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Abstract

Let S be a Serre subcategory of the category of R-modules, where R is a commutative Noetherian ring.
Let a and b be ideals of R and let M and N be finite R-modules. We prove that if N and H:(M, N) belong
to S for all i <n and if n <f-grad(a, b, N), then Homg(R/b, H (M, N)) € S. We deduce that if either
Hi(M, N) is finite or Supp H:(M, N) is finite for all i < n, then Ass H"(M, N) is finite. Next we give an
affirmative answer, in certain cases, to the following question. If, for each prime ideal p of R, there exists
an integer n, such that b"vale (M, Ny) =0 for every i less than a fixed integer ¢, then does there exist

an integer n such that b"Hi(M, N) = 0 for all i < ¢? A formulation of this question is referred to as the
local-global principle for the annihilation of generalised local cohomology modules. Finally, we prove
that there are local-global principles for the finiteness and Artinianness of generalised local cohomology
modules.
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Keywords and phrases: (generalised) local cohomology module, finiteness, Artinianness, local-global
principle, filter regular sequence.

1. Introduction

Throughout this paper R denotes a commutative Noetherian ring with identity and
a, b, ¢ are ideals of R. We denote by N and N the set of positive and nonnegative
integers, respectively. The notion of generalised local cohomology functors was
introduced by Herzog, in [9], over a local ring and then continued by Suzuki
in [18]. Later this concept was studied by Bijan-Zadeh, in [1], over any commutative
Noetherian ring. For each integer i, the ith generalised local cohomology functor
Hi(-,-) is defined by
Hi(M,N) = lim Exty (M/a"M, N)
n

for all R-modules M and N. Clearly, this notion is a generalisation of the usual local
cohomology functor [4]. On the other hand, the concept of a filter regular sequence
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has been studied in [12, 15, 17, 21] and has led to some interesting results. We denote
the common length of all maximal a-filter regular M-sequences contained in b by
f-grad (a, b, M) and call it the a-filter grade of b on M. We briefly recall, in Section 2,
the concept of a filter regular sequence and basic properties of f-grad (a, b, M), but
refer the reader to [8, 19] for more details. It is clear that an R-filter regular M-
sequence is just a weak M-sequence [2] and f-grad (R, b, M) = grad (b, M). If (R, m) is
alocal ring, then f-grad (m, b, M) is just the well-known notion f-depth (b, M); see [11]
for some characterisations of f-depth (b, M). Filter regular sequences were employed
in [19] to establish some finiteness results on usual local cohomology modules. In this
paper we use those sequences to obtain some finiteness and Artinianness results on
generalised local cohomology modules.

Recall that a class S of R-modules is a Serre subcategory of the category of
R-modules if it is closed under taking submodules, quotients and extensions. In
Theorem 2.2, for finite R-modules M and N, we prove that if N and H(’;(M, N)
belong to S for all i < n and n < f-grad (a, b, N), then Homg(R/b, H}(M, N)) € S. We
deduce that if either H (M, N) is finite or Supp Hi(M, N) is finite for all i < n, then
Ass H}(M, N) is finite. In a certain case, when M = R, this is the main result of [13].
Therefore Theorem 2.2 provides a generalisation of the main result of [13]. Notice
that Ass H (M, N) is not finite in general; see, for example, [10, 16].

Let M, N be finite R-modules. As a generalisation of the b-finiteness dimension
ff(N ) of N with respect to a, we define

f2(M, Ny =inf{i € Ny | b ¢ V(0 :x H.(M, N))}
and denote f;' (M, N) by f,(M, N). In fact, by Proposition 3.1,
fu(M, N) = inf{i € Ny | H.(M, N) is not finite}.

In Section 3 we give some properties of f'(M,N). In particular, we prove that
FUN) < f2(M, N). We present an example to show that the above inequality may
be strict (Example 3.6). Thus the result [5, Proposition 2.10] of Chu is not correct.
Moreover, Example 3.6 shows that the result [5, Lemma 2.9] is no longer true.

The local-global principle for the finiteness of local cohomology modules,
investigated by Faltings in [6, 7], states that, for all nonnegative integers r, f,(N) > r
if and only if fig,(N,) > r for all p € Spec(R). Also we say that Faltings’ local-global

principle for the annihilation of local cohomology modules holds at level r if
N >re ff,iv(Np) >r forall p € Spec(R)

is true for all finite R-modules N and all ideals a, b. Raghavan proved, in [14], that
the local-global principle for the annihilation of local cohomology modules holds at
level 1, while Brodmann et al. proved it is true at level 2 [3, Theorem 2.6]. As a
generalisation of this, we say that Faltings’ local-global principle for the annihilation
of generalised local cohomology modules holds at level r if

MN)>re ﬁgf(Mp, N,)>r forall p € Spec(R) )
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is true for all finite R-modules M, N and all ideals a, b. We show, in Proposition 4.2,
that the local-global principle for the annihilation of generalised local cohomology
modules holds at levels 0, 1, 2. Now let b € a. Then we prove the following statements,
in Theorem 4.4.

() fulM, N)>inf{f*(M, N), f-grad (a, b, N) +1}. In particular, f,(M, N)=f*(M, N)
whenever fY(M, N) < f-grad (a, b, N) + 1.
(i) Assume that r < f-grad (a, b, N) + 1. Then

fAM,N)>r & fi"(M,, Ny) > r forall p € Spec(R).

@iii) If Supp N/bN C V(a), then the statement

AM,N)>re f;}i“(Mp, Np)>r forall p e Spec(R)
holds for all .

(iv) Faltings’ local-global principle for the finiteness of generalised local
cohomology modules holds. In other words, for any positive integer r,
HéRp(Mv’ N,) is finite for all i < r and for all p € Spec R if and only if Hi(M, N)
is finite for all i < .

Finally, in Theorem 5.3, for finite R-modules M and N and for a positive integer n, we
prove that H:(M, N) is Artinian for all i < r if and only if HQRD(M,), N,) is Artinian for
all i < r and for all p € Spec R. We observe that this result improves the main result
of [20].

2. Preliminary results

We first recall some basic properties of filter regular sequences. The reader is
referred to [8] for more details. Assume that M and N are finite R-modules. We
say that a sequence xi, ..., x, of elements of R is an a-filter regular M-sequence if
x; ¢ p for all

peAss(M/(x1, ..., xi-)M)\ V(a)

and for all i =1,...,n. If, in addition, x, ..., x, € b, then we say that x;, ..., x, is
an a-filter regular M-sequence in b. There exists an a-filter regular M-sequence in b
of infinite length if and only if Supp M/bM C V(a). Now assume that Supp M/bM ¢
V(a). Then we denote the common length of all maximal a-filter regular M-sequences
contained in b by f-grad (a, b, M) and we call it the a-filter grade of b on M. We set
f-grad (a, b, M) = co whenever Supp M/bM C V(a). Also, notice that
f-grad (a, b, M) = inf{i € Ny | Supp Ext,(R/b, M) ¢ V(a)}
= inf{i € No | Supp Hy(M) & V(@)),
f-grad (a, Ann N, M) = inf{i € Ny | Supp Extje(N, M) ¢ V(n)},
f-grad (a, b + Ann N, M) = inf{i € Ny | Supp Hé(N, M) Z V(a)}.
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Since f-grad (R, b, M) = grad (b, M), we have the following well-known properties ([1,
Proposition 5.5], [4, Theorem 6.2.7]):

grad (b, M) = inf{i € Ny | Ext,(R/b, M) # 0} = inf{i € Ny | Hi(M) # 0}

and
grad (b + Ann N, M) = inf{i € Ny | H\(N, M) # 0}.

If (R,m) is a local ring, then f-grad (m,b, M) is just the well-known notion
f-depth (b, M); see [11] for some properties of f-depth (b, M). The following lemma is
of assistance in the proof of the next theorem.

Lemma 2.1. Let S be a Serre subcategory of the category of R-modules, M be a finite
R-module and N € S. Then Ext,(M, N) € S for all i € N,.

Proor. Since Ext;'e(M, N) is a subquotient of N* for some « € Ny, the result is clear. O

THEOREM 2.2. Let S be a Serre subcategory of the category of R-modules. Let
neNy and let M and N be finite R-modules such that N and H:(M, N) belong to
S for all i <n. If f-grad (a, b, N) > n, then Homg(R/b, H}(M, N)) € S. In particular,
Homg(R/b, H}(M, N)) € S whenever Supp N/bN C V(a).

Proor. We prove the assertion by induction on n. Since H(?(M, N) = Homg(M, IT';(N)),
the result is clear for n = 0 by Lemma 2.1. Assume that n > 0 and that the result has
been proved for n — 1. Let f-grad (a, b, N) > n and suppose that x € b is an a-filter
regular N-sequence. The exact sequence

0->T(N)—>N->N/T(N)—0

induces the long exact sequence

= HI(M, To(N)) ~— Hi(M, Ny H\(M, N/To(N))— H* (M, To(N)) = - - .
Since, by [23, Lemma 1.1],
HL(M,To(N)) = Exti(M, To(N)) for all i € Ny,

we use Lemma 2.1 and the above long exact sequence to see that H.(M,N)€ S
if and only if H{(M,N/T,(N))€S. Also N/T,(N)eS and f-grad(a,b, N) =
f-grad (a, b, N/T'y(NV)). On the other hand, since im f” € S, the induced exact sequence

0 — Homg(R/b, im f") — Homg(R/b, H'(M, N)) — Homg(R/b, H'(M, N/T4(N)))

yields Homg(R/b, H(M, N)) € S whenever Homg(R/b, H}(M, N/T'«(N))) € S. Thus
we can replace N by N/I';(N) and, without loss of generality, assume that I'y(N) = 0;
and hence x is a nonzero devisor on N. Next, consider the exact sequence

0— N— N— N/xN — 0
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which induces the long exact sequence
.-+ H{(M,N) = H{(M, N) > H\(M, N/xN)—»H*' (M, N) = - - - |

Now we may use the above sequence in conjunction with the hypothesis to deduce
that H:(M, N/xN) € Sfor all i < n — 1. Also it is easy to see that f-grad (a, b, N/xN) =
f-grad (a, b, N) — 1. Therefore, by induction, Homg(R/D, Hf,"l(M, N/xN)) € S. Next,
we use the exact sequence

0 — Hy™' (M, N)/xHy™ (M, N) — Hy™ (M, N/xN) = 0 51,5 x = 0,
to obtain the exact sequence

Homg(R/b, H'~'(M, N/xN)) — Homg(R/b, H"(M, N))
— Extp(R/b, H"'(M, N)/xH""'(M, N))
which in turn, by Lemma 2.1, yields Homg(R/b, H](M, N)) € S. This completes

the inductive step.  Finally, since the hypothesis Supp N/bN C V(a) implies
f-grad (a, b, N) = oo, the last assertion follows immediately from the first one. m]

Let M be an R-module. M is called an FSF module if there is a finite submodule
N of M such that the support of the quotient module M/N is finite. If M is an FSF
module, then Ass M is finite and the category of FSF R-modules is a Serre subcategory
of the category of R-modules [13, Proposition 2.2].

By applying the above theorem to the category of FSF R-modules we have the
following corollary which recovers the main result of [13] which has been proved for
ordinary local cohomology modules.

CoroLLARY 2.3. Let M, N be finite R-modules and let n € Ny be such that either
Hi(M, N) is finite or Supp H.(M, N) is finite for all i < n. Then Ass H*(M, N) is finite.
3. Finiteness properties of generalised local cohomology modules

Let M be a finite R-module. Following [4, Proposition 9.1.2] and [6, Lemma 3], the
finiteness dimension f;(M) of M relative to a is defined as follows:

fu(M) = inf{i € Ny | H.(M) is not finite}
= inf{i € No | a € V(0 :x Hy(M))}.

As a generalisation, the b-finiteness dimension fY(M) of M relative to a is defined by
f2(M) = inf{i € No | b & V(O :x Hy(M))).

We now extend this definition to generalised local cohomology modules.

ProrosiTion 3.1. Let M, N be finite R-modules and ne€Ny. Then the following
statements are equivalent:
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(i) H{(M,N) isﬁnitefor all i <n;
(i) a<+(0:x H(M,N)) foralli<n.

Proor. (i) = (ii) is obvious. For (ii) = (i), we use induction on n. When n = 1, there is
nothing to prove. Now let n > 1 and suppose that the result has been proved for smaller

values of n. By the inductive assumption, HQ(M, N)is finite fori =0, ...,n — 2. Also,
by hypothesis, a’Hg“l(M, N) =0 for some r €N, so that, in view of Theorem 2.2,
01y 0 = H""'(M, N) is finite. This completes the induction. ]

DeriNiTION 3.2. Let M and N be finite R-modules. We define the Db-finiteness
dimension f°(M, N) of M, N relative to a by

f2(M, N) =inf{i e Ny | b & V(0 :x H\(M, N))}.
Notice that, by Proposition 3.1,

fYM, N) =inf{i e N | H.(M, N) is not finite}.
We denote f;' (M, N) by f,(M, N).

For y e R, set S ={y" : n > 0}. In the next lemma, for an R-module M, we denote
S~'M by M,. The following two lemmas are needed in the proof of the next
proposition.

Lemma 3.3. Let M, N be finite R-modules and x € R. Then we have the following long

exact sequence

RN 4

a+Rx

(M, N) — H(M, N) - Hi, (M, N,) — HY

a+Rx

(M,N)—> --- .

Proor. Let E* be an injective resolution of N. Then E? is an injective resolution of
R,-module N,. The split exact sequence

0 — Tore(E®) > To(E®) = T (EY) — 0
of complexes [4, Lemma 8.1.1] induces the exact sequence
0 — Homg(M, To1ro(E*)) = Homg(M, T4(E*®)) — Homg(M, T'o(E?)) — 0

of complexes. On the other hand, we have the following natural isomorphism of
complexes:

HomR(M, FG(E;)) = HOHIR(M, Home(ny FGRX(E;)))
= Homg (M ®g Ry, T'ar,(E}))
= Hy, (M., EY).

Hence the above exact sequence of complexes induces the following long exact
sequence of homology modules:

- > H'(HY,x (M, E*)) > H'(H)(M, E*)) > H'(Hy, (M., E}))
— HY(H o (M,E®)) — -+ - .

This completes the proof. O
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Lemma 3.4 (see [4, Lemma 9.1.1]). Let M — N — L be an exact sequence of R-
modules such that a C+/(0 :xg M) and a /(0 :g L). Then a C+/(0 :g N).

ProrosiTiON 3.5. Let M, N, L, K be finite R-modules.

(1) Let R’ be a second commutative ring and let f : R — R’ be a flat homomorphism
of rings. Then
"M, N)< X (M@r R, N®g R').

a

In particular, if S is a multiplicatively closed subset of R, then
FAM,N) < £35S I M, STIN).

i) S, N) = (M, N) = f3,(M, N) = [} (M, N).
(iii) Let x € R. Then

J2 (M, N) = inf{ £ g (M, N), fyg" (M, N}

(iv) LetaCc. Then
XM, N)< f2(M,N) and f(M,N) < fX(M, N).

(v) LetbCc Then
(M, N) = f2(M, N/T(N)).

In particular,
XM, N) = f2(M, N/Ty(N)).

(vi) Let0— L— M — N — 0 be an exact sequence. Then
2K, L) > inf{f*(K, M), f*(K, N) + 1},
2(K, M) > inf{f)(K, L), f(K, N)},
2K, N) > inf{f)(K, L) - 1, £2(K, M)}

and

AL, K) 2 inf{f2(M, K), f2(N, K) - 1},
f2(M, K) > inf(f)(L, K), f{ (N, K)},
(N, K) > inf{f>(L, K) + 1, f>(M, K)}.

(vii) Let Supp M € Supp N. Then
f2(M, K) 2 fA(N, K).

In particular,
[ (M, K) = f{(N, K)

whenever Supp M = Supp N.
(viii) f2(M, N) > fY(N).
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(ix) Let0— L— M — N — 0 be an exact sequence. Then
f2(M, K) =inf{f>(L, K), f°(N, K)}.

(x) There exists a prime ideal p in Min Supp M such that f*(M, N) = f*(R/p, N),
and hence
(M, N) = inf{f(R/p, N) | » € Supp M).

Proor. (i) If b € /(0 :g H:(M, N)), then b"H!(M, N) = 0 for some r € N. Therefore
b'R'H. o (M®r R',N® R)=0"H(M,N)® R =0.
(ii) Let E* be an injective resolution of N. Then, in view of [18, Proposition 2.1],
Hy(M, N) = H'(Homg(M, [o(E*))) = H'(Homg(M, T yo(E*)) = H' (M, N).

(ii1) This follows from Lemmas 3.3, 3.4 and (i).

(iv) It follows from the definition that f (M, N) < f;'(M, N). Also, since R is
Noetherian, we can use (iii) to obtain f°(M, N) < ff’(M, N).

(v) Since ¢"T«(N) =0 for some n € N, we have "H!(M,T(N)) =0 for all i € N.
Therefore b C ¢ € /(0 :x H.(M, T'(N))) for all i. Now the exact sequence

0—->T.(N)->N->N/T(N)—0
induces the long exact sequence
<> Hy(M,To(N)) = Hy(M, N) = Hy(M, N/T(N)) > H" (M, T(N)) = -+ .
Therefore, by Lemma 3.4, b € /(0 :z Hf,(M, N)) if and only if
b C V(0 :g H{(M, N/T(N))).
(vi) We may consider the long exact sequence
w0 Hy(N, K) = H(M. K) = Hy(L. K) > H (N K) > -+,
which is obtained in [5, Lemma 2.4], and the long exact sequence
-+ = Hy(K, L) » Hy(K, M) > H(K,N) - H' (K, L) - - - -

and apply Lemma 3.4 to establish the assertion.

(vii) We prove, by induction on r € Ny, that, for any finite R-module M, if Supp M C
Supp N and r < f*(N, K), then r < f°(M, K). If r = 0 there is nothing to prove. Now
suppose that 7 > 0 and assume that the assertion holds for smaller values of r. Suppose
that Supp M C Supp N and r < f°(N, K). By Gruson’s theorem [22, Theorem 4.1],
there exists a chain

0O=MycM;C---CM,=M
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of submodules of M such that M;/M;_; is a homomorphic image of a direct sum of
finitely many copies of N for alli =1, ..., n. On the other hand, by (vi),

XM, K) > inf(f2(M, /Mo, K), . .., f2(My,/M,_y, K)}.

Therefore it is enough to prove that r < f°(M, K) in the case where n = 1. Now there
exists an exact sequence
0—>L—>N*—> M0,

for some @ €N. Since Supp L C Supp N, the induction hypothesis implies that
r—1< fXL, K). Therefore, by (vi),

r<inf{f{(L, K) + 1, f{(N, K)} < f3(M, K).
(viii), (ix) and (x) are immediate by (vii). O

Next, we provide an example to show that the inequality in (vii) and (viii) may be
strict.

ExawmprE 3.6. Let (R, m) be a Gorenstein local ring with dimension d >0 and M
be a finite R-module. Then an(R) = E(R/m) if i=d and 0 otherwise. Further,
HffI(R) = E(R/m) is not finite [4, Corollary 7.3.3], so fin(R)=d. Now let E*® be a
minimal injective resolution of R. Then

Homg(M, E(R/m)) ifi=d,

H' (M, R) = H'(Homg(M, rm<E'>>>:{0 Fizd

In particular,

R/m ifi=d,

0 ifi#d,

and f,(R/m,R) =00 > f,(R). Moreover, this example shows that the following
statements of Chu are not true.

H! (R/m,R) = {

(i) [5,Lemma 2.9]. Let N be a finitely generated R-module and M a nonzero cyclic
R-module. Let ¢ be a positive integer and let / be an ideal of R. If H;(N) is
finitely generated for all i <¢, then H}(N) is finitely generated if and only if
Homg(M, H}(N)) is finitely generated.

(ii) [5, Proposition 2.10]. Let the situation be as in (i). Then H;(N) is finitely
generated for all i < ¢ if and only if H;(M, N) is finitely generated for all i < 7.

4. Faltings’ local-global principle for the annihilation of generalised local
cohomology modules

We say that the local-global principle for the annihilation of generalised local
cohomology modules holds at level r if the statement

M, N)>re ﬁ,ﬁf(Mp, N,)>r forall p € Spec(R)
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is true for every choice of ideals a, b and every choice of finite R-modules M, N. Since
(H{(M, N)), = H(’;Rv(Mp, N,) for each p € Spec(R), the above statement is equivalent to
the statement

fAM.N) > r & fu"(My, Ny) > r for all p € Spec(R).

a

We say that the local-global principle for the annihilation of generalised local
cohomology modules holds (over the ring R) if the local-global principle for the
annihilation of generalised local cohomology modules holds at level r for every r € Ny.
The following lemma is needed in the proof of the next proposition.

Lemma 4.1 (see [3, Lemma 2.1] or [19, Lemma 3.1]). Let M be an R-module such
that the set A of all maximal members of Ass M is finite. Suppose that there exists
a positive integer n such that (a"M), =0 for all p € A. Then a"M = 0.

ProposiTiON 4.2. The local-global principle for the annihilation of generalised local
cohomology modules holds at levels 0, 1, 2.

Proor. Let 0<i<1. Assume that M and N are finite R-modules and that
f:fp"(Mp, N,) > i for all p e Spec(R). Since HY(M, N) is finite, by Corollary 2.3,
we see that Ass H:(M,N) is finite.  Therefore there exists n€N such that
(bRp)”HéRD(Mp, Np)=0 for all peAssH(M,N). Hence V'H.(M,N)=0 by
Lemma 4.1; so the local-global principle for the annihilation of generalised local
cohomology modules holds at levels O, 1.

Now let f;ﬁ:(Mp, N,) > 2 for all p € Spec(R). The above argument shows that there

exists € N such that b"Hi(M, N) = 0 for i = 0, 1. Since f*(M, N) = f2(M, N/Ts(N)),
we can assume without loss of generality that I',(N) = 0; and so f-grad(a, b, N) > 1.
Therefore, by Theorem 2.2, H!(M, N) = Homg(R/b", H!(M, N)) is finite. Now, we
can use Corollary 2.3 and Lemma 4.1 to obtain that f*(M, N) > 2. O

The next theorem is concerned with the local-global principle for the annihilation
of generalised local cohomology modules. The following lemma is of assistance in
the proof of that theorem.

Lemma 4.3 [8, Theorem 3.1]. Let M, N be finite R-modules and let xi, ..., x, be an
a-filter regular N-sequence in a. Then the following statements hold.

(i) H{(M,N)= Hf (M, N) forall i <n.

(ii) Ifprojdimg (M) =d < oo and L is projective, then

X sees

,,,,,

foralli>d.

THeEOREM 4.4. Let M and N be finite R-modules and let b C a.

()  fulM,N)>inf{f*(M, N), f-grad (a, b, N) + 1}. In particular, f,(M, N) =
f2(M, N) whenever f“[’(M, N) < f-grad (a, b, N) + 1.
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(1) Assume that r < f-grad (a, b, N) + 1. Then
FAM,N) > r & fig"(My, Ny) > 1 for all p € Spec(R).
(iii) If Supp N/bN C V(a), then, for all r € Ny,

M N)>re f",f;(Mp, Ny)>r forall p € Spec(R).

a,

(iv) Faltings’ local-global principle for the finiteness of generalised local
cohomology modules holds, that is, for any positive integer r, H";Rp(Mp, Ny) is
finite for all i < r and for all p € Spec(R) if and only if H.(M, N) is finite for all
i<r.

Proor. (i) Set g = f-grad (a, b, N). If f°(M,N)< g+ 1, then, for any i < f°(M, N),
we have Hi(M,N)=H{(M,N) by Lemma 4.3(i); and hence b C+/(0: H,(M, N)).
Then by Proposition 3.1, Hi(M, N) is finite for all i< f’(M, N) and hence, by
Proposition 3.5(iv), f*(M, N) = f(M, N).

Therefore we may assume that f°(M, N) > g + 1. Using the same argument as
above, we see that H";(M, N) is finite for all i <g. Therefore, by Theorem 2.2,
Homg(R/b%, HS(M, N)) is finite for all @ € N. On the other hand, by hypothesis
b*HE(M, N) = 0 for some a € N. Thus HS(M, N) is finite and f,(M, N)> g + 1.

(i1) Suppose that r < f-grad (a, b, N) + 1 and ffg;‘(Mp, N,) > rfor all p € Spec(R). If

F2(M, NY<r, then by (i), f(M, N)=f*(M, N). So by Corollary 2.3, Ass H* ¥ (M, N)

is finite. This is a contradiction in view of Lemma 4.1. Hence f*(M, N) > r.

(iii) Suppose that Supp N/bN C V(a). Then f-grad (a, b, N) = co. Thus (iii) is an
immediate consequence of (ii).

(iv) This is immediate by (iii) and Proposition 3.1. O

5. Local-global principle for the Artinianness of generalised local cohomology
modules

Let M be a finite R-module. In [20], Tang proved that, for any integer n, H.(M)
is Artinian for all i <n if and only if H\(M), is Artinian for all i <n and for all
p € Spec(R). In Theorem 5.3, we establish the above result for generalised local

cohomology modules. The corollary to the following theorem is needed in the proof
of Theorem 5.3.

TraeoreMm 5.1 [8, Theorem 4.2]. Let M be the set of all finite subsets of max(R). Then

sup f-grad [ﬂ m, a+ Ann M, N]
AeM meA

= inf{i € N | H.(M, N) is not Artinian}
= inf{i € Ny | Supp H:(M, N) ¢ max(R)}
= inf{i € Ny | Supp H:(M, N) ¢ A for all A € M.
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CorOLLARY 5.2. Let M and N be finite R-modules. Then
inf{i € No | H{(M, N) is not Artinian} = inf{i € Ny | dim Extp(M/aM, N) > 0}.

Proor. Let n € Ny. By Theorem 5.1, H(’;(M, N) is an Artinian R-module for all
i <nif and only if n < f-grad (m; N - - - N'my, a + Ann M, N) for some maximal ideals

my,...,m; of R. Also, by _the facts mentioned at the beginning of Section 2,
this is equivalent to Supp Ext,(M/aM, N) C {my, ..., m,} for some maximal ideals
my, ..., m,of Rand foralli<n. m|

THeOREM 5.3. Let M, N be finite R-modules and let n be a positive integer. Then the
following statements are equivalent.

() H{(M, N) is Artinian for all i < n.

(i) H(’;Rp(Mp, N,) is Artinian for all i < n and for all p € Spec(R).

Proor. I_t is clear that dim Extje(M /aM,N)=0 for all i<n if and only if
dim Ext,(M/aM, N), =0 for all i <n and for all prime ideals p of R. Therefore the
assertion follows from Corollary 5.2. O

CoRroLLARY 5.4. Let M, N be finite R-modules and let n be a positive integer. Then the
following statements are equivalent.

(i)  H!(M, N) has finite length for all i < n.
(i1) Hf;Rp(Mp, N,) has finite length for all i < n and for all p € Spec(R).

Proor. This is immediate by Theorems 5.3 and 2.2. O
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