variability

Based on the Schaefer 400 parcellation template, we calculated the
within-network variability for 17 predefined networks and the
between-network variability for 136 network pairs (17 x 16/2).
Regarding the relationship between within-network variability
and depression scores, after controlling for sex, age, and mean head
motion, and applying FDR correction to the p-values, we found that
the variability of the default mode network A (DMN A), default
mode network B (DMN B), ventral attention network A (VAN
A), Frontoparietal Control Network C (FPN C), and Somato-
motor Network B (SMN B) were significantly positively associ-
ated with depression scores, with r-values ranging from 0.09 to
0.15 (Figure 4b). For the between-network variability, 46 network
pairs showed significant positive correlations with depression
scores (r-values ranging from 0.09 to 0.16). Figure 4d highlights
the five network pairs with the strongest correlations, with r-values
between 0.13 and 0.16. Detailed results are provided in Supplementary
Tables S2 and S3.

To evaluate the contribution of individual networks to the
observed between-network variability associated with depression
scores, we aggregated the correlation coefficients (r-values) from
significant network pairs to their corresponding networks. By sum-
ming the weighted contributions, we calculated cumulative r-values
for each network, providing insights into which networks’ FC dynam-
ics were more strongly associated with depression scores. The results
revealed that the DMN contributed the most to these associations. The
top five networks with the highest weights were DMN A, SMN A,
VAN A, DMN B, and DMN C (Figure 5).
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Discussion

In this study, we employed two complementary approaches to
characterize brain dynamics associated with depression. First, we
used a Hidden Markov Model to capture latent patterns about brain
state transitions, and then we calculated the temporal variability of
functional connectivities within and between brain networks, exam-
ining their relationship with depression scores. The results indicate
that individuals with higher depression scores tend to exhibit a higher
SR and a lower maxFO, suggesting increased instability in brain state
dynamics — characterized by a lack of dominant states and frequent
transitions between states. Additionally, depression scores were sig-
nificantly positively correlated with both within-network variability
and between-network variability, with particularly strong associ-
ations observed in the DMN, frontoparietal network (FPN), and
VAN. These findings deepen our understanding of the dynamic
neural characteristics of depression and provide novel neuroima-
ging evidence that may inform future efforts in early diagnosis and
intervention.

To further explore the dynamic neural characteristics associated
with depression, we applied the HMM to resting-state fMRI data. In
recent years, HMM has gained popularity due to its ability to accur-
ately capture brain state transitions without the need for predefined
time windows(Toffoli et al., 2024; Vidaurre et al., 2017). This study
focuses on two key metrics: FO, which represents the proportion of
time spent in a specific state and SR, which reflects the frequency of
state transitions. In this study, we successfully identified eight HMM
states. The results showed that FO of State 1 was positively correlated
with depression scores, while FO of States 4, 5, and 8 was negatively
correlated with depression scores. Additionally, the MaxFO was
negatively correlated with depression scores, whereas the SR was
positively correlated with depression scores.

Further analysis of the characteristics of each state revealed that
State 1 is characterized by negative activation across the whole
brain, particularly involving regions such as the prefrontal cortex
and parietal lobe. The dwell time in this state was positively cor-
related with depression, suggesting that individuals with higher
levels of depression may be in a “low-functioning” or “low-arousal”
state. Consistent with a meta-analysis, depressed patients, compared
to healthy individuals, exhibit lower functional activity in regions
such as the prefrontal cortex, cingulate gyrus, and insula, potentially
leading to deficits in cognitive control, emotion regulation, and self-
referential processing, which in turn contributes to low mood and
impaired attention (Fitzgerald, Laird, Maller, & Daskalakis, 2008). In
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Figure 4. Relationships between within-network and between-network temporal variability and depression scores. (a) Calculation of within-network variability. The BOLD signals of
ROIs within each network were divided into n nonoverlapping time windows of length [ Functional connectivity (FC) was calculated for each time window, and variability was
estimated across all time windows. (b) Networks with within-network variability significantly associated with depression scores. (c) Calculation of between-network variability.
Using a similar approach, the FC variability for each network pair was calculated, reflecting the dynamic changes in FC patterns between networks. (d) The five network pairs with
the strongest correlations between between-network variability and depression scores. DMN, ‘Default Mode Network’; SMN, ‘Somatomotor Network’; VAN, ‘Ventral Attention

Network’; FPN, ‘Frontoparietal Control Network’.

contrast, State 4, State 5, and State 8 exhibit patterns of both positive
and negative activation, with positively activated regions including
the prefrontal cortex, supplementary motor area, and anterior cin-
gulate cortex. These states involve FC within key networks such as the
VAN, FPN, and DAN, as well as connectivity between the DMN,
sensorimotor network (SMN), and visual network (VN). Thus, these
states may reflect higher levels of cognitive and emotional regulation
functions, such as focused attention, emotion regulation, and behav-
ioral planning(Dixon et al., 2018; Petrican, Saverino, Rosenbaum, &
Grady, 2015; Stevens, Hurley, & Taber, 2011). Accordingly, individ-
uals with higher depression scores showed shorter dwell times in
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these states, suggesting potential impairments in executive function
or deficits in emotional regulation.

Furthermore, depression scores were negatively correlated with
MaxFO, indicating that individuals with higher levels of depression
tend to have shorter durations of their dominant brain states. Add-
itionally, depression scores were positively correlated with the SR,
suggesting that these individuals experience more frequent transi-
tions between different states, lacking a stable dominant state, and
exhibiting a pattern of unstable and rapidly shifting brain activity.
Previous studies have shown that dynamic brain activity is closely
related to cognitive processes such as attention and inhibitory control
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Figure 5. Contribution of individual networks to between-network variability associated with depression scores. (a) Spatial distribution of network-level contributions, displayed as
cumulative r-values mapped onto the cortical surface. Warmer colors indicate higher contributions. (b) Bar plot showing the sum of r-values for each network, representing the
cumulative correlation between each network’s between-network variability and depression scores. DMN, ‘Default Mode Network’; SMN, ‘Somatomotor Network’; VAN, ‘Ventral
Attention Network’; FPN, ‘Frontoparietal Control Network’; TP, ‘Temporoparietal Network’.

(Cohen, 2018; Fong et al., 2019). Therefore, the stability of brain
physiological signals may reflect underlying pathological mechan-
isms in individuals with mental disorders (Ingabire et al., 2022). For
example, prior research has found that the stability of DMN connect-
ivity is significantly reduced in patients with major depression (Wise
et al.,, 2017). Other studies have also revealed associations between
unstable brain states and disorders such as bipolar disorder and
schizophrenia (Perry, Roberts, Mitchell, & Breakspear, 2019; Zhong
et al,, 2024). Thus, the findings of this study may reflect dynamic
instability in cognitive and emotional regulation processes among
individuals with depression, suggesting difficulties in maintaining
continuous functional integration and effective emotional regulation.

Additionally, we examined the relationship between temporal
variability in brain functional network connectivity and depression.
The results showed that depression scores were most strongly
positively correlated with temporal variability within the DMN,
VAN, and FPN. Similarly, between-network variability analysis
yielded comparable results, with weight analysis indicating that
DMN, SMN, and VAN contributed most significantly.

The DMN is typically associated with attention, self-referential
thinking, and introspection, and its excessive variability may reflect
instability in attention and cognitive control (Kucyi et al., 2017).
Consistent with prior findings, increased DMN temporal vari-
ability has been linked to frequent mind-wandering and impaired
decision-making (Kucyi, Esterman, Riley, & Valera, 2016; Mowinckel
etal., 2017). The VAN plays a crucial role in emotional awareness and
selective attention to external stimuli, and excessive fluctuations in
this network may lead to emotional dysregulation and attentional
instability (Viviani, 2013). Additionally, previous studies have found
that adolescents with higher depression scores exhibit increased intra-
network connectivity in the VAN, potentially reflecting underlying
neural mechanisms of stimulus-driven attentional abnormalities that
contribute to a persistent focus on negative information (Liu et al,,
2019). The FPN is primarily responsible for cognitive control and
executive function, and excessive variability in its internal connectivity
may reduce information integration efficiency, thereby impairing
emotion regulation (Zanto & Gazzaley, 2013). Research has shown
that dynamic variability between the FPN and DMN at rest is closely
related to poorer cognitive flexibility (Douw et al, 2016), while
another study found that patients with first-episode psychosis exhibit
instability in dFC, which is considered a potential mechanism under-
lying cognitive control deficits (Briend et al., 2020). Overall, these
findings suggest that heightened variability across key networks may
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collectively reflect functional dysregulation in emotional and cogni-
tive processing among individuals with depression, providing new
insights into the neuropathological mechanisms of the disorder.
However, this study has several limitations. First, although we
investigated brain dynamics using resting-state data, the information
obtained from resting-state fMRI remains limited. Future studies
should incorporate task-based data to provide a more comprehensive
understanding of dynamic brain changes in individuals with depres-
sion under different cognitive tasks. Second, our analysis was pri-
marily based on variations in depression scores within a healthy
population. Future research should validate and extend these find-
ings in clinically diagnosed depression patients and other psychiatric
populations. Lastly, this study focused solely on the dynamic neural
characteristics associated with depression without developing a pre-
dictive or diagnostic model. Future studies should integrate multi-
modal and interdisciplinary approaches, such as machine learning,
genetics, and physiological signal analysis, to develop more robust
depression prediction models based on dynamic brain features.

Conclusion

This study systematically explored the dynamic brain characteris-
tics associated with depression. The results revealed that individuals
with higher depression scores exhibited more frequent state switch-
ing and shorter maintenance of dominant states, reflecting greater
instability in brain dynamics. Additionally, depression scores were
significantly positively correlated with the temporal variability of
both within-network and between-network FC, with the strongest
associations observed in the DMN, FPN, and VAN. These findings
improve our understanding of depression-related brain dynamics,
provide new insights into the neural mechanisms underlying
depression, and may offer potential neurobiological markers for
early diagnosis and intervention.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725101001.
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