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ABSTRACT

Mixed Poisson distributions are widely used in various disciplines including
actuarial applications. The family of mixed Poisson distributions contains
several members according to the choice of the mixing distribution for the
parameter of the Poisson distribution. Very few of them have been studied in
depth, mainly because of algebraic intractability. In this paper we will describe
an EM type algorithm for maximum likelihood estimation for mixed Poisson
distributions. The main achievement is that it reduces the problem of estimation
to one of estimation of the mixing distribution which is usually easier. Variants
of the algorithm work even when the probability function of the mixed distri-
bution is not known explicitly but we have only an approximation of it. Other
discrete distributions are treated as well.
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1. INTRODUCTION

Starting from a distribution family f(x|0) we may obtain a very rich new fam-
ily of distributions if we allow the parameter 6 to be itself a random variable
with distribution function G(6|¢) depending on a vector of parameters ¢. Note
that 6 is not necessarily a scalar and it can be vector-valued. Then the uncon-
ditional distribution of x will be given by

f(x10) = [ f(x]0)dG (0]p) M)

Usually, f(x|p) is called the mixed distribution while G(6|¢) is called the mixing
distribution. Mixture models are also called overdispersion models, because
keeping the mean fixed they have variances larger than the original model. For
a thorough treatment of mixture models the reader can refer to Titterington
et al (1985), Lindsay (1995), Bohning (1999), McLachlan and Peel (2000).
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Mixed Poisson distributions are widely used in actuarial problems to model
the claim process (see, e.g. Grandell, 1997). The family of mixed Poisson
contains a large number of members. Only few of them have been used in
practice mainly due to algebraic problems appearing when attempting to use
them in real data situations. The purpose of this paper is to illustrate that
Maximum Likelihood (ML) estimation can be accomplished rather easily via
EM type algorithms that use the inherent latent structure of mixture models.
The main focus of the paper will be put on mixed Poisson distributions, how-
ever the case of other families will also be discussed. The contribution of the
present paper lies mainly on the specific application of the general EM algo-
rithm for mixtures in the mixed Poisson setting. We provide helpful devices and
a general framework to handle this family of distributions. However, the algo-
rithms derived for certain distributions facilitate ML estimation and, thus,
enhances the applicability of them in real data problems.

The remaining of the paper proceeds as follows. Section 2 provides some
background material for the EM algorithm. In section 3, the general theory
related to mixed Poisson distributions is described, while the algorithm is
applied to a wide variety of mixed Poisson distributions in section 4. A real
data application can be found in section 5. A Monte Carlo EM algorithm is
described in section 6. Extensions to other discrete distributions that can be
seen as arising by mixtures are described in section 7. Concluding remarks can
be found in section 8.

2. THE EM ALGORITHM FOR MIXTURES

The EM algorithm (Dempster et al., 1977) is a powerful algorithm for ML esti-
mation for data containing missing values or being considered as containing
missing values. This formulation is particularly suitable for distributions aris-
ing as mixtures since the mixing operation can be considered as producing
missing data. An important feature of the EM algorithm is that it is not merely
a numerical technique but it also offers useful statistical insight.

Suppose that the complete data Y; = (X, Z;) consist of an observable part
X; and an unobservable part Z,. When the direct maximization of log p(X|¢p)
with respect to the parameter ¢ is not easy, the algorithm augments the observed
data to a set of complete data which can be reduced to the observed data via
a many to one mapping. The EM algorithm maximizes logp(X|¢) by itera-
tively maximizing E(log p(Y|p)). At the E-step of the (k+ 1) — th iteration the
expected loglikelihood of the complete data model is calculated as Q(p|p®) =
E(logp(Y|p)| X, p®) where the expectation is taken with respect to the con-
ditional distribution f( Y] X, ¢®) and then, at the M-step, Q(p|¢™®) is maximized
over . When the complete model is from the exponential family then the E-step
computes the conditional expectations of its sufficient statistics. This is quite
helpful in our case.

Let us return to the mixture formulation. The unobserved quantities are
simply the realizations 6, of the unobserved mixing parameter for each data
point X;. Hence at the E-step one needs to calculate the conditional expectation
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of some functions of ;s and then to maximize the likelihood of the complete
model which reduces to maximizing the likelihood of the mixing density. In the
case of mixtures from the exponential family the conditional expectations
coincide with the sufficient statistics needed for ML estimation of the mixing
distribution. Formally, the algorithm can be described as:

e E-Step — Using the current estimates ¢® taken from the k — ¢/ iteration, cal-
culate the pseudovalues t,; = E(h;(0) | X;,0®), for i=1,...,n,j=1,...,m,
where /;(.) are certain functions.

* M-Step — Use the pseudovalues #; from the E-step to maximize the likeli-
hood of the mixing distribution and obtain the updated estimates p**1.

e [f some terminating condition is satisfied then stop iterating otherwise go
back to the E-step for more iterations.

The M-step is somewhat obvious and depends on the assumed mixing distri-
bution. For some distributions a special iterative scheme may be appropriate,
and perhaps another EM algorithm. The E-step however is not straightforward.
For linear functions of 6 the conditional posterior expectations can be easily
and accurately obtained as it will be shown in the next section. For more
complicated functions, if exact solution is not available, one may proceed either
by appropriate approximations based on Taylor approximations or by numer-
ical approximations including numerical integration and/or simulation based
approximations. All the above solutions seem to work well in practice.

All the controversies for and against the EM algorithm apply. The conver-
gence is usually slow, but this depends on the unobserved information that
needs to be estimated at the E-step. Usually no singularities on the likelihood
surface are encountered and thus good initial values are useful only to speed
up the convergence and not to locate the global maximum. It is worth men-
tioning that the by-products of the algorithm are useful for further inference.
For example, in the mixed Poisson case, posterior expectations of the form
E(f|x) can be used to predict future outcomes or for Empirical Bayes estima-
tion. In actuarial practice experience rating can be based on this quantity as
well. Such quantities are calculated during the execution of the algorithm and
they are readily available after the convergence of the EM algorithm. Recall
that the EM is also useful for maximum a posteriori estimation in the Bayesian
setting (see, e.g. Carlin and Louis, 1996) and, thus, the algorithms can be used
for Bayesian estimation as well.

3. POISSON MIXTURES
Assume f(x|0) = exp(-60)0*/x!, x=0,1,.... i.e. the Poisson distribution with

parameter 6 > 0. Then the resulting mixed distribution is a mixed Poisson dis-
tribution and its probability function is given by

RO 46 (9]) @

P(xlo) = [

https://doi.org/10.2143/AST.35.1.583163 Published online by Cambridge University Press


https://doi.org/10.2143/AST.35.1.583163

6 D. KARLIS

where the subscript denotes the mixing density. Some of the well known discrete
distributions can be obtained as mixed Poisson distributions, like the negative
binomial distribution. Note that if G(0]-) is a finite step distribution the family
of finite Poisson mixtures arises.

In the literature there are several mixed Poisson distributions (see Johnson
et al., 1992). A large list of distributions in this family can be seen in Karlis
(1998). However, very few of them have been studied in depth, mainly because
of lack of algebraic convenience.

As it is shown at the previous section, at the E-step one needs to calculate
the posterior expectation of some function /(8). We will now see that if this
function is of a certain form, exact calculations are easily obtainable for the
more general case of mixtures from the power series family of distributions.

Definition: A discrete distribution is said to belong to the power-series familly
of distributions if its probability function is given by P(x|0) = o, 0°(A4(0)) ",
x=0,1,..., with a, >0 and A4(0) is a function of # not depending on x.

Many of the well known discrete distributions belong to this family, like the
Poisson, the binomial, the negative binomial and other distributions. Suppose
now that the parameter @ is itself a random variable. Then we have a power
series mixture with probability function

R0 = [ 57 Olo)do. ©

Then the following result holds:

Lemma 1 (Sapatinas, 1995) The posterior expectation E(6"|x) where x condi-
tional on @ follows a power series discrete distribution and 6 has pdf g(6) is
given by:

_ R(x+rlp)a,

E(0r]x) = P, (xlp)a,.,

where F,(x|p) is the power series mixture defined in (3).

For the Poisson distribution «, = 1/x! and hence the posterior expectations are
given by
_(x+n)!P(x+rlp)

E(0'1x) = o m) 4)

with B,(x|p) given in (2).
Note that we may extend the above results to the case of negative r, when

(x +r)> 0. This enables one to find for example posterior expectations of the
form E(6 "|x), r>0. In addition other expectations can be obtained through

https://doi.org/10.2143/AST.35.1.583163 Published online by Cambridge University Press


https://doi.org/10.2143/AST.35.1.583163

EM ALGORITHM FOR MIXED POISSON DISTRIBUTIONS 7

the above generic formulas by using Taylor expansions. At the next section we
will give a variety of results concerning Poisson mixtures.

4. APPLICATION TO MIXED POISSON DISTRIBUTIONS

In general we assume that for each observation X;, i=1,...,n the distribution
of X;|0, is the Poisson distribution, while 6, varies according to a mixing den-
sity. We will denote as ¢ the mixing variable in general, while 6; will be used
to denote the realization for the i-th observation.

4.1. Geometric Distribution

Suppose that g(0|4) = lexp(-04), 0, 1 >0, i.e. 0, follows an exponential dis-
tribution with mean A~!, then the resulting geometric distribution has proba-
bility function given by:

poto = (i)

x=0,1,..., 4>0. Using the above formulation the ML for the parameter / for
both the exponential and the geometric distributions is 2= %!, It is clear that
an EM scheme is not useful at all, but it constitutes the most simple example.
The EM scheme is constructed by updating the current estimate A,y with the
new estimate as:

E-step: Calculate the pseudovalues

L= E(0)|x,) = (x;, + ) P(x; +1

oid) _ X +1
P(xiMold) Joa T 1

fori=1,...,n

M-step: Find the new estimate A, by:

If some criterion is satisfied stop iterating else go back to E-step.
It is easy to see that the iteration stops when 4 = &'
4.2. Poisson-Lindley distribution

Sankaran (1970) proposed the Poisson-Lindley distribution for the analysis of
count data. The distribution arises from the simple Poisson distribution if the
parameter 6 follows the Lindley distribution having density function
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g(01p) = 5510+ Dexp(=0p). 0.p>0 (6)

The resulting Poisson-Lindley distribution has probability function given by

P (p+2+x)

P(x|p) = )

=0,1,..,p>0

Sankaran (1970) didn’t give MLE for the parameter p because of the compu-
tational difficulty to do so. An EM scheme can be easily derived. The MLE
for the parameter p from a sample X, X5, ..., X,, from the the Lindley distribu-
tion in (6), is given by the solution of the equation % = &, where X is the
sample mean. Thus, an EM scheme is as follows:

E-step: Calculate the pseudovalues

_ (x; + D) P(x; + 1| poa) _ (Poa + X +3)(x; +1)
P('xi’pold) (pold + Xi + 2) (pold + 1)

= E(9i|xi)

t.In

for i=1,...,n. From these values calculate 7 = D} 7,

M-step: Find the new estimate p,,, by:

:—(f—1)+,/f2+6f+1

new 2 t

If some criterion is satisfied stop iterating else go back to E-step.

Sankaran’s moment estimate is the same as the M-step if 7 is replaced by x.
This verifies the conjecture of Sankaran that the moment estimate is close to
the MLE.

4.3. Hermite distribution (Poisson-Normal)

Hermite distribution, examined in Kemp and Kemp (1965) can be considered
as a generalized (or compound for some authors) Poisson distribution, namely
the distribution of the random variable Y = X, + X, + ... + X, where N follows
a Poisson distribution and each X, i = 1,..., N follows a Binomial (2, p) distri-
bution. Formally the distribution can also be considered as a mixed Poisson,
with a normal mixing distribution (Kemp and Kemp, 1966). This result lacks
any physical interpretation since the parameter of the Poisson distribution
ought to be positive. However, if the normal mixing distribution has positive
mean much larger than its variance then the probability of a negative value is
almost negligible. Recall that many continuous distributions tend to the nor-
mal distribution when their parameters take specific values. Considering that
g(0]") is a normal distribution with mean u and variance o7, then the resulting
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Hermite distribution has probability function given by (see, e.g. Johnson et al.,
1992)

R x=2j
[x/2] OL]X jaj

P(X|OLI,OL2) = eXp(— (OLl + OLZ)) Z W, x=0, 1,...,0L],OL2 > () (7)

Jj=0

where, a; = y—a? and a, = 6°/2, and [«o] is the integer part of «. The probabili-
ties can be easily calculated via the following iterative scheme: P(0|«;, ;) =
exp(—(ay t ay)), P(1]ay, ) = P(0] oy, an) ey and (x + 1) P(x + 1|y, ) = oy P(x| 000
+ 20, P(x— 1|y, ay), x> 1. It holds that E(X) = o; +2a, = g and Var(X) = o; +

4oy = p+ 02, while Var(X)/E(X) = 1+ 22— =1 +2 and hence 1 < Var(x)/
E(x) <2. Moreover, in order for the normal mixture representation to be valid,
it must hold that 4 — 3¢ > 0 in order the probability of a normal variate to be
negative to be negligible. The above restrictions suffice for many applications.

The EM scheme is as follows. From the current estimates 1,y and o4

E-step: Calculate the pseudovalues
L=E@0]X) and 5= E@07|X)
using (4), fori = 1,...,n.

M-step: Find the new estimates /i, and o2, by:

2
27:1t1 2 Z:’:lsi _[27—111']

Hnew = n and Onew — n n
If some criterion is satisfied stop iterating else go back to E-step.

4.4. Poisson-Inverse Gaussian distribution

Let IG(y,0) to denote the Inverse Gaussian distribution with parameters y and
0 and probability density function given by

£(017.0) = 2 exp ()0 “exp - 5(% + %0}, 000> 0,

By using the /G(y,0) distribution as a mixing density the Poisson-Inverse Gaussian
distribution arises. Its probability function is rather complicated, but simple
recurrence relations exist for calculation of the probabilities. So, one can cal-
culate the probabilities using the following iterative scheme:

POl
<

P(0],0) = exp(d(y = &), P(1]y,0) =
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2
P(x|y,5)— ((Zx 3)P(x—1]y,0 )+%P(x—2|y,5)), x=2,3,...

where ¢ = (2 + 9%)"2. The distribution has been examined by many authors
(see, e.g. Sichel, 1974, 1982, among others).

The Inverse Gaussian distribution is a special case of the more general fam-
ily of Generalized Inverse Gaussian (GIG) distributions with density function

2 J-1 2
501220 = (5) 2 e"p(‘%% * ”))’

where K,(-) denotes the modified Bessel function of order r. This distribution
will be denoted as GIG(/,y,0). Details for the GIG distribution can be found

in Jorgensen (1982). The Inverse Gaussian distribution arises when A = —1/2.
The moments around the origin of the GIG distribution are given by
ry — é ’ K)Hrr(éy)
EE) = (3) F o ®

forr=...,-1,0,1,.... The GIG(/,y,9) is conjugate in the Bayesian sense for the
Poisson distribution. Thus if 0 ~ GIG(4,y,6) then 0|x~ GIG(A+ x, /2 + 72, 0).

An EM scheme is as follows. From the current estimates .4 and 9,4 the
new estimates will be obtained as follows:

E-step: Calculate the pseudovalues 7, = E(0,|X;) and s; = E(07'| X;) using (4)
and/or (8), fori =1,...,n. For x = 0 we use the fact that 8| x~ GIG(x—1/2, &, 0)
and hence E(0,| X;=0) = 0 2(6¢ + 1)

M-step: Find the ML estimates for the parameters of an Inverse Gaussian,
using the posterior expectations for ¢, and 0;'. We can see that the ML estimates
for the parameters of the /G(y,0) distribution can be found using the quantities

M= Zs /nand A = n(Z(t M) "and then 6,., = A" and p,.,, = 6,0/ M.

If ¢ some criterion is satlsﬁed stop iterating else go back to E-step.

Note that standard maximization of the loglikelihood of the Poisson-Inverse
Gaussian distribution involves the derivatives of the Modified Bessel function,
which is avoided via the EM algorithm.

4.5. Negative binomial distribution

The negative binomial distribution is widely known as a prominent member
of the family of mixed Poisson distributions. If Gamma(«, f) denotes the gamma
distri-bution with parameters a and 8, with density given by g(0|a,f) = 0%
exp(—f0) p*/T (), &, >0 and then, allowing 0 to vary according to a Gamma(a,[3)
distribution, one obtains the negative binomial distribution with probability
function given by
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P(xle. f) = i(fr?of;)(l fﬁ)u<1 . /3) ©)

for x=10,1,...,a,>0. It was firstly derived as a Poisson mixture by Green-
wood and Yule (1920) in their fundamental paper. The mean equals «/f while
the variance equals a/f?+ a/p. If f— o then the negative binomial distribu-
tion tends to the Poisson distribution.

ML estimation has been proposed by several authors (see, e.g Piegorsch,
1990). Numerical methods are needed for solving the system of the equations
involved. Moreover it has been noticed, that the ML estimates do not exist
when the sample mean exceeds the sample variance (see, e.g. Wang, 1996).
It is known that if 0~ Gamma(e,f) distribution, the posterior of f|x is a
Gamma(a+x, f+1) distribution. Applying the EM algorithm we need to obtain
E(0]x) and E(log0|x). Since the posterior densities are gamma, in fact we
need these expectations for a gamma variate. Details can be found in the
Appendix. Thus, the EM scheme is given as follows.

From the current estimates «,y and f,,4 the new estimates will be obtained as

E-step: Calculate the pseudovalues

X o
1 + ﬁold

fori=1,...,n, ¥(-) denotes the digamma function.

;= E]x) = and s; = W(agq+x;) —log(foq+ 1)

M-step: Using ¢; and s, the likelihood of gamma variates must be maximized.
This can be done relatively easily using the ECM algorithm given in Meng
and Rubin (1993). So, update « and f as f,ew = aoq/f and

WV (atga) + 10g(Ben) =3
Y, (aold)

Opey = Olgig —

new

where W;(x) denotes the trigamma function defined as ¥ (x)/9x, i.e. the deri-
vative of the digamma function. The M-step is the one step ahead Newton
Raphson maximization for « given the current values of the remaining quanti-
ties. Alternatively one may use more Newton Raphson iterations at the M-step
but in practice this is not really helpful.

If some criterion is satisfied stop iterating else go back to E-step.

4.6. Neyman distribution

So far, all the mixing distributions considered were continuous distributions.
The Neyman distribution is a discrete mixed Poisson distribution with many
biological applications, see for example Douglas (1980). It is derived by
considering a Poisson distribution with parameter kv where k follows itself a
Poisson distribution with parameter u. Then the resulting Neyman distribution
has probability function given by
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© o7 (ky)" e uk
P(xlu) = 33 S Sof (10)

for x =0,1,... and u,v>0.
The following iterative scheme can be used for calculating the probabilities:
PO|u,v) = exp(—u+ 1), where 4 = uexp(-v) and

r

(x+D)P(x+1u,v) = MZY:%P()C— rlu,v)
r=0""

for x = 0,1,.... This recursive scheme is the same as in Panjer (1981) taking into
account the random sum representation of the Neyman distribution.

Douglas (1980) described the iterative scheme needed for ML estimation of
the parameters. Sprott (1983) showed that one of the ML equations can be
reduced to the first moment equation.

An EM type algorithm can be described as follows:

From the current estimates .,y and v.4 the new estimates will be obtained
as follows:

E-step: Calculate the pseudovalues

(x, +1) P(x; + 1|:uoldavold)

ti = E(0,|Xz) = Voud P(.X,-|,uoldnvold)

M-step: Find the new estimates as pne, = ¢ = 207 ;/n and vy, = %/ fpey-

If some criterion is satisfied stop iterating else go back to E-step.
There is no need for a numerical method and the scheme can be easily applied.

4.7. Poisson-Lognormal distribution

The Poisson lognormal distribution arises if we assume a lognormal mixing
density. The probability function is given by

P(x

2\ _ 1 © x-1 _ (]ogH—lu)z
ﬂ,a)_aﬁzn)x!fo( 0)0 exp[ o ]de

x=0,1,..., u€ R, > 0. Unfortunately the probability function cannot be
simplified and hence the evaluation of the integral is necessary for calculating
the probabilities. A thorough treatment of the distribution can be found in
Shaban (1988). There are applications of the distribution in bibliometry (see,
e.g. Stewart, 1994), species abundance data (e.g. Bulmer, 1974 among others).
The distribution also arises in mixed effects Poisson regression when normal
random effects are considered.

Estimation of the parameters via moment method is easy. For ML estima-
tion one needs the probability function which is available only via numerical
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methods. ML estimation based on numerically approximated probabilities can
be unstable. On the other hand, the ML estimates for the parameters of the
lognormal distribution are rather easy to derive. One needs the quantities log X;
and log? X;. One can see that our general EM scheme applies. Namely the algo-
rithm is as follows:

From the current estimates x4 and g,y the new estimates will be obtained
as follows:

E-step: Calculate the pseudovalues

Told

L = E(10g6i|Xi) ==

Zold

fow exp(—0)0" 'exp <— —(Iog()z_zﬂ"m) - ) do

[ exp (- 000" (log6) exp(~ L= g

2
2004

s, = E(log?0,|X,) =

2004

fow exp(—0)0~ 'exp <— (log? - bou) ~ 2>d0

n

M-step: Find the new estimates as fi,o, = 7 = 2\, ¢,/nand o2, = 27 5;/n —
(Etnew)™.

If some criterion is satisfied stop iterating else go back to E-step.

Clearly the E-step has not closed form expressions and thus numerical
approximations are needed. This can be either Monte Carlo approximation or
numerical integrations. We will discuss in detail the case of Monte Carlo
method in the sequel.

5. APPLICATION

In Table 1 the observed frequencies refer to the number of crimes for every
month from 1982 until January 1993 (145 observations) in Greece. The data
show overdispersion (¥ =2.2413, s*> = 3.3833) making the assumption of a mixed
Poisson distribution plausible. All the distributions described in section 4 were
fitted to the data. As initial values for the iterations, the moment estimates for
each distribution were used. We stopped the iterations if the relative change
in the loglikelihood between two iterations was smaller than 107'°. In Table 1
one can see the expected frequencies for each distribution. The estimated para-
meters and the maximized loglikelihood can be seen in Table 2.

Based on Table 1 one can deduce that the simple Poisson distribution gives
very poor fit to our data set. The same is true for the Poisson-Lindley distri-
bution which has a mode at 0, and a long right tail. On the other hand the
remaining distribution give very good fit.

From Table 2 one can see that the fit of the Poisson inverse Gaussian,
the negative binomial and the Poisson lognormal distributions is quite similar.
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TABLE 1

OBSERVED AND EXPECTED FREQUENCIES FOR ALL THE MIXED POISSON DISTRIBUTIONS CONSIDERED

x observed Poisson Hermite P-IG P-Lindley Neg. Bin Neyman P-Lognormal
0 21 15.42 23.18 22.93 39.12 23.55 29.38 22.85
1 41 34.55 32.90 35.92 31.51 35.19 31.99 3591
2 32 38.72 32.95 32.73 23.52 32.15 28.96 32.83
3 16 28.93 24.67 23.07 16.77 23.16 21.67 23.17
4 19 16.21 15.58 14.07 11.59 14.44 14.36 14.09
5 8 7.27 8.51 7.87 7.83 8.17 8.69 7.83
6 4 2.71 4.16 4.17 5.20 4.30 4.89 4.12
7 1 0.87 1.85 2.14 341 2.15 2.59 2.10
8 2 0.24 0.76 1.07 2.21 1.03 1.30 1.05
9 1 0.06 0.29 0.53 1.42 0.48 1.15 .105
Ve 18.15 6.48 4.82 20.68 4.95 8.69 4.84
df 6 5 5 6 5 5 5
TABLE 2

ESTIMATED PARAMETERS FOR ALL THE MIXED POISSON DISTRIBUTIONS OF TABLE |

distribution parameters loglikelihood
Poisson 7 =2131 —281.485
Hermite 4=22477 6%=0.82846 —275.4295
Geometric J = 0.4461 ~290.415
P-1G 6=3.0959 5 =13812 —274.4575
P Lindley p=0.70122 —284.2482
Neg.Binomial & =4.49801 f =2.00183 —274.5055
Neyman 4=3.1041 § =0.72207 ~276.3262
P-Lognormal a4=0.70 ¢ =020 —274.4993

The geometric distribution is a special case of the negative binomial with
a = 1. The estimated value of « is far from 1 suggesting that the geometric dis-
tribution is not plausible. The standard error of & is 1.675. One can also see
the improvement on the loglikelihood between the geometric and the negative
binomial models. Standard errors for all the models can be easily obtained
through a bootstrap approach. The EM can facilitate this. In practice since
good initial values are known the EM algorithm converges very quickly pro-
viding easily the standard errors.

It is interesting to see that for the Hermite distribution the assumed normal
mixing distribution gives probability for 6 taking a negative value near 0.001. For
applying the EM algorithm this does not cause any problem at all. Recall, that
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for data of this kind, i.e. counts concentrated to small integers, it was expected
that several distributions could fit well the data, as pointed in Douglas (1994).

6. MONTE CARLO EM ALGORITHM

So far, we have described mixed Poisson distributions for which the probability
function is available at least via efficient recursive formulas. The exception
was the Poisson lognormal distribution which does not have a probability
function in closed form. We examined cases of either continuous or discrete
mixing distributions, cases involving closed form M-steps or Newton Raphson
steps inside the M-step. Now we will describe how we can avoid problems
connected to the E-step rather than the M-step. These extensions of the typ-
ical EM algorithm are suitable for mixed Poisson distributions without closed
form expressions for their probability function as, for example, the Poisson log-
normal distribution.

6.1. Numerical Approximations and Stochastic versions of the EM

In many circumstances the direct application of the EM algorithm is not sim-
ple because the expectations involved at the E-step do not have closed form
expressions. Then these expectations can be approximated numerically or they
can be found via simulation based methods. For the former case, if the prob-
ability mass function of the mixed Poisson distribution is available, one may
use (4) and a Taylor series expansion of the required expectation. On the
contrary, if the probability mass function of the mixed Poisson distribution is
not available, then one may use approximations proposed by Ong (1995) based
on Taylor expansion of a special function of a gamma variate. Useful recursive
formulas were given in Willmot (1993). Another standard numerical approach
is numerical integration, see, e.g., Goutis (1993) and Aitkin (1996) for such a
treatment.

The latter case leads to variants of the EM algorithm proposed in the lit-
erature. The Stochastic EM (SEM) (Celeux and Diebolt, 1985) and the Monte
Carlo EM (MCEM) (Wei and Tanner, 1990) are two variants of the EM algo-
rithm in which the E-step is based on simulation. Such approaches can be very
helpful for improving the general behavior of the EM algorithm. First, the
random perturbations due to simulation can prevent the algorithm from stop-
ping in local maxima or saddle points improving also the convergence rate.
Moreover, the underlying dynamics help the algorithm to reach the target value
after a comparatively small number of iterations. Finally, the statistical con-
siderations stemming from the simulated step allows for obtaining an idea of
the variability of the estimates. For both algorithms, after some iterations the
estimates converge to a stationary point and thus ergodic means can be used
as an estimate of the parameter. The convergence of the estimates can be
checked via convergence diagnostics developed for Markov Chain Monte Carlo
methods (see, Cowles and Carlin, 1996).
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Suppose that at the E-step, the conditional expectation E(h(6)| X, ) is needed.
Using the first approach, the Monte Carlo EM algorithm, one generates m
values n(07), i,...,m from the conditional density f(0]x,,¢®) and approxi-
mates the conditional expectation by

i h(g(i))

k i=1
X,-s(ﬂ( )) ~ =t

E(h(0)) 7

If m =1 then the SEM algorithm is derived. If m is very large the MCEM algo-
rithm works approximately like the EM, and thus it has all the pros and the
cons of the standard EM. However, the choice of large m results in a very slow
algorithm and in practice is useless. Both of the algorithms do not have the
monotonic behavior of the EM algorithm due to the random perturbations of
the E-step.

Note that the above schemes do not require knowledge of the probability
mass function. It suffices to be able to simulate from the posterior density
g(6]x). The general algorithm for simulating from the posterior distribution can
be used (see, e.g., Tanner, 1996). It is a rejection method. For the Poisson dis-
tribution this scheme for simulating from the posterior distribution g(0|x;, )
is as follows:

¢ Generate 0 from g(0|p®)

e Accept this value if U< e‘“’i where U is a uniform variate
This algorithm has the undesirable feature that it is very slow for posterior dis-
tributions when the value of x is at the right tail of the distribution. However
in some cases more efficient methods can be found for simulating from the pos-
terior density. There is a wealth of such procedures used in the Bayesian setting
for Markov Chain Monte Carlo approaches. Alternatively one may use Markov
Chain Monte Carlo method (McCullogh, 1997) or importance sampling (Booth
and Hobert, 1999) in order to simulate from the conditional distribution.

There are two remaining issues related to the MCEM algorithm. The extensive
sampling at each step can make the algorithm very slow and clearly the MCEM
algorithm does not have the good monotonic properties of the EM algorithm.

The first issue has to do with the efficient use of the samples taken at each
step, namely the choice of good values of m so as to improve the speed of the
algorithm. The general strategy is to use small m for the first iterations, since
the algorithm can reach the area of the maximum relatively easily and then to
increase m in order to be able to maximize the likelihood near the maximum.
Booth and Hobert (1999) provide an interesting treatment of the problem, see
also Levine and Casella (2001).

The second issue relates to the first one and it is much more difficult to
check. Usually, the MCEM stabilizes after some iterations to a region where
the maximum exists and thus some more iterations are sufficient in order to
take good estimates. The algorithm converges under suitable regularity condi-
tions (see, e.g. Chan and Ledolter, 1995).
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6.2. Illustration
6.2.1. The negative binomial case

It is well known that in the case of a negative binomial distribution the
conditional distribution of €|x is a gamma density with parameters « + x and
£+ 1. Thus simulating form the conditional distribution is straightforward.
Therefore, the E-step implies that the expectations are estimated through sim-
ulating m values 09, j=1,...,m, from a Gamma(a + x, f+ 1) density and using

t,= E0,]x;) =~ m™ i}@‘ﬁ and s, = E(logh,|x,) = m™ i}log@‘ﬁ
j=1

Jj=1

Then the M-step given in section 4.5 applies.

Clearly the negative binomial case is used for illustration. Since we know
the exact form of the algorithm this can serve as a basis to illustrate the dynamics
of the algorithm.

6.2.2. The Poisson lognormal case

For the Poisson lognormal distribution the proposed algorithms are much
more useful since no closed form expressions can be used. The algorithm is the
following:

E-step: Simulate values 0, i = 1,...,m from the posterior density g(0|x;). Then,
estimate the posterior expectations

t, = E(logf,|x,) = m™ f‘,log@m and s; = E(log’0,|x;) = m™ ﬁ‘,logzﬁ"’.
j=1 Jj=1

M-step: Update the parameters of the lognormal distributions as

n n
— 1 . 2 _ -1 2
Hpew = 1 th dnd Opew = 11 Z'Si ~ Hnew

i=1 i=1

It is very appealing that this scheme does not require at all knowledge of the
probability function of the Poisson lognormal distribution.

6.2.3. Numerical Example

We used the MCEM described above to the data set considered in section 5.
For the negative binomial the exact ML estimates are known, so we will use
the results of the MCEM to show the usefulness of the algorithm.

In figure 1 one can see the history of the MCEM using different choices of m,
namely m =1, 10, 100 and finally m = 15/, where j is the iteration number. There
are some interesting points arising from figure 1. First of all the variability
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FIGURE 2: MCEM for the Poisson lognormal model, using different choices of m.
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clearly depends on the choice of m. If one looks for the case when m =1, the
algorithm approaches the area of the estimate and then perturbates around this
point. This perturbation is much smaller when m increases. Another interesting
point is that whatever the choice of m the algorithm approaches the estimate
at the same speed. The choice of m has an effect on how much the estimates
perturbate around the ML estimate. The strategy with increasing m locates the
maximum almost with the same number of iterations as the standard EM algo-
rithm. The number of iterations can be also seen in the x-axis.

From the practical point of view one can run the algorithm with increas-
ing m and to examine whether the chain has stabilized and, then, to obtain an
ergodic mean of the chain as an estimate. Usually the chain has quite large
autocorrelations and this must be taken into account if an estimate of the
variance is to be calculated.

A similar plot for the case of the Poisson lognormal distribution can be seen
in figure 2. The algorithm described in section 6.1 was used to simulate form
the conditional posterior density of 6. The behavior of the algorithm is the
same as the one for the negative binomial case.

7. OTHER DISCRETE MIXTURE DISTRIBUTIONS

In this section we briefly extend the EM approach to other mixtures of discrete
distributions, like mixtures of the geometric distribution and the binomial dis-
tribution.

7.1. The Yule distribution

Consider the geometric distribution defined in (5), and let the parameter be
4 =0(1-0)". Consider also the beta Type I distribution, denoted as Betal(a, f3)
with density function

2(0) =0 1-0""YB(a,f), a,p>0,0<0<1, (11)

where B(a,f) is the usual beta function. If X conditional on 6 follows a geo-
metric distribution with parameter (1 —6)! and 6 follows a beta Type I (a, 1)
distribution with density given by g(#) = a0®~', then unconditionally X follows
a Yule distribution (see Johnson et al, 1992). The probability function of the
Yule distribution is given by

~al(a + 1) x!

PO) = Farx+2) (12)

x=0,1..., a>0. For a sample of size n, ;, i =1,...,n from the g(#) density the
MLE of the parameter « is easily calculated as « = —n 207, log0,. Note that

if g(0) is a beta Type I (a,1) distribution then the density of 0|x; is a beta
Type I distribution with parameters (a+1, x; +1).
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Hence the EM algorithm can be described as:
E-step: Calculate 1; = E(logt;|X;) = Y(agq+1)—P(agq+2+ X))

M-step: Update the parameter using a,., = —n' 2.1
i=1

The Yule distribution was applied to the data considered in Table 1. The fit was
not good as expected since the Yule distribution is J-shaped with a large tail,
something not apparent in the data set.

7.2. The beta-binomial distribution

Binomial mixtures arise naturally if one assumes that the probability p of success
at each trial is not constant but it varies according to a mixing distribution g(p).
A common choice is the beta distribution as mixing distribution giving rise to
the beta-binomial distribution.

The beta-binomial (BB) distribution has probability function given by

= ()Rt

where N is the number of trials. The mean and the variance of the BB distribu-
tion are Nz and Nn(1-7)(No+ 1)(1 + @) ! where 7 = a(a+ ) ' and ¢ = (a+ ) L.

ML estimation for the parameters of the BB distribution is not an easy
task, since the derivatives of the beta function are involved. Griffiths (1973)
described ML estimation using numerical techniques. Tripathi ez al. (1994)
described other methods of estimation.

When trying to find ML estimates from a random sample of beta random
variables X; one needs the quantities log X; and log(1 - X;). Thus at the E-step
one has to find the quantities E(log p;| X; = x;) and E(log(1 - p;)| X; = x;) using
the current values of the parameters. It is well known from Bayesian statistics
that if the density f(p;) is a beta density with parameters « and f then the den-
sity f(p;| X; = x;) is again a beta density with parameters « + x; and N + f—x;
respectively. Thus the quantities needed can be easily calculated using the for-
mulas for the £(log X) and E(log(l —X)) for a beta variate X. The derivation
of these expectations can be found in the Appendix.

Thus the EM algorithm can be described as:

From the current estimates «,q and f,4 the new estimates will be obtained
as follows:

E-step: Calculate
t;= E(logp;| X; = x;) = W(agq + x;) — P(agq + foa + N)
s;= E(log(1-p;| X; = x;) = W(Boa + N—x;) = ¥(agq + fora + N)

fori=1,...,n.
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M-step: Make an one-step ahead Newton Raphson iteration for ML estimation
of a beta density using the expectations of the E-step. To do so calculate

20 2.5

and then update the estimates as

=, — W (o) = (ot + Baa) — 1
new old \P3 (ao]d) - \P3 (aold + ﬂold)

o

and

— lII(ﬁold) B lP(O‘new + ﬁold) -5
ﬂnew - ﬁold - \P3 (ﬁold) — \P3 (anew T ﬁ01d) .

Note that alternative schemes can be constructed by trying to directly maxi-
mize the beta likelihood at the M-step. It was found that such a maximization
could delay the algorithm since at each M-step several iterations are needed
to maximize the complete likelihood.

The algorithm is easy to be programmed in many statistical packages as it
needs only the specification of the digamma and trigamma functions. Neither
matrix inversions nor other numerical techniques are needed. A Monte Carlo
EM version for the beta binomial is described in Booth and Caffo (2002).

As an application consider the data in Table 3. The data concern the num-
ber of passed courses for a class of 65 students from the first year of the
Department of Statistics of Athens University of Economics. This class
attended 8 courses during the year. The number of successful examinations
were recorded. The binomial distribution with p = 0.65 had a very poor fit. This
was expected since it is not reasonable to consider the probability of success
p to be constant for all the courses. It seems natural to consider that the courses
have different difficulty and thus the probability of success varies. Assuming
that this probability varies according to a beta distribution the BB distributions
arises. Fitting the BB distribution the estimates obtained were & = 1.825 and
f = 0.968. The fit can be seen in Table 3. The j statistic had a value 1.45 with
6 degrees of freedom (no grouping was made) which shows a very good fit.
Note also that the loglikelihood for the beta-binomial model was —134.75
instead of —168.82 for the simple binomial model indicating large improvement.
Thus it is reasonable to conclude the varying difficulty of the courses.

TABLE 3

DATA CONCERNING THE NUMBER OF PASSED COURSES FOR A CLASS OF 65 STUDENTS
AT THE DEPT OF STATISTICS, ATHENS UNIVERSITY OF ECONOMICS (N = 8).

X 0 1 2 3 4 5 6 7 8

observed 1 4 4 8 9 6 8 12 13
expected 1.80 3.28 4.65 5.97 7.25 8.51 9.78 11.11  12.65
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8. CONCLUDING REMARKS AND DISCUSSION

In this paper, ML estimation of the parameters of mixed Poisson distributions
were treated in detail, using an EM type algorithm that uses certain properties
of this family of distributions. Some other mixtures of discrete distributions
were discussed, too. It is clear that the approach developed can be expanded
in several ways. First of all, every distribution arising as a mixture of some
other distribution can be treated in this way. Of course in certain circumstances
this approach can be less efficient than other methods but the EM algorithm
itself provides insight into the estimation task. For example, in the mixed Pois-
son case, quantities like £(0]x;) are important for further inference, like expe-
rienced rate in actuarial practice. These quantities are byproducts of the algo-
rithm. Moreover, this quantity characterizes the risk of the i-th individual and
then it can be used for various goals as for example Empirical Bayes methods.
The approach can be also expanded to cover bivariate and multivariate distri-
butions. For example Munkin and Trivedi (1999) used simulated ML approach
for a mixture of a bivariate Poisson distribution with a lognormal mixing density.
The proposed EM algorithm approach is clearly easier than their simulated ML
approach.

Secondly, random effects models can be estimated in a similar manner.
In Karlis (2001) negative binomial regression and Poisson-inverse Gaussian
regression was treated. The present paper aims at providing more details on the
algorithm presented there.
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APPENDIX

It holds that
I'(a)
lu

= fomx‘*’lexp(— Ax)dx

and hence by differentiating both sides with respect to « yields

() 2* = 2%log(A) T(a) _ T(@)[¥ (@) - log(4)
) 3

I _ fowlogx x* " lexp (— Ax) dx

where W(«) denotes the digamma function defined as

dlogl(a) 1 ol(w)
oo - T'(a) Oa

¥ () =

Thus for a Gamma variate it holds that

E(log(X)) = ¥(e) —~log(4)

With a similar argument it can be seen that for the Beta distribution given in
(11) it holds that

E(logX) = ¥(a)-¥(a+p) and E(log(l - X)) = ¥(B)—¥(a+p)
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