LOCAL-GLOBAL PRINCIPLE FOR THE FINITENESS AND ARTINIANNESS OF GENERALISED LOCAL COHOMOLOGY MODULES

ALI FATHI

(Received 14 May 2012; accepted 22 June 2012; first published online 20 August 2012)

Abstract

Let S be a Serre subcategory of the category of R-modules, where R is a commutative Noetherian ring. Let $\mathfrak a$ and $\mathfrak b$ be ideals of R and let M and N be finite R-modules. We prove that if N and $H^i_\mathfrak a(M,N)$ belong to S for all i < n and if $n \le f$ -grad $(\mathfrak a, \mathfrak b, N)$, then $\operatorname{Hom}_R(R/\mathfrak b, H^n_\mathfrak a(M,N)) \in S$. We deduce that if either $H^i_\mathfrak a(M,N)$ is finite or Supp $H^i_\mathfrak a(M,N)$ is finite for all i < n, then Ass $H^n_\mathfrak a(M,N)$ is finite. Next we give an affirmative answer, in certain cases, to the following question. If, for each prime ideal $\mathfrak p$ of R, there exists an integer $n_\mathfrak p$ such that $\mathfrak b^{n_\mathfrak p} H^i_{\mathfrak a(N_\mathfrak p)}(M_\mathfrak p, N_\mathfrak p) = 0$ for every i less than a fixed integer t, then does there exist an integer n such that $\mathfrak b^n H^i_\mathfrak a(N,N) = 0$ for all i < t? A formulation of this question is referred to as the local-global principle for the annihilation of generalised local cohomology modules. Finally, we prove that there are local-global principles for the finiteness and Artinianness of generalised local cohomology modules.

2010 Mathematics subject classification: primary 13D45; secondary 13E05, 13E10.

Keywords and phrases: (generalised) local cohomology module, finiteness, Artinianness, local-global principle, filter regular sequence.

1. Introduction

Throughout this paper R denotes a commutative Noetherian ring with identity and $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are ideals of R. We denote by \mathbb{N} and \mathbb{N}_0 the set of positive and nonnegative integers, respectively. The notion of generalised local cohomology functors was introduced by Herzog, in [9], over a local ring and then continued by Suzuki in [18]. Later this concept was studied by Bijan-Zadeh, in [1], over any commutative Noetherian ring. For each integer i, the ith generalised local cohomology functor $H_0^i(\cdot,\cdot)$ is defined by

$$H^{i}_{\mathfrak{a}}(M, N) = \varinjlim_{n} \operatorname{Ext}_{R}^{i}(M/\mathfrak{a}^{n}M, N)$$

for all R-modules M and N. Clearly, this notion is a generalisation of the usual local cohomology functor [4]. On the other hand, the concept of a filter regular sequence

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

has been studied in [12, 15, 17, 21] and has led to some interesting results. We denote the common length of all maximal \mathfrak{a} -filter regular M-sequences contained in \mathfrak{b} by f-grad $(\mathfrak{a}, \mathfrak{b}, M)$ and call it the \mathfrak{a} -filter grade of \mathfrak{b} on M. We briefly recall, in Section 2, the concept of a filter regular sequence and basic properties of f-grad $(\mathfrak{a}, \mathfrak{b}, M)$, but refer the reader to [8, 19] for more details. It is clear that an R-filter regular M-sequence is just a weak M-sequence [2] and f-grad (R, \mathfrak{b}, M) = grad (\mathfrak{b}, M) . If (R, \mathfrak{m}) is a local ring, then f-grad $(\mathfrak{m}, \mathfrak{b}, M)$ is just the well-known notion f-depth (\mathfrak{b}, M) ; see [11] for some characterisations of f-depth (\mathfrak{b}, M) . Filter regular sequences were employed in [19] to establish some finiteness results on usual local cohomology modules. In this paper we use those sequences to obtain some finiteness and Artinianness results on generalised local cohomology modules.

Recall that a class S of R-modules is a Serre subcategory of the category of R-modules if it is closed under taking submodules, quotients and extensions. In Theorem 2.2, for finite R-modules M and N, we prove that if N and $H^i_{\mathfrak{a}}(M,N)$ belong to S for all i < n and $n \le f$ -grad $(\mathfrak{a}, \mathfrak{b}, N)$, then $\operatorname{Hom}_R(R/\mathfrak{b}, H^n_{\mathfrak{a}}(M,N)) \in S$. We deduce that if either $H^i_{\mathfrak{a}}(M,N)$ is finite or Supp $H^i_{\mathfrak{a}}(M,N)$ is finite for all i < n, then Ass $H^n_{\mathfrak{a}}(M,N)$ is finite. In a certain case, when M = R, this is the main result of [13]. Therefore Theorem 2.2 provides a generalisation of the main result of [13]. Notice that Ass $H^n_{\mathfrak{a}}(M,N)$ is not finite in general; see, for example, [10, 16].

Let M, N be finite R-modules. As a generalisation of the \mathfrak{b} -finiteness dimension $f_{\mathfrak{a}}^{\mathfrak{b}}(N)$ of N with respect to \mathfrak{a} , we define

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M,N) = \inf\{i \in \mathbb{N}_0 \mid \mathfrak{b} \nsubseteq \sqrt{(0:_R H_{\mathfrak{g}}^i(M,N))}\}$$

and denote $f_a^a(M, N)$ by $f_a(M, N)$. In fact, by Proposition 3.1,

$$f_{\mathfrak{a}}(M, N) = \inf\{i \in \mathbb{N}_0 \mid H^i_{\mathfrak{a}}(M, N) \text{ is not finite}\}.$$

In Section 3 we give some properties of $f_{\mathfrak{a}}^{\mathfrak{b}}(M, N)$. In particular, we prove that $f_{\mathfrak{a}}^{\mathfrak{b}}(N) \leq f_{\mathfrak{a}}^{\mathfrak{b}}(M, N)$. We present an example to show that the above inequality may be strict (Example 3.6). Thus the result [5, Proposition 2.10] of Chu is not correct. Moreover, Example 3.6 shows that the result [5, Lemma 2.9] is no longer true.

The local-global principle for the finiteness of local cohomology modules, investigated by Faltings in [6, 7], states that, for all nonnegative integers r, $f_a(N) > r$ if and only if $f_{aR_p}(N_p) > r$ for all $p \in \operatorname{Spec}(R)$. Also we say that Faltings' local-global principle for the annihilation of local cohomology modules holds at level r if

$$f_{\mathfrak{q}}^{\mathfrak{b}}(N) > r \Leftrightarrow f_{\mathfrak{q}R}^{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}}) > r \quad \text{for all } \mathfrak{p} \in \operatorname{Spec}(R)$$

is true for all finite R-modules N and all ideals \mathfrak{a} , \mathfrak{b} . Raghavan proved, in [14], that the local-global principle for the annihilation of local cohomology modules holds at level 1, while Brodmann et al. proved it is true at level 2 [3, Theorem 2.6]. As a generalisation of this, we say that Faltings' local-global principle for the annihilation of generalised local cohomology modules holds at level r if

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R)$$
 (†)

is true for all finite *R*-modules M, N and all ideals \mathfrak{a} , \mathfrak{b} . We show, in Proposition 4.2, that the local-global principle for the annihilation of generalised local cohomology modules holds at levels 0, 1, 2. Now let $\mathfrak{b} \subseteq \mathfrak{a}$. Then we prove the following statements, in Theorem 4.4.

- (i) $f_{\mathfrak{a}}(M, N) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(M, N), \text{ f-grad } (\mathfrak{a}, \mathfrak{b}, N) + 1\}$. In particular, $f_{\mathfrak{a}}(M, N) = f_{\mathfrak{a}}^{\mathfrak{b}}(M, N)$ whenever $f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) \le \text{ f-grad } (\mathfrak{a}, \mathfrak{b}, N) + 1$.
- (ii) Assume that $r \le \text{f-grad}(\mathfrak{a}, \mathfrak{b}, N) + 1$. Then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R).$$

(iii) If Supp $N/bN \subseteq V(\mathfrak{a})$, then the statement

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R)$$

holds for all r.

(iv) Faltings' local-global principle for the finiteness of generalised local cohomology modules holds. In other words, for any positive integer r, $H^i_{\mathfrak{q}R_\mathfrak{p}}(M_\mathfrak{p},N_\mathfrak{p})$ is finite for all $i \le r$ and for all $\mathfrak{p} \in \operatorname{Spec} R$ if and only if $H^i_{\mathfrak{q}}(M,N)$ is finite for all $i \le r$.

Finally, in Theorem 5.3, for finite *R*-modules *M* and *N* and for a positive integer *n*, we prove that $H^i_{\mathfrak{a}}(M, N)$ is Artinian for all i < r if and only if $H^i_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is Artinian for all i < r and for all $\mathfrak{p} \in \operatorname{Spec} R$. We observe that this result improves the main result of [20].

2. Preliminary results

We first recall some basic properties of filter regular sequences. The reader is referred to [8] for more details. Assume that M and N are finite R-modules. We say that a sequence x_1, \ldots, x_n of elements of R is an α -filter regular M-sequence if $x_i \notin \mathfrak{p}$ for all

$$\mathfrak{p} \in \mathrm{Ass}(M/(x_1,\ldots,x_{i-1})M) \setminus V(\mathfrak{q})$$

and for all i = 1, ..., n. If, in addition, $x_1, ..., x_n \in b$, then we say that $x_1, ..., x_n$ is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} . There exists an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} of infinite length if and only if Supp $M/\mathfrak{b}M \subseteq V(\mathfrak{a})$. Now assume that Supp $M/\mathfrak{b}M \nsubseteq V(\mathfrak{a})$. Then we denote the common length of all maximal \mathfrak{a} -filter regular M-sequences contained in \mathfrak{b} by f-grad $(\mathfrak{a}, \mathfrak{b}, M)$ and we call it the \mathfrak{a} -filter grade of \mathfrak{b} on M. We set f-grad $(\mathfrak{a}, \mathfrak{b}, M) = \infty$ whenever Supp $M/\mathfrak{b}M \subseteq V(\mathfrak{a})$. Also, notice that

f-grad
$$(\mathfrak{a}, \mathfrak{b}, M) = \inf\{i \in \mathbb{N}_0 \mid \text{Supp Ext}_R^i(R/\mathfrak{b}, M) \nsubseteq V(\mathfrak{a})\}\$$

$$= \inf\{i \in \mathbb{N}_0 \mid \text{Supp } H_\mathfrak{b}^i(M) \nsubseteq V(\mathfrak{a})\},\$$
f-grad $(\mathfrak{a}, \text{Ann } N, M) = \inf\{i \in \mathbb{N}_0 \mid \text{Supp Ext}_R^i(N, M) \nsubseteq V(\mathfrak{a})\},\$
f-grad $(\mathfrak{a}, \mathfrak{b} + \text{Ann } N, M) = \inf\{i \in \mathbb{N}_0 \mid \text{Supp } H_\mathfrak{b}^i(N, M) \nsubseteq V(\mathfrak{a})\}.$

Since f-grad (R, b, M) = grad (b, M), we have the following well-known properties ([1, Proposition 5.5], [4, Theorem 6.2.7]):

grad
$$(b, M) = \inf\{i \in \mathbb{N}_0 \mid \text{Ext}_R^i(R/b, M) \neq 0\} = \inf\{i \in \mathbb{N}_0 \mid H_b^i(M) \neq 0\}$$

and

grad
$$(b + Ann N, M) = \inf\{i \in \mathbb{N}_0 \mid H_h^i(N, M) \neq 0\}.$$

If (R, \mathfrak{m}) is a local ring, then f-grad $(\mathfrak{m}, \mathfrak{b}, M)$ is just the well-known notion f-depth (\mathfrak{b}, M) ; see [11] for some properties of f-depth (\mathfrak{b}, M) . The following lemma is of assistance in the proof of the next theorem.

Lemma 2.1. Let S be a Serre subcategory of the category of R-modules, M be a finite R-module and $N \in S$. Then $\operatorname{Ext}_R^i(M,N) \in S$ for all $i \in \mathbb{N}_0$.

PROOF. Since $\operatorname{Ext}_R^i(M, N)$ is a subquotient of N^{α} for some $\alpha \in \mathbb{N}_0$, the result is clear. \square

THEOREM 2.2. Let S be a Serre subcategory of the category of R-modules. Let $n \in \mathbb{N}_0$ and let M and N be finite R-modules such that N and $H^i_{\mathfrak{a}}(M,N)$ belong to S for all i < n. If f-grad $(\mathfrak{a},\mathfrak{b},N) \ge n$, then $\operatorname{Hom}_R(R/\mathfrak{b},H^n_{\mathfrak{a}}(M,N)) \in S$. In particular, $\operatorname{Hom}_R(R/\mathfrak{b},H^n_{\mathfrak{a}}(M,N)) \in S$ whenever $\operatorname{Supp} N/\mathfrak{b}N \subseteq V(\mathfrak{a})$.

Proof. We prove the assertion by induction on n. Since $H^0_{\mathfrak{a}}(M,N) \cong \operatorname{Hom}_R(M,\Gamma_{\mathfrak{a}}(N))$, the result is clear for n=0 by Lemma 2.1. Assume that n>0 and that the result has been proved for n-1. Let f-grad $(\mathfrak{a},\mathfrak{b},N)\geq n$ and suppose that $x\in\mathfrak{b}$ is an \mathfrak{a} -filter regular N-sequence. The exact sequence

$$0 \to \Gamma_{\mathfrak{g}}(N) \to N \to N/\Gamma_{\mathfrak{g}}(N) \to 0$$

induces the long exact sequence

$$\cdots \to H^i_{\mathfrak{g}}(M, \Gamma_{\mathfrak{g}}(N)) \xrightarrow{f^i} H^i_{\mathfrak{g}}(M, N) \to H^i_{\mathfrak{g}}(M, N/\Gamma_{\mathfrak{g}}(N)) \to H^{i+1}_{\mathfrak{g}}(M, \Gamma_{\mathfrak{g}}(N)) \to \cdots$$

Since, by [23, Lemma 1.1],

$$H^i_{\mathfrak{a}}(M,\Gamma_{\mathfrak{a}}(N))\cong \operatorname{Ext}^i_R(M,\Gamma_{\mathfrak{a}}(N))\quad \text{for all } i\in \mathbb{N}_0,$$

we use Lemma 2.1 and the above long exact sequence to see that $H^i_{\mathfrak{a}}(M, N) \in \mathcal{S}$ if and only if $H^i_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{a}}(N)) \in \mathcal{S}$. Also $N/\Gamma_{\mathfrak{a}}(N) \in \mathcal{S}$ and f-grad $(\mathfrak{a}, \mathfrak{b}, N/\Gamma_{\mathfrak{a}}(N))$. On the other hand, since im $f^n \in \mathcal{S}$, the induced exact sequence

$$0 \to \operatorname{Hom}_R(R/\mathfrak{b}, \operatorname{im} f^n) \to \operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^n(M, N)) \to \operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^n(M, N/\Gamma_{\mathfrak{a}}(N)))$$

yields $\operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^n(M, N)) \in \mathcal{S}$ whenever $\operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^n(M, N/\Gamma_{\mathfrak{a}}(N))) \in \mathcal{S}$. Thus we can replace N by $N/\Gamma_{\mathfrak{a}}(N)$ and, without loss of generality, assume that $\Gamma_{\mathfrak{a}}(N) = 0$; and hence x is a nonzero devisor on N. Next, consider the exact sequence

$$0 \to N \xrightarrow{x} N \to N/xN \to 0$$

which induces the long exact sequence

$$\cdots \rightarrow H_0^i(M,N) \xrightarrow{x} H_0^i(M,N) \rightarrow H_0^i(M,N/xN) \rightarrow H_0^{i+1}(M,N) \xrightarrow{x} \cdots$$

Now we may use the above sequence in conjunction with the hypothesis to deduce that $H^i_{\mathfrak{a}}(M, N/xN) \in \mathcal{S}$ for all i < n - 1. Also it is easy to see that f-grad $(\mathfrak{a}, \mathfrak{b}, N/xN) =$ f-grad $(\mathfrak{a}, \mathfrak{b}, N) - 1$. Therefore, by induction, $\operatorname{Hom}_R(R/\mathfrak{b}, H^{n-1}_{\mathfrak{a}}(M, N/xN)) \in \mathcal{S}$. Next, we use the exact sequence

$$0 \to H_{\mathfrak{a}}^{n-1}(M,N)/xH_{\mathfrak{a}}^{n-1}(M,N) \to H_{\mathfrak{a}}^{n-1}(M,N/xN) \to 0:_{H_{\mathfrak{a}}^{n}(M,N)} x \to 0,$$

to obtain the exact sequence

$$\operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^{n-1}(M, N/xN)) \to \operatorname{Hom}_R(R/\mathfrak{b}, H_{\mathfrak{a}}^n(M, N))$$
$$\to \operatorname{Ext}_R^1(R/\mathfrak{b}, H_{\mathfrak{a}}^{n-1}(M, N)/xH_{\mathfrak{a}}^{n-1}(M, N))$$

which in turn, by Lemma 2.1, yields $\operatorname{Hom}_R(R/\mathfrak{b}, H^n_\mathfrak{a}(M,N)) \in \mathcal{S}$. This completes the inductive step. Finally, since the hypothesis $\operatorname{Supp} N/\mathfrak{b}N \subseteq V(\mathfrak{a})$ implies f-grad $(\mathfrak{a},\mathfrak{b},N)=\infty$, the last assertion follows immediately from the first one. \square

Let M be an R-module. M is called an FSF module if there is a finite submodule N of M such that the support of the quotient module M/N is finite. If M is an FSF module, then Ass M is finite and the category of FSF R-modules is a Serre subcategory of the category of R-modules [13, Proposition 2.2].

By applying the above theorem to the category of FSF *R*-modules we have the following corollary which recovers the main result of [13] which has been proved for ordinary local cohomology modules.

COROLLARY 2.3. Let M, N be finite R-modules and let $n \in \mathbb{N}_0$ be such that either $H_0^i(M, N)$ is finite or Supp $H_0^i(M, N)$ is finite for all i < n. Then Ass $H_0^n(M, N)$ is finite.

3. Finiteness properties of generalised local cohomology modules

Let M be a finite R-module. Following [4, Proposition 9.1.2] and [6, Lemma 3], the finiteness dimension $f_{\alpha}(M)$ of M relative to α is defined as follows:

$$f_{\mathfrak{a}}(M) = \inf\{i \in \mathbb{N}_0 \mid H_{\mathfrak{a}}^i(M) \text{ is not finite}\}$$
$$= \inf\{i \in \mathbb{N}_0 \mid \mathfrak{a} \nsubseteq \sqrt{(0:_R H_{\mathfrak{a}}^i(M))}\}.$$

As a generalisation, the b-finiteness dimension $f_a^b(M)$ of M relative to a is defined by

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 \mid \mathfrak{b} \nsubseteq \sqrt{(0:_R H_{\mathfrak{a}}^i(M))}\}.$$

We now extend this definition to generalised local cohomology modules.

Proposition 3.1. Let M, N be finite R-modules and $n \in \mathbb{N}_0$. Then the following statements are equivalent:

- (i) $H_{\sigma}^{i}(M, N)$ is finite for all i < n;
- (ii) $\mathfrak{a} \subseteq \sqrt{(0:_R H^i_\mathfrak{a}(M, N))}$ for all i < n.

PROOF. (i) \Rightarrow (ii) is obvious. For (ii) \Rightarrow (i), we use induction on n. When n = 1, there is nothing to prove. Now let n > 1 and suppose that the result has been proved for smaller values of n. By the inductive assumption, $H_{\mathfrak{a}}^{i}(M, N)$ is finite for $i = 0, \ldots, n - 2$. Also, by hypothesis, $\mathfrak{a}^{r}H_{\mathfrak{a}}^{n-1}(M, N) = 0$ for some $r \in \mathbb{N}$, so that, in view of Theorem 2.2, $0:_{H_{\mathfrak{a}}^{n-1}(M,N)}\mathfrak{a}^{r} = H_{\mathfrak{a}}^{n-1}(M,N)$ is finite. This completes the induction.

DEFINITION 3.2. Let M and N be finite R-modules. We define the \mathfrak{b} -finiteness dimension $f_{\mathfrak{a}}^{\mathfrak{b}}(M,N)$ of M,N relative to \mathfrak{a} by

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M, N) = \inf\{i \in \mathbb{N}_0 \mid \mathfrak{b} \nsubseteq \sqrt{(0:_R H_{\mathfrak{g}}^i(M, N))}\}.$$

Notice that, by Proposition 3.1,

$$f_{\mathfrak{g}}^{\mathfrak{a}}(M, N) = \inf\{i \in \mathbb{N} \mid H_{\mathfrak{g}}^{i}(M, N) \text{ is not finite}\}.$$

We denote $f_{\mathfrak{a}}^{\mathfrak{a}}(M, N)$ by $f_{\mathfrak{a}}(M, N)$.

For $y \in R$, set $S = \{y^n : n \ge 0\}$. In the next lemma, for an R-module M, we denote $S^{-1}M$ by M_y . The following two lemmas are needed in the proof of the next proposition.

Lemma 3.3. Let M, N be finite R-modules and $x \in R$. Then we have the following long exact sequence

$$\cdots \to H^{i}_{\mathfrak{a}+Rx}(M,N) \to H^{i}_{\mathfrak{a}}(M,N) \to H^{i}_{\mathfrak{a}R_{x}}(M_{x},N_{x}) \to H^{i+1}_{\mathfrak{a}+Rx}(M,N) \to \cdots.$$

PROOF. Let E^{\bullet} be an injective resolution of N. Then E_x^{\bullet} is an injective resolution of R_x -module N_x . The split exact sequence

$$0 \to \Gamma_{\mathfrak{a}+Rx}(E^{\bullet}) \to \Gamma_{\mathfrak{a}}(E^{\bullet}) \to \Gamma_{\mathfrak{a}}(E_{x}^{\bullet}) \to 0$$

of complexes [4, Lemma 8.1.1] induces the exact sequence

$$0 \to \operatorname{Hom}_R(M, \Gamma_{\mathfrak{q}+Rx}(E^{\bullet})) \to \operatorname{Hom}_R(M, \Gamma_{\mathfrak{q}}(E^{\bullet})) \to \operatorname{Hom}_R(M, \Gamma_{\mathfrak{q}}(E_{x}^{\bullet})) \to 0$$

of complexes. On the other hand, we have the following natural isomorphism of complexes:

$$\operatorname{Hom}_{R}(M, \Gamma_{\mathfrak{a}}(E_{x}^{\bullet})) \cong \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R_{x}}(R_{x}, \Gamma_{\mathfrak{a}R_{x}}(E_{x}^{\bullet})))$$

$$\cong \operatorname{Hom}_{R_{x}}(M \otimes_{R} R_{x}, \Gamma_{\mathfrak{a}R_{x}}(E_{x}^{\bullet}))$$

$$\cong H_{\mathfrak{a}R_{x}}^{0}(M_{x}, E_{x}^{\bullet}).$$

Hence the above exact sequence of complexes induces the following long exact sequence of homology modules:

$$\cdots \to H^{i}(H^{0}_{\mathfrak{a}+Rx}(M, E^{\bullet})) \to H^{i}(H^{0}_{\mathfrak{a}}(M, E^{\bullet})) \to H^{i}(H^{0}_{\mathfrak{a}R_{x}}(M_{x}, E_{x}^{\bullet}))$$
$$\to H^{i+1}(H^{0}_{\mathfrak{a}+Rx}(M, E^{\bullet})) \to \cdots.$$

This completes the proof.

LEMMA 3.4 (see [4, Lemma 9.1.1]). Let $M \to N \to L$ be an exact sequence of R-modules such that $\mathfrak{a} \subseteq \sqrt{(0:_R M)}$ and $\mathfrak{a} \subseteq \sqrt{(0:_R L)}$. Then $\mathfrak{a} \subseteq \sqrt{(0:_R N)}$.

Proposition 3.5. Let M, N, L, K be finite R-modules.

(i) Let R' be a second commutative ring and let $f: R \to R'$ be a flat homomorphism of rings. Then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) \leq f_{\mathfrak{a}R'}^{\mathfrak{b}R'}(M \otimes_R R', N \otimes_R R').$$

In particular, if S is a multiplicatively closed subset of R, then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) \leq f_{S^{-1}\mathfrak{a}}^{S^{-1}\mathfrak{b}}(S^{-1}M, S^{-1}N).$$

- (ii) $f_a^b(M, N) = f_a^{\sqrt{b}}(M, N) = f_{\sqrt{a}}^b(M, N) = f_{\sqrt{a}}^{\sqrt{b}}(M, N).$
- (iii) Let $x \in R$. Then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) = \inf\{f_{\mathfrak{a}+Rx}^{\mathfrak{b}}(M,N), f_{\mathfrak{a}R_{x}}^{\mathfrak{b}R_{x}}(M_{x},N_{x})\}.$$

(iv) Let $\mathfrak{a} \subseteq \mathfrak{c}$. Then

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M,N) \leq f_{\mathfrak{g}}^{\mathfrak{b}}(M,N)$$
 and $f_{\mathfrak{b}}^{\mathfrak{c}}(M,N) \leq f_{\mathfrak{b}}^{\mathfrak{a}}(M,N)$.

(v) Let $\mathfrak{b} \subseteq \mathfrak{c}$. Then

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M, N) \cong f_{\mathfrak{g}}^{\mathfrak{b}}(M, N/\Gamma_{\mathfrak{c}}(N)).$$

In particular,

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M, N) \cong f_{\mathfrak{g}}^{\mathfrak{b}}(M, N/\Gamma_{\mathfrak{b}}(N)).$$

(vi) Let $0 \to L \to M \to N \to 0$ be an exact sequence. Then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(K, L) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(K, M), f_{\mathfrak{a}}^{\mathfrak{b}}(K, N) + 1\},$$

$$f_{\mathfrak{a}}^{\mathfrak{b}}(K, M) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(K, L), f_{\mathfrak{a}}^{\mathfrak{b}}(K, N)\},$$

$$f_{\mathfrak{a}}^{\mathfrak{b}}(K, N) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(K, L) - 1, f_{\mathfrak{a}}^{\mathfrak{b}}(K, M)\}$$

and

$$f_{\mathfrak{a}}^{\mathfrak{b}}(L, K) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(M, K), f_{\mathfrak{a}}^{\mathfrak{b}}(N, K) - 1\},$$

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M, K) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(L, K), f_{\mathfrak{a}}^{\mathfrak{b}}(N, K)\},$$

$$f_{\mathfrak{a}}^{\mathfrak{b}}(N, K) \ge \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(L, K) + 1, f_{\mathfrak{a}}^{\mathfrak{b}}(M, K)\}.$$

(vii) Let Supp $M \subseteq \text{Supp } N$. Then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M, K) \geq f_{\mathfrak{a}}^{\mathfrak{b}}(N, K).$$

In particular,

$$f_a^{\mathfrak{b}}(M,K) = f_a^{\mathfrak{b}}(N,K)$$

whenever Supp M = Supp N.

(viii)
$$f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) \geq f_{\mathfrak{a}}^{\mathfrak{b}}(N)$$
.

(ix) Let $0 \to L \to M \to N \to 0$ be an exact sequence. Then

$$f_{\mathfrak{g}}^{\mathfrak{b}}(M, K) = \inf\{f_{\mathfrak{g}}^{\mathfrak{b}}(L, K), f_{\mathfrak{g}}^{\mathfrak{b}}(N, K)\}.$$

(x) There exists a prime ideal $\mathfrak p$ in Min Supp M such that $f_{\mathfrak a}^{\mathfrak b}(M,N)=f_{\mathfrak a}^{\mathfrak b}(R/\mathfrak p,N),$ and hence

$$f_{\mathfrak{q}}^{\mathfrak{b}}(M, N) = \inf\{f_{\mathfrak{q}}^{\mathfrak{b}}(R/\mathfrak{p}, N) \mid \mathfrak{p} \in \operatorname{Supp} M\}.$$

PROOF. (i) If $\mathfrak{b} \subseteq \sqrt{(0:_R H^i_{\mathfrak{a}}(M,N))}$, then $\mathfrak{b}^r H^i_{\mathfrak{a}}(M,N) = 0$ for some $r \in \mathbb{N}$. Therefore

$$\mathfrak{b}^r R' H^i_{\mathfrak{a}R'}(M \otimes_R R', N \otimes_R R') \cong \mathfrak{b}^r H^i_{\mathfrak{a}}(M, N) \otimes_R R' = 0.$$

(ii) Let E^{\bullet} be an injective resolution of N. Then, in view of [18, Proposition 2.1],

$$H^{i}_{\mathfrak{a}}(M, N) = H^{i}(\operatorname{Hom}_{R}(M, \Gamma_{\mathfrak{a}}(E^{\bullet}))) = H^{i}(\operatorname{Hom}_{R}(M, \Gamma_{\sqrt{\mathfrak{a}}}(E^{\bullet}))) = H^{i}_{\sqrt{\mathfrak{a}}}(M, N).$$

- (iii) This follows from Lemmas 3.3, 3.4 and (i).
- (iv) It follows from the definition that $f_b^c(M, N) \le f_b^a(M, N)$. Also, since R is Noetherian, we can use (iii) to obtain $f_a^b(M, N) \le f_b^b(M, N)$.
- (v) Since $c^n \Gamma_c(N) = 0$ for some $n \in \mathbb{N}$, we have $c^n H_a^i(M, \Gamma_c(N)) = 0$ for all $i \in \mathbb{N}_0$. Therefore $\mathfrak{b} \subseteq \mathfrak{c} \subseteq \sqrt{(0:_R H_a^i(M, \Gamma_c(N)))}$ for all i. Now the exact sequence

$$0 \to \Gamma_{\rm c}(N) \to N \to N/\Gamma_{\rm c}(N) \to 0$$

induces the long exact sequence

$$\cdots \to H^i_{\mathfrak{g}}(M, \Gamma_{\mathfrak{c}}(N)) \to H^i_{\mathfrak{g}}(M, N) \to H^i_{\mathfrak{g}}(M, N/\Gamma_{\mathfrak{c}}(N)) \to H^{i+1}_{\mathfrak{g}}(M, \Gamma_{\mathfrak{c}}(N)) \to \cdots$$

Therefore, by Lemma 3.4, $\mathfrak{b} \subseteq \sqrt{(0:_R H_{\mathfrak{g}}^i(M, N))}$ if and only if

$$\mathfrak{b} \subseteq \sqrt{(0:_R H^i_\mathfrak{o}(M, N/\Gamma_\mathfrak{c}(N)))}.$$

(vi) We may consider the long exact sequence

$$\cdots \to H^i_{\mathfrak{a}}(N,K) \to H^i_{\mathfrak{a}}(M,K) \to H^i_{\mathfrak{a}}(L,K) \to H^{i+1}_{\mathfrak{a}}(N,K) \to \cdots,$$

which is obtained in [5, Lemma 2.4], and the long exact sequence

$$\cdots \to H^i_{\mathfrak{a}}(K,L) \to H^i_{\mathfrak{a}}(K,M) \to H^i_{\mathfrak{a}}(K,N) \to H^{i+1}_{\mathfrak{a}}(K,L) \to \cdots$$

and apply Lemma 3.4 to establish the assertion.

(vii) We prove, by induction on $r \in \mathbb{N}_0$, that, for any finite R-module M, if Supp $M \subseteq$ Supp N and $r \le f_{\mathfrak{a}}^{\mathfrak{b}}(N, K)$, then $r \le f_{\mathfrak{a}}^{\mathfrak{b}}(M, K)$. If r = 0 there is nothing to prove. Now suppose that r > 0 and assume that the assertion holds for smaller values of r. Suppose that Supp $M \subseteq$ Supp N and $r \le f_{\mathfrak{a}}^{\mathfrak{b}}(N, K)$. By Gruson's theorem [22, Theorem 4.1], there exists a chain

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$$

of submodules of M such that M_i/M_{i-1} is a homomorphic image of a direct sum of finitely many copies of N for all i = 1, ..., n. On the other hand, by (vi),

$$f_0^{\mathfrak{b}}(M, K) \geq \inf\{f_0^{\mathfrak{b}}(M_1/M_0, K), \dots, f_0^{\mathfrak{b}}(M_n/M_{n-1}, K)\}.$$

Therefore it is enough to prove that $r \le f_a^b(M, K)$ in the case where n = 1. Now there exists an exact sequence

$$0 \to L \to N^{\alpha} \to M \to 0$$
,

for some $\alpha \in \mathbb{N}$. Since Supp $L \subseteq$ Supp N, the induction hypothesis implies that $r-1 \le f_{\mathfrak{a}}^{\mathfrak{b}}(L, K)$. Therefore, by (vi),

$$r \le \inf\{f_a^b(L, K) + 1, f_a^b(N, K)\} \le f_a^b(M, K).$$

(viii), (ix) and (x) are immediate by (vii).

Next, we provide an example to show that the inequality in (vii) and (viii) may be strict.

EXAMPLE 3.6. Let (R, \mathfrak{m}) be a Gorenstein local ring with dimension d > 0 and M be a finite R-module. Then $H^i_{\mathfrak{m}}(R) = E(R/\mathfrak{m})$ if i = d and 0 otherwise. Further, $H^d_{\mathfrak{m}}(R) = E(R/\mathfrak{m})$ is not finite [4, Corollary 7.3.3], so $f_{\mathfrak{m}}(R) = d$. Now let E^{\bullet} be a minimal injective resolution of R. Then

$$H^i_{\mathfrak{m}}(M,R) = H^i(\operatorname{Hom}_R(M,\Gamma_{\mathfrak{m}}(E^{\bullet}))) = \begin{cases} \operatorname{Hom}_R(M,E(R/\mathfrak{m})) & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

In particular,

$$H^{i}_{\mathfrak{m}}(R/\mathfrak{m},R) = \begin{cases} R/\mathfrak{m} & \text{if } i = d, \\ 0 & \text{if } i \neq d, \end{cases}$$

and $f_{\mathfrak{m}}(R/\mathfrak{m}, R) = \infty > f_{\mathfrak{m}}(R)$. Moreover, this example shows that the following statements of Chu are not true.

- (i) [5, Lemma 2.9]. Let N be a finitely generated R-module and M a nonzero cyclic R-module. Let t be a positive integer and let I be an ideal of R. If $H_I^i(N)$ is finitely generated for all i < t, then $H_I^i(N)$ is finitely generated if and only if $\operatorname{Hom}_R(M, H_I^i(N))$ is finitely generated.
- (ii) [5, Proposition 2.10]. Let the situation be as in (i). Then $H_I^i(N)$ is finitely generated for all i < t if and only if $H_I^i(M, N)$ is finitely generated for all i < t.

4. Faltings' local-global principle for the annihilation of generalised local cohomology modules

We say that the local-global principle for the annihilation of generalised local cohomology modules holds at level r if the statement

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R)$$

is true for every choice of ideals \mathfrak{a} , \mathfrak{b} and every choice of finite R-modules M, N. Since $(H^i_{\mathfrak{a}}(M,N))_{\mathfrak{p}} \cong H^i_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}})$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$, the above statement is equivalent to the statement

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R).$$

We say that the local-global principle for the annihilation of generalised local cohomology modules holds (over the ring R) if the local-global principle for the annihilation of generalised local cohomology modules holds at level r for every $r \in \mathbb{N}_0$. The following lemma is needed in the proof of the next proposition.

LEMMA 4.1 (see [3, Lemma 2.1] or [19, Lemma 3.1]). Let M be an R-module such that the set Δ of all maximal members of Ass M is finite. Suppose that there exists a positive integer n such that $(\alpha^n M)_p = 0$ for all $p \in \Delta$. Then $\alpha^n M = 0$.

Proposition 4.2. The local-global principle for the annihilation of generalised local cohomology modules holds at levels 0, 1, 2.

PROOF. Let $0 \le i \le 1$. Assume that M and N are finite R-modules and that $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{d}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > i$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Since $H_{\mathfrak{a}}^{0}(M,N)$ is finite, by Corollary 2.3, we see that $\operatorname{Ass} H_{\mathfrak{a}}^{i}(M,N)$ is finite. Therefore there exists $n \in \mathbb{N}$ such that $(\mathfrak{b}R_{\mathfrak{p}})^{n}H_{\mathfrak{a}R_{\mathfrak{p}}}^{i}(M_{\mathfrak{p}},N_{\mathfrak{p}})=0$ for all $\mathfrak{p} \in \operatorname{Ass} H_{\mathfrak{a}}^{i}(M,N)$. Hence $\mathfrak{b}^{n}H_{\mathfrak{a}}^{i}(M,N)=0$ by Lemma 4.1; so the local-global principle for the annihilation of generalised local cohomology modules holds at levels 0,1.

Now let $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) > 2$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$. The above argument shows that there exists $r \in \mathbb{N}$ such that $\mathfrak{b}^r H^i_{\mathfrak{a}}(M, N) = 0$ for i = 0, 1. Since $f^{\mathfrak{b}}_{\mathfrak{a}}(M, N) = f^{\mathfrak{b}}_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{b}}(N))$, we can assume without loss of generality that $\Gamma_{\mathfrak{b}}(N) = 0$; and so f-grad($\mathfrak{a}, \mathfrak{b}, N$) ≥ 1 . Therefore, by Theorem 2.2, $H^1_{\mathfrak{a}}(M, N) = \operatorname{Hom}_R(R/\mathfrak{b}^r, H^1_{\mathfrak{a}}(M, N))$ is finite. Now, we can use Corollary 2.3 and Lemma 4.1 to obtain that $f^{\mathfrak{b}}_{\mathfrak{a}}(M, N) > 2$.

The next theorem is concerned with the local-global principle for the annihilation of generalised local cohomology modules. The following lemma is of assistance in the proof of that theorem.

LEMMA 4.3 [8, Theorem 3.1]. Let M, N be finite R-modules and let x_1, \ldots, x_n be an α -filter regular N-sequence in α . Then the following statements hold.

- (i) $H_{\mathfrak{a}}^{i}(M, N) \cong H_{(\chi_{1}, \dots, \chi_{n})}^{i}(M, N)$ for all i < n.
- (ii) If $\operatorname{proj\,dim}_R(M) = d < \infty$ and L is projective, then

$$H_{\mathfrak{a}}^{i+n}(M \otimes_R L, N) \cong H_{\mathfrak{a}}^i(M, H_{(x_1, \dots, x_n)}^n(L, N))$$

for all $i \ge d$.

Theorem 4.4. Let M and N be finite R-modules and let $\mathfrak{b} \subseteq \mathfrak{a}$.

(i) $f_{\mathfrak{a}}(M,N) \geq \inf\{f_{\mathfrak{a}}^{\mathfrak{b}}(M,N), \text{ f-grad } (\mathfrak{a},\mathfrak{b},N)+1\}.$ In particular, $f_{\mathfrak{a}}(M,N) = f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) \text{ whenever } f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) \leq \text{ f-grad } (\mathfrak{a},\mathfrak{b},N)+1.$

(ii) Assume that $r \le \text{f-grad}(\mathfrak{a}, \mathfrak{b}, N) + 1$. Then

$$f_{\mathfrak{q}}^{\mathfrak{b}}(M, N) > r \Leftrightarrow f_{\mathfrak{q}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) > r \quad for \ all \ \mathfrak{p} \in \operatorname{Spec}(R).$$

(iii) If Supp $N/bN \subseteq V(\mathfrak{a})$, then, for all $r \in \mathbb{N}_0$,

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M,N) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) > r \quad for \ all \ \mathfrak{p} \in \operatorname{Spec}(R).$$

(iv) Faltings' local-global principle for the finiteness of generalised local cohomology modules holds, that is, for any positive integer r, $H^i_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is finite for all $i \leq r$ and for all $\mathfrak{p} \in \operatorname{Spec}(R)$ if and only if $H^i_{\mathfrak{a}}(M, N)$ is finite for all $i \leq r$.

PROOF. (i) Set g = f-grad $(\mathfrak{a}, \mathfrak{b}, N)$. If $f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) \leq g + 1$, then, for any $i < f_{\mathfrak{a}}^{\mathfrak{b}}(M, N)$, we have $H_{\mathfrak{a}}^{i}(M, N) = H_{\mathfrak{b}}^{i}(M, N)$ by Lemma 4.3(i); and hence $\mathfrak{b} \subseteq \sqrt{(0: H_{\mathfrak{b}}^{i}(M, N))}$. Then by Proposition 3.1, $H_{\mathfrak{a}}^{i}(M, N)$ is finite for all $i < f_{\mathfrak{a}}^{\mathfrak{b}}(M, N)$ and hence, by Proposition 3.5(iv), $f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) = f_{\mathfrak{a}}(M, N)$.

Therefore we may assume that $f_{\mathfrak{a}}^{\mathfrak{b}}(M, N) > g + 1$. Using the same argument as above, we see that $H_{\mathfrak{a}}^{i}(M, N)$ is finite for all i < g. Therefore, by Theorem 2.2, $\operatorname{Hom}_{R}(R/\mathfrak{b}^{\alpha}, H_{\mathfrak{a}}^{g}(M, N))$ is finite for all $\alpha \in \mathbb{N}$. On the other hand, by hypothesis $\mathfrak{b}^{\alpha}H_{\mathfrak{a}}^{g}(M, N) = 0$ for some $\alpha \in \mathbb{N}$. Thus $H_{\mathfrak{a}}^{g}(M, N)$ is finite and $f_{\mathfrak{a}}(M, N) \geq g + 1$.

- $\mathfrak{b}^{\alpha}H_{\mathfrak{a}}^{g}(M,N)=0$ for some $\alpha\in\mathbb{N}$. Thus $H_{\mathfrak{a}}^{g}(M,N)$ is finite and $f_{\mathfrak{a}}(M,N)\geq g+1$. (ii) Suppose that $r\leq f$ -grad $(\mathfrak{a},\mathfrak{b},N)+1$ and $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}})>r$ for all $\mathfrak{p}\in\mathrm{Spec}(R)$. If $f_{\mathfrak{a}}^{\mathfrak{b}}(M,N)\leq r$, then by (i), $f_{\mathfrak{a}}(M,N)=f_{\mathfrak{a}}^{\mathfrak{b}}(M,N)$. So by Corollary 2.3, Ass $H_{\mathfrak{a}}^{f_{\mathfrak{a}}^{\mathfrak{b}}(M,N)}(M,N)$ is finite. This is a contradiction in view of Lemma 4.1. Hence $f_{\mathfrak{a}}^{\mathfrak{b}}(M,N)>r$.
- (iii) Suppose that Supp $N/bN \subseteq V(\mathfrak{a})$. Then f-grad $(\mathfrak{a}, \mathfrak{b}, N) = \infty$. Thus (iii) is an immediate consequence of (ii).

(iv) This is immediate by (iii) and Proposition 3.1.

5. Local-global principle for the Artinianness of generalised local cohomology modules

Let M be a finite R-module. In [20], Tang proved that, for any integer n, $H^i_{\mathfrak{a}}(M)$ is Artinian for all i < n if and only if $H^i_{\mathfrak{a}}(M)_{\mathfrak{p}}$ is Artinian for all i < n and for all $\mathfrak{p} \in \operatorname{Spec}(R)$. In Theorem 5.3, we establish the above result for generalised local cohomology modules. The corollary to the following theorem is needed in the proof of Theorem 5.3.

THEOREM 5.1 [8, Theorem 4.2]. Let M be the set of all finite subsets of max(R). Then

$$\begin{split} \sup_{A \in \mathcal{M}} & \text{f-grad} \left(\bigcap_{\mathfrak{m} \in A} \mathfrak{m}, \, \mathfrak{a} + \text{Ann } M, N \right) \\ &= \inf \{ i \in \mathbb{N}_0 \mid H^i_{\mathfrak{a}}(M, N) \text{ is not Artinian} \} \\ &= \inf \{ i \in \mathbb{N}_0 \mid \text{Supp } H^i_{\mathfrak{a}}(M, N) \not\subseteq \max(R) \} \\ &= \inf \{ i \in \mathbb{N}_0 \mid \text{Supp } H^i_{\mathfrak{a}}(M, N) \not\subseteq A \text{ for all } A \in \mathcal{M} \}. \end{split}$$

COROLLARY 5.2. Let M and N be finite R-modules. Then

 $\inf\{i \in \mathbb{N}_0 \mid H_n^i(M, N) \text{ is not Artinian}\} = \inf\{i \in \mathbb{N}_0 \mid \dim \operatorname{Ext}_R^i(M/\mathfrak{a}M, N) > 0\}.$

PROOF. Let $n \in \mathbb{N}_0$. By Theorem 5.1, $H_0^i(M, N)$ is an Artinian R-module for all $i \le n$ if and only if $n < \text{f-grad} (\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_t, \mathfrak{a} + \text{Ann } M, N)$ for some maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ of R. Also, by the facts mentioned at the beginning of Section 2, this is equivalent to Supp $\operatorname{Ext}_R^i(M/\mathfrak{a}M,N) \subseteq \{\mathfrak{m}_1,\ldots,\mathfrak{m}_t\}$ for some maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ of R and for all $i \leq n$.

THEOREM 5.3. Let M, N be finite R-modules and let n be a positive integer. Then the following statements are equivalent.

- (i) Hⁱ_q(M, N) is Artinian for all i < n.
 (ii) Hⁱ_{qR_p}(M_p, N_p) is Artinian for all i < n and for all p∈ Spec(R).

PROOF. It is clear that dim $\operatorname{Ext}_R^i(M/\mathfrak{a}M,N)=0$ for all i < n if and only if dim $\operatorname{Ext}_{R}^{i}(M/\mathfrak{a}M, N)_{\mathfrak{p}} = 0$ for all i < n and for all prime ideals \mathfrak{p} of R. Therefore the assertion follows from Corollary 5.2.

COROLLARY 5.4. Let M, N be finite R-modules and let n be a positive integer. Then the following statements are equivalent.

- $H^i_{\mathfrak{o}}(M,N)$ has finite length for all i < n.
- $H^i_{\mathfrak{gR}_\mathfrak{p}}(M_\mathfrak{p}, N_\mathfrak{p})$ has finite length for all i < n and for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof. This is immediate by Theorems 5.3 and 2.2.

Acknowledgements

I would like to thank professor Hossein Zakeri for his useful suggestions and many helpful discussions during the preparation of this paper. Also I would like to thank the referee for his helpful comments.

References

- [1] M. H. Bijan-Zadeh, 'A common generalization of local cohomology theories', Glasg. Math. J. **21**(2) (1980), 173–181.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings (Cambridge University Press, Cambridge, 1993).
- [3] M. P. Brodmann, C. Rotthaus and R. Y. Sharp, 'On annihilators and associated primes of local cohomology modules', J. Pure Appl. Algebra 153 (2000), 197–227.
- [4] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications (Cambridge University Press, Cambridge, 1998).
- [5] L. Chu, 'Cofiniteness and finiteness of generalized local cohomology modules', Bull. Aust. Math. Soc. 80(2) (2009), 244-250.
- G. Faltings, 'Über die Annulatoren lokaler Kohomologiegruppen', Arch. Math. 30 (1978), 473-476.
- G. Faltings, 'Der Endlichkeitssatz in der lokalen Kohomologie', Math. Ann. 255 (1981), 45–56.
- [8] A. Fathi, A. Tehranian and H. Zakeri, 'Filter regular sequences and generalized local cohomology modules', arXiv:1207.1296v1.

- [9] J. Herzog, 'Komplexe Auflösungen und Dualität in der lokalen Algebra', Habilitationsschrift, Universität Regensburg, 1970.
- [10] M. Katzman, 'An example of an infinite set of associated primes of a local cohomology module', J. Algebra (1) 252 (2002), 161–166.
- [11] R. Lü and Z. Tang, 'The *f*-depth of an ideal on a module', *Proc. Amer. Math. Soc.* **130**(7) (2002), 1905–1912.
- [12] N. Nagel and P. Schenzel, 'Cohomological annihilators and Castelnovo-Mamford regularity', in: Commutative Algebra: Syzygies, Multiplicities, and Bi-rational Algebra (South Hadley, MA, 1992) (American Mathematical Society, Providence, RI, 1994), pp. 307–328.
- [13] P. H. Quy, 'On the finiteness of associated primes of local cohomology modules', Proc. Amer. Math. Soc. 138(6) (2010), 1965–1968.
- [14] K. N. Raghavan, 'Local-global principle for annihilation of local cohomology', *Contemp. Math.* 159 (1994), 329–331.
- [15] P. Schenzel, N. V. Trung and N. T. Cuong, 'Verallgemeinerte Cohen–Macaulay-Moduln', Math. Nachr. 85 (1978), 57–73.
- [16] A. Singh, 'p-torsion elements in local cohomology modules', Math. Res. Lett. 7(2–3) (2000), 165–176.
- [17] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications (VEB Deutscher Verlag der Wissenschaften, Berlin, 1986).
- [18] N. Suzuki, 'On the generalized local cohomology and its duality', *J. Math. Kyoto Univ.* **18** (1978), 71–85.
- [19] R. Tajarod and H. Zakeri, 'On the local-global principle and the finiteness of associated primes of local cohomology modules', *Math. J. Toyama Univ.* 23 (2000), 29–40.
- [20] Z. Tang, 'Local-global principle for the Artinianness of local cohomology modules', Comm. Algebra 40(1) (2012), 58–63.
- [21] N. V. Trung, 'Absolutely superficial sequences', Math. Proc. Cambridge Philos. Soc. 93 (1983), 35–47.
- [22] W. V. Vasconcelos, Divisor Theory in Module Categories (North-Holland, Amsterdam, 1974).
- [23] S. Yassemi, L. Khatami and T. Sharif, 'Associated primes of generalized local cohomology modules', Comm. Algebra 30(1) (2002), 327–330.

ALI FATHI, Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

e-mail: alif1387@gmail.com