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GENERALIZED CONVEXITY
IN MATHEMATICAL PROGRAMMING

B. MonD

The role of convexity in the development of mathematical
programming is reviewed. Many recent generalizations of
convexity and their applications to optimization theory are

discussed.

1. Introduction

As is well known, convexity plays a key role in mathematical
programming. However, functions that are, in some sense, close to, but not
quite, convex often have many of the important properties of convex
functions. This, plus the fact that many practical problems involve
functions that are 'almost' convex has led to many generalizations of the
notion of convex functions. Here we survey some of these extensions of

convexity and indicate briefly the role they play in optimization theory.

Most of the results in Sections 2 to 5 can be found in the books by
Avriel [1], Mangasarian [16] and Martos [17] while the results in Section
6 on cone-convexity can be found in the book by Craven [§]. In view of
this, no additional references or original sources will be given for
results in these sections except for the new dual for non-linear programs
in Section 5 that does not appear in any of the above-mentioned books.

More detailed references will be given in the later sections.

Proofs will only be given where they are extremely brief and not

generally available in the literature. It should be noted that most proofs
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186 B. Mond
utilize the differentiable form (2) of the definition of convexity.

2. Convexity

Let f denote a function from a convex set C C R’ into R . f is

said to be a convex function if for all =,y €¢C , 0= A =1,
(1) FOy+(1-0)x) < Af(y) + (1-A)f(=z) .

If f 1is differentiable, an alternate and equivalent definition is

(2) £y) - flz) = (y-z) bvf(x)

where Vf(x) denotes the gradient (column) vector of partial derivatives
of f with respect to « . Whereas (1) says that linear approximation
over-estimates the value of the function, (2) says that a tangent to f at

x lies on or below f .
By the epigraph of f , denoted by E(f) , we mean the points in At

that are on or above f ; that is,
(3) E(f) = {z,a) :xz€C, a €R, flz) < a}
An alternate definition of a convex function is the following:

f 1is a convex function if and only if its epigraph is a convex set.
By the lower level sets of f we mean
(4) L(f, a) = {x : x € ¢, flx) <a} for given o .

If f is a convex function, its lower level sets are convex for every

o € R . This is necessary but not sufficient for f to be convex. 1In
order to obtain necessary and sufficient conditions for the convexity of f
involving lower level sets, we define the generalized lower level sets of

f as follows:

t
(5) GL(f, &, a) = {z : = € ¢, f(x) = £ x+a} .
f is convex if and only if its generalized lower level sets GL(f, &, a)
are convex sets for all & ¢ En and a €R .

Another approach to convex functions, related to the definition (2),
is the fact that convex functions are generated by the family of affine

functions in the sense that a convex function f 1is the pointwise supremum

https://doi.org/10.1017/50004972700025661 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700025661

Generalized convexity 187

of affine functions, or equivalently, that the epigraph of f is supported

at each point by the graph of an affine function.
Some properties of convex functions that we note are the following.

A local minimum of a convex function is always a global minimum.
(This is a necessary but not a sufficient condition.) The class of convex
functions is closed under addition and nonnegative scalar multiplication.
Finally, the set of points for which a convex function attains a minimum is

a convex set.

3. Applications of convexity
Consider the nonlinear programming problem

(6) minimize f(x) subject to g(x) =0

wvhere f is a differentiable function from R into R and g a
differentiable function from Rn into Rm .

Kuhn and Tucker gave the following necessary conditions for feasible
z_  to be an optimal solution. If a constraint qualification is satisfied

6]

at optimal xo , then there exists Y € Rm such that

(n Vytg[xo) + Vf[xo) =0, ytg(xo) =0, ¥y=20.

We now indicate the role convexity plays in
(a) sufficiency of the Kuhn-Tucker conditions (7),

(b) constraint qualifications for the necessary Kuhn-Tucker

conditions,
(¢) dual programs of (6),

(d) the relation between the existence of an optimal solution of

(6) and the existence of a saddlepoint of the Lagrangean.
The relevant results are as follows.

(a) If f and g are convex, then the existence of feasible z

and y € A" such that the Kuhn-Tucker conditions are satisfied

is sufficient for x, to be optimal for (6).
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(v) (Generalized Slater Constraint Qualification.) If g is convex

and, for all non-linear gi , there exists feasible z such that

gi(i) < 0 , then for any optimal zy there exists y € -4 satisfying
(7).

(¢) Wolfe gives the following dual of (6):

(8) maximize f(u) + ytg(u) subject to Vytg(u) +VfA(w) =0, y=zo0
(6) and (8) are related as follows.
(Weak duality.) If f and ¢ are convex, then for any feasible &«
of (6) and (y, u) of (8),
t
flx) = flu) +y glu) .

(Strong duality.) If, also, . 1is optimal for (6), and a constraint

0
qualification is satisfied at x, , then there exists optimal (y, u)
with u = xo and
t
(9) Flzy) = £0) + ¥ g(w)

(Converse duality.) If f and g are convex, (yo, uo) is optimal

for (8) and the matrix
(10) v E/gg(xo) +f(xo)]

is non-singular, then x = U, is optimal for (6) and (9) is satisfied.

Another kind of duality involving conjugate functions is described in

Avriel [1]. Here, too, convexity plays a fundamental role.

(a) The Lagrangean of (6) is defined by

(11) Liz, y) = f(z) + y'glz) for yzo0 .
(x*, y*) , y*= 0 , is said to be a saddlepoint of (11) if
(12) L(z*, y) = L(z*, y*) = L(x, y*) for all =z, y (y =0) .

The saddlepoint problem is related to the programming problem (6) as

follows.
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If (x*, y*) is a saddlepoint of L(z, y) , then x* is an optimal
solution of (6). If x* is optimal for (6), a constraint qualification is
satisfied at z* , f and g are convex, then there exists y* such that

(x*, y*) 1is a saddlepoint of L(z, y) .

It is noteworthy that for the Kuhn-Tucker conditions convexity is only
required for the sufficiency, not the necessary part of the theorem. By
contrast, for the saddlepoint problem, sufficiency holds without any
restrictions whatsoever; while convexity is needed for the necessary part

of the result.

4. Pseudo-convex and quasi-convex functions
A differentiable function f is said to be pseudo-convex if, for all
T, Y in its domain,
. t
(13) (y-x) Vf(x) 2 0 = fly) - flx) 20 .
An example of a pseudo-convex, but not convex, function is f(x) = x3 + X .

A function f is said to be quasi-convex, if for all &, ¥ in its domain

and all X € [0, 1] such that Ax + (1-A)y 1is in its domain,
(14) FOz+(1-2)y) = max[f(y), flx)] .

If f is defined over a convex set, (14) is equivalent to
(15) all lower level sets of f are convex.

If f 1is differentiable it is quasi-convex if and only if

£ly) - flz) = 0= (y-2)Vf(z) <0 .
An example of a function that is quasi-convex, but not convex or pseudo-
convex, is f(z) = x5 . If
(16) flx) # fly) = FAx+r(1-2)y) < max(f(z), fly)] , 0<Ar<1,

the function f is said to be strietly quasi-convex or eaplicitly quasi-
convexr {other names in the literature include semistrictly quasi-convex and
functionally convex). If f is convex, it is pseudo-convex, strictly

quasi-convex and quasi-convex.

Unlike convex functions, the sum of two pseudo-convex or two gquasi-

convex functions need not be pseudo-convex or quasi-convex, respectively.
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An example of two pseudo-convex functions whose sum is not pseudo-convex

3

are £~ 4+ x and -x . If [ is pseudo-convex on a convex set, it is
strictly quasi-convex and quasi-convex. An example of a function (not

defined on a convex set) that is pseudo-convex but not quasi-convex is
fla) = = - %° where =z = {o, 1} .

If f is strictly quasi-convex and lower semi-continuous on a convex
set, it is quasi-convex. An example of a function on a convex set that is

strictly quasi-convex but not quasi-convex is

1 if x=0,
flz) =

0 otherwise.

Some of the importance of pseudo-convex and quasi-convex functions can

be seen from the following result.

THEOREM. If f <s pseudo-convex or strictly quasi-convex, a local

minimum 1§ a global minimum.

5. Application of pseudo-convex and quasi-convex functions

The use of pseudo-convex and quasi-convex, instead of convex,
functions allows the weakening of the convexity requirements listed in

Section 3 as follows.

(a)} The sufficiency of the Kuhn-Tucker conditions (7) holds if f is

pseudo-convex and each 9; such that gi(xo) = 0 1is quasi-convex.

(b) The generalized Slater constraint qualification holds if all
constraints are pseudo-convex and there exists a feasible z such that,

for all non-linear g, , gi(i) <0.

7
(e) (i) Converse duality holds if f 1is pseudo-convex and all 9;

are quasi-convex. Weak and strong duality do not hold under these

conditions as can be seen by the following counterexample:

3

(17) min £~ + £ , subject to -x =< -1 .

The optimal is at x = 1 , whereas the value of the Wolfe dual

(18) max u3 + u + y(-u+l) subject to 3u2 +1-y=0, y=z0,
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is unbounded.

(ii) Weak and strong duality do hold if the Lagrangean, f + ytg , is

pseudo-convex. We give the simple proof for weak duality
t t
(z-) W[y bg(w)+F ()] = 0 = yPg(z) + fla) - yP4(w) - Fu) = 0 .

Therefore f(x) = flu) + ytg(u)

(d) The requirements of the convexity of f and g 1in order for an
optimal =x* of (6) to be part of a saddlepoint solution (12) can be

weakened to the pseudo-convexity of the Lagrangean.

As pointed out, when dealing with the Wolfe dual (8), weak and strong
duality require more stringent convexity requirements than converse
duality. In order to lessen these convexity requirements, Mond and Weir

(791 recently proposed the following dual to (6):

max f(u) subject to Vytg(u) + Vf(u) =0,

(19) :
yglu)z0, y=o0.

THEOREM (Weak duality). If for all feasible =z of (6) and (y, u)

of (19), f is pseudo-convex and ytg 18 quasi-convex, then

flx) = flu) .

Proof. ytg(x) - ytg(u) <=0= (x—u)tVytg(u) < 0 . Therefore
(x—u)tVf(u) 20 = flx) 2 flu) .

THEOREM (191 (Strong duality). If, also, =x., ig optimal for (6)

0]

and a constraint qualification is satisfied at =x then there exists

0,
optimal (y, u) , with u = zy and the optimal values of primal and dual
are equal.

Thus, this new dual of (17) would be

(20) max u3 + u subject to 3u2 +1-y=0, y(-u¥xl) 20, y =0 .

The optimal is attained at u =1, y =14 .
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6. Cone convexity
One extension of the different types of convexity we have encountered
so far is to convex cones.
DEFINITION. S < F" is a convex cone if
(21) x, Yy €S A +oy €S forall A,a=20.
Let S be a convex cone in Cm . A function g : Cn -+ dm is said to be
S-convex if
(22) -g{y+(1-2)x) + Ag(y) + (1-Mglx) €8
for all x, y € RF* ana osArs1.

If g is differentiable, this is equivalent to

(23) gly) - glz) - (y—x)th(x) €S .
The function ¢ is said to be S-pseudo-convex if
(2k) (y-2)Vg(x) € 5= gly) - glz) €8
and S-quasi-convex if

(25) —g(y) + glz) €5 = ~(y-z)°Vg(x) €5 .

Observe that, since the sum of two elements of S 1is also in § , an

S-convex function is also S-pseudo-convex and S-quasi-convex. Note that

if S = RT (if g 1is a scalar function, m =1 ), then S-convexity

reduces to the usual definition of convexity.
Consider the problem

(26) minimize f(x) subject to -g(x) € 8§
where S 1is a convex cone in Em . Its dual is

(27) maximize f(u) + ytg(u) subject to Vytg(u) + VA(u) =0, y €5* ,

where S#* , the polar cone of S , is defined by

(28) s*={z € A" : 3% 20 for all s € 5} .

In extending mathematical programming theory to problems with convex

cones, it becomes necessary to distinguish between convex cones with an
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infinite number of generators and polyhedral cones, that is, convex cones
with a finite number of generators. In general, all results extend readily

to problems with polyhedral cones. Thus, if . is optimal to (26), the

0
corresponding Kuhn-Tucker conditions are

(29) Vytg@zo) + Vf(xo) =0, y €s*, ytgﬁro) =0.

Whereas for polyhedral cones, the necessary conditions (29) always hold
subject to an appropriate constraint qualification being satisfied, this is
not true without further restrictions for cones with an infinite number of
generators. Given that f 1is convex or pseudo-convex and g S-convex or
S-quasi-convex, (29) and feasibility are sufficient for optimality.
Similarly, if f 1is convex and g S-convex, all duality relationships
between (26) and (27) hold if § is polyhedral. If S has an infinite

number of generators, only weak duality holds without further restrictions.

7. Generalized convexity via generalized means

There is another natural generalization of convex functions that is
rediscovered from time to time. Noting that the right hand side of the

inequality
(30) FOy+(1-2)z) = Afly) + (1-Mflz) , 0=Ars1,

is just the weighted arithmetic mean of f(y) and f(x) , the
generalization is obtained by substituting other weighted means for the

right side of (30).

Before formally stating the generalized convexity condition, we review
some classical definitions and results involving generalized means. Let us
assume, for the moment, that both f(y) and f(x) are positive. Then
with 0 £ A=<1, the rth mean of f(y) and f(x) is defined as

follows:
(1) M (), f=)s A) = DA NIRRT 12 rro.

[Henceforth, we shall write Mr(f; A) for Mr(f(y), flx); A) .]
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M (F@),s £l=)5 A) = Lim M (55 0 = ) A 1P
0

M, (F(y), flz); A) = Llim M (f5 A)

o

max[f(y), flz)] ,

M_m(f(y), Fflz); A) lim Mr(f; A = min{f(y), flz)] .

yoraco

THEOREM ([74]. (a) If f(y) = flx) , then Mr(f; A) = fly) = flz) ,
-0 = p < ®,

(b) If fly) > flx) , then fly) > M (f; N) > flx) , forall r, A
such that - <p<w, 0<A<1.

(c) If s >r, then Mé(f; A) = Mr(f; \) and the inequality is
strict if fly) # flz) , 0 <A <1l.

Following the terminology of [2], we now extend the definition of

+
convexity in (1) as follows. A function f is said to be r convex if

v

it satisfies, for all x, ¥y in the domain of f ,

(32) FOy+(1-N)x) =M (F32) , 0sA=s1.

Note that (32) gives the usual definition of convexity for » = 1 and of
quasi-convexity for r = ® . Since Ms(f; A) = Mr(f; A) for s >r , it

+ +

follows that a function that is »r convex will also be s convex for
all & > r . Thus we have a continuous transition from the class of convex
functions (r = 1) to the class of quasi-convex functions (r = «®) via

+
the intermediate class of »r convex functions with 1 < »r < o,
Recall now that we restricted our definition of M}(f; A) to fly)
and f(x) positive. This was done so that M}(f; LX) will be defined for

all r . 1In order to allow zero and negative values of f for all r»r ,
Avriet [2] and Martos [17] independently define r-convex functions as
follows: f is said to be r-convex if for all »r, A , —-® =< pr <o |

0 =X=1, it satisfies
(33) FOy+(1-M)z) < log Mr(ef(y), @y

Thus
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log[}\erf(y)+(l—>\)erf(x>_]l/r if r#0

Af(y) + (1-X)f(x) if r=0
(34)  FOy+(2-2)z) =

max[f(y), flz)] if r=ow

min(f(y), flz)] if p = —w

Note that r-convexity, which is now no longer restricted to positive
values of f , reduces to ordinary convexity when r = 0 . As before
r-convexity implies sg-convexity for all s > r and hence, for

0 <r <o, (33) gives intermediary inequalities between convexity (r = 0)
and quasi-convexity (r = ©) . 1In general, the sum of two r-convex

. + . +
functions or two »r -convex functions need not be r-convex or »r -convex.

Avriel [2] calls functions that satisfy (33) for r < 0 , superconvex
and, for r > 0 , subconvex. Thus superconvexity implies convexity which
implies subconvexity which in turn, implies quasi-convexity.

It is frequently difficult, algebraically, to deal with r-convex
functions. However an r-convex function for finite » can be

characterized in terms of ordinary convexity by the following result.

rf(x)

if and only if f 1is convex for r > O and concave for r <0 .

Let f be defined by e Then f is r convex with » # 0

A technique for solving certain nonlinear programs involving r-convex
constraints is given in Avriel [3]. 1In essence it involves solving a
sequence of programs where the r-convex constraints are approximated by

convex constraints.

A further extension of convexity by the use of generalized means is
possible. Let © be a continuous strictly increasing scalar function that
includes f(y) and f(x) in its domain. Then f is said to be 6O-convezx
if, for al1 x and ¥y in the domain of f and all A, 0sA=<1,

(36) Fy+(1-M)z) = 6718[F(y) 1+(1-1)6[ F(x) 1} .

Here o7t is the inverse function of 6 . If 68(x) = x , then (36)

reduces to (1), the usual definition of convexity. If 6(zx) = x*¥ and

r#0 and 6(x) =logx for r =0, then (36) reduces to r+—convexity

(32). If 6(x) = ™ for #0 and 6(x) =x for r =0 , then
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O-convexity, (36), becomes r-convexity, (33).

So far we have extended the definition of convexity by generalizing
the right side of (1). A further extension is possible by generalizing the
left side of (1) as well. In essence, since f()\x+(l-)\)x) , 0=Ax=1,
consists of the values of f at all points on the straight line between =z
and Y that are in the domazin of f , we can consider other paths from =

to ¥y . Specifically, let px’y()\) , where px,y(O) = x and px,y(l) =y

represent a continuous path from x to y in Rn such that f(Px y()\)] ,
3

0=<XA=1,is defined. Then f is said to be (p-0)-convex if
(37) flp, , (M) = 87 0AOLF(y) +(1-N)elf(=) ]}

for all x and y in the domainof f , 0 <A <1 . A particular
subclass of such functions where the path from x to y involves
generalized mean value functions was explored in a most elegant way in Ben-

Tal [5]. specifically let % be a continuous one-to-one and onto function
defined on a subset of R’ , including the domain of f and with values in
A’ . Then f will be said to be (h=8)-convex if, for all x, y ,

0=A=s1

k]

(38) FE R+ (2-0R(2) 1) = 67HABLA(y) 1+(21-M) B[ F(2) 1} .

Some of the results obtained for (h-0)-convex functions include the

following [5], [1].

THEOREM. (a) If f and g ave (h-8)-convew, then 8 “[B8(f)+6(g)]

is also (h-8)-convex.

(b) If fs h and O are diffeventiable, then f 1is (h-8)-convex
if and only 1f, for all =z, y ,

-1
n n oh. [h(:c))
0(7(y)) - 8(f(=) + 0'(s(m) L ¥ A I () ()
im1 j=1 %% i

This last result reduces to (2) if e(f(x)) = flz) , h(z) =x .
(h-8)-convexity is related to ordinary convexity by the following result:
f is (h-08)-convex, if and only if }' given by

Fy) = o(F(nHy)))
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is convex.

The application of (A-8) convexity to nonlinear programming

including some duality results can be found in [1] and [5].

8. Invex and sublinear functions

In the last section, the notion of convexity was extended by
generalizing the definition (1). Another approach is to extend the
definition of convexity (2) for differentiable functions. Hanson [12]

introduced the class of functions that satisfies

(39) fy) - flz) = kE(=z, ¥)V(x)

for all «, ¥ and for some vector function % . Craven [9] calls such
functions invex (for invariant convex) since f =g o 8 will be invex if
g 1is convex, © is differentiable and ©0' has full rank. Similarly, f

is said to be pseudo-invex if, for some vector function h(x, y) and all

Ty Y »

ni(z, y)Vf(z) 2 0 = fly) - flz) 20

and quasi-invex if
fy) - flx) =s0= wt(z, y)Vf(x) =0 .

It follows that, by taking ht(x, y) =y - x , convex functions are also
invex and that invex functions are both pseudo-invex and quasi-invex.
Also, the sum of two functions that are invex for the same function

Wz, y) 1is also invex.

Hanson [12] proves that if, in (6), f and g are all invex for the
same function % , the Kuhn-Tucker conditions (7) are sufficient. He also
establishes duality between (6) and (8) when f and g are invex (for the
same # ) instead of convex. Indeed duality holds [713] if only the
Lagrangean
(40) Kz, y) = flzx) + yPgx) , y=zo0,

is pseudo-invex. Weir [29] establishes duality between (6) and (19) if f

. . t . L.
1s pseudo—lnvex and Y g 1s quasl-invex.
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Mond and Hanson [18] and Craven [10] extend the concept of invex
functions to convex cones. Thus, g : Rn -+ Bf" is said to be S-invezx,

where S is a convex cone in R’ » if for all z and y in the domain of

g , there exists some vector h(z, y) such that

gly) - glx) - ht(x, y)Vglz) €5 .

S-pseudo-invex and S-quasi-invex functions can be defined in an analogous
manner. This allows duality between (26) and (27) to be extended to

S-invex functions.

Hanson and Mond [73] extend the generalization (39) still further by

considering sublinear functionals. F is said to be sublinear if
(41) (A) F(a+b) < F(a) + F(b) for all a, b ,
(42) (B) F(ox) = aF(x) for all x and every o = 0 .
It follows from (B) that F(0) =0 .
Let f be a differentiable function satisfying

(13) fly) - flz) 2 F, [Vf(2)]

for all x, ¥y and for some arbitrary given sublinear functional F .
Sublinear functionals include linear functionals and, in particular, the
special cases occurring on the right hand sides of (2) and (39). Thus (43)
can be regarded as a generalization of convex and invex functions.
Similarly corresponding to the definition of pseudo-convex (or pseudo-
invex) and quasi-convex (or quasi-invex) functions one has the classes of

functions satisfying

(k) Fy’x[Vf(:z:)] z20= fly) - flx) 2 0
and
(45) fly) - f(x) =0 = Fy’x[ flz)l =0 .

Hanson and Mond [13] establish sufficiency of the Kuhn-Tucker conditions

where there exists a sublinear functional Fx z for all x such that
k]
0

(4k4) is satisfied for f and (45) for each g; such that gi(xo] =0 .

Duality is established between (6) and (8) if the Lagrangean satisfies (Lk)
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for some sublinear functional.

9. Additional generalizations

We mention briefly a number of other generalizations of convexity.
Apparently based on an unpublished idea of C.R. Bector, Chandra [7], Lata
[15] ang Nehse [20] give duality results for functions satisfying

(46) Kz, ) {F@)-F(2)} = (y-2)VF(x)

where K(x, y) 1is an arbitrary positive scalar function. Such functions
are called strongly pseudo-convex. If K(z, y) =1 , then (46) reduces to
convexity (2). It follows, by taking

hlz, y) = [1/K(z, y) J(y-z)

that strongly pseudo-convex functions are invex. Neshe [20] points out
that the assumption in [7] and [15] that the sum of strongly pseudo-convex
functions is strongly pseudo-convex is incorrect and, hence, that the
duality results in [7] and [75] require further assumptions in order to be
valid. The difficulty is that, unlike Hanson [712], Chandra [7] and Lata
[15] do not require the same function K(x, y) for all f and g;

Ben-Tal and Ben-lsrael [6] generalize convexity by replacing the

family of affine functions that support a convex function by a family of

other functions. Let F be a family of functions F : R > R . Then f
is called F-convex if, for every x 1in the domain of f , there exists an

F € F such that
flx) = F{x) and f(2) 2 F(z) for all x # z ,

in which case F 1is a support of f at & . Although in general, for
F-convex functions, a local minimum need not be a global minimum, Ben-Tal
and Ben-lsrael [6] do obtain some duality results for programs with

F-convex functions.

In a recent paper, Doeringer [11] discusses X-convex functions. A
function f on an interval I of the real line is called K-convex, where
K 1is a nonnegative real number, if for any x,y €¢I , x <y , and
0=<AiA=1,

Fz+(1-0)y) = Af(z) + (-2 [F(y)+k] .
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It is clear that for K = 0 , this becomes the usual definition of
convexity (1). Although X-convex functions occur frequently in production
and inventory problems, there has, so far, not been a great deal of

research into such functions.

Finally, we point out that the survey of generalizations of convexity
given here is not meant to be exhaustive. 1Indeed, Ponstein [27] lists
seven different kinds of convexity (including variants of pseudo-convexity
and quasi-convexity) and in [4] no less than nine different kinds of

convexity, pseudo-convexity and quasi-convexity are given.
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