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LOCAL DIGITAL ESTIMATORS OF INTRINSIC
VOLUMES FOR BOOLEAN MODELS AND
IN THE DESIGN-BASED SETTING

ANNE MARIE SVANE,∗ Aarhus University

Abstract

In order to estimate the specific intrinsic volumes of a planar Boolean model from a
binary image, we consider local digital algorithms based on weighted sums of 2 × 2
configuration counts. For Boolean models with balls as grains, explicit formulas for the
bias of such algorithms are derived, resulting in a set of linear equations that the weights
must satisfy in order to minimize the bias in high resolution. These results generalize to
larger classes of random sets, as well as to the design-based situation, where a fixed set is
observed on a stationary isotropic lattice. Finally, the formulas for the bias obtained for
Boolean models are applied to existing algorithms in order to compare their accuracy.
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1. Introduction

Let X ⊆ R2 be a compact subset of the plane. Suppose that we are given a digital image
of X, i.e. the only information about X available to us is the set X ∩ L where L ⊆ R2 is a
square lattice. In the language of signal processing, we are thus using an ideal sampler to
obtain a sample of the characteristic function of X at all the points of L. In image analysis
terms, L can be interpreted as the set of all pixel midpoints and the digitization X ∩ L contains
the same information about X as the commonly used Gauss digitization [9, p. 56]. From this
binary representation of X, we would like to recover certain geometric properties of X. The
quantities we are interested in are the so-called intrinsic volumes Vi . In the plane, these are
simply the volume V2(X), the boundary length 2V1(X), and the Euler characteristic V0(X).
See [13, Chapter 4] for the definition when X is polyconvex.

In this paper, we exclusively consider local digital estimators based on 2 × 2 configuration
counts in a square lattice. Motivated by the additivity of intrinsic volumes, these are defined
as follows. The plane is divided into a disjoint union of square cells with vertices in L. For
each 2 × 2 cell in the lattice, each vertex may belong to either X or R2 \ X, yielding 24 = 16
different possible configurations. Each cell contributes to the estimator for Vi(X) with a certain
weight depending only on the configuration. Thus, the estimator becomes a weighted sum of
the configuration counts. The weights can in principle be chosen freely. Algorithms of this
type are desirable as they are simple and efficiently implementable based on linearly filtering
the image.
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One way of testing the quality of local algorithms is by simulations on a fixed test set
for various high resolutions, see e.g. [9, Section 10.3.4]. In contrast, we shall follow Ohser
et al. [12], where the algorithms are applied to a standard model from stochastic geometry,
namely the Boolean model. But, rather than testing a known algorithm, we let the weights be
arbitrary and derive conditions on the weights such that the bias of the estimator is minimal for
high resolutions.

If the grains are almost surely balls, a Steiner-type result for finite sets shown in [6] yields a
general formula for the estimator from which the asymptotic behaviour can be derived. The main
result is that a local estimator is asymptotically unbiased if and only if the weights satisfy certain
linear equations. Moreover, we obtain formulas for the approximate bias in high resolution.
These results are stated in Theorems 4.1 and 4.2, below.

Local estimators are introduced in Section 2. This is specialized to Boolean models in
Section 3 and the computations are performed in Section 4.

In Section 5, the main theorems are generalized to a larger class of Boolean models where
the grains allow a ball of radius ε > 0 to slide freely. A formula by Kiderlen and Vedel Jensen
[8] also yields an immediate generalization of the first-order results to general standard random
sets; see Section 6.

We then turn to the design-based situation where a deterministic set X is observed on a
randomly translated and rotated lattice. Under certain conditions on X, we obtain a gen-
eralization of the main theorems for Boolean models. This is done for the boundary length in
Section 7, using a result of Kiderlen and Rataj [7], and for the Euler characteristic in Section 8
by a refinement of their approach.

In the literature, various algorithms for computing intrinsic volumes are suggested. The
obtained formulas allow for a computation of the bias in high resolution and hence a comparison
of the commonly used algorithms. This is the content of the last section of the paper, Section 9.

2. Local digital estimators

Let Z2 be the standard lattice in R2. Let C denote the unit square [0, 1] × [0, 1] in R2 and
let C0 be the set of vertices in C. We enumerate the elements of C0 as follows: x0 = (0, 0),
x1 = (1, 0), x2 = (0, 1), and x3 = (1, 1). A configuration is a subset ξ ⊆ C0. We denote
the 16 possible configurations by ξl, l = 0, . . . , 15, where the configuration ξ is assigned the
index

l =
3∑

i=0

2i 1xi∈ξ .

Here, 1xi∈ξ is the indicator function.
More generally, we shall consider an orthogonal lattice aL = aRv(Z

2 + c), where c ∈ C is
a translation vector, Rv is the rotation by the angle v ∈ [0, 2π ], and a > 0 is the lattice distance.
The configuration ξl is then understood to be the corresponding transformation aRv(ξl + c) of
the configuration ξl ⊆ Z2.

The elements of ξl are referred to as the foreground or black pixels and will also sometimes
be denoted by Bl , while the points in the complement Wl = C0 \ ξl = ξ15−l are referred to as
the background or white pixels.

The 16 possible configurations are divided into six equivalence classes under rigid motions.
These are denoted by ηj for j = 1, . . . , 6. These are defined in Table 1. The number dj is the
number of elements in the equivalence class ηj .
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Table 1: Configuration classes.

j ηj dj Description Example

1 {ξ0} 1 four white vertices

[◦ ◦
◦ ◦

]

2 {ξ1, ξ2, ξ4, ξ8} 4 three white and one black vertices

[◦ ◦
• ◦

]

3 {ξ3, ξ5, ξ10, ξ12} 4 two adjacent white and two black vertices

[◦ ◦
• •

]

4 {ξ6, ξ9} 2 two opposite white and two black vertices

[◦ •
• ◦

]

5 {ξ7, ξ11, ξ13, ξ14} 4 one white and three black vertices

[• ◦
• •

]

6 {ξ15} 1 four black vertices

[• •
• •

]

Now let X ⊆ R2 be a compact set. Suppose that we observe X on the lattice aL. Based on
the set X ∩ aL, we want to estimate the intrinsic volumes Vi introduced in Section 1.

In order for the Vi to be well defined and for the digitization X ∩ aL to carry enough
information about X, we require that X is sufficiently ‘nice’. The notion of a gentle set
is introduced in Section 7 when dealing with V1. This includes all topologically regular
polyconvex sets. When we work with V0, X will be assumed to be either a compact topologically
regular polyconvex set or a compact full-dimensional C2 manifold. A set is called topologically
regular if it coincides with the closure of its interior.

Our approach is to consider a local algorithm based on the observations of X on the 2 × 2
cells of aL. By additivity of the intrinsic volumes, Vi(X) is a sum of contributions from each
lattice cell z + aRv(C) for z ∈ aL. We estimate this by a certain weight w(i)(a, z), depending
only on the information we have about the cell, i.e. the configuration

X ∩ (z + aRv(C0)) − (z − c) = (X − (z − c)) ∩ ξ15.

Recall here that ξ15 = aRv(C0 + c) is the set of vertices in the unit cell of aL.
Since Vi is invariant under rigid motions, we should like the estimator to satisfy V̂i(X) =

V̂i(MX), for any rigid motion M preserving aL. Thus, w(i)(a, z) should depend only on the
equivalence class ηj of (X − (z − c)) ∩ ξ15 under rigid motions.

As Vi is homogeneous of degree i, i.e. Vi(aX) = aiVi(X), the estimator should also satisfy

V̂i(aX ∩ aL) = aiV̂i(X ∩ L).

We therefore assume that w(i)(a, z) = aiw
(i)
j , where w

(i)
j ∈ R are constants.

Consequently, we are led to consider estimators of the form

V̂i(X) = ai
6∑

j=1

w
(i)
j Nj ,

where Nj is the number of occurrences of the configuration class ηj , i.e.

Nj =
∑
z∈aL

1(X−(z−c))∩ξ15∈ηj
.
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It is also natural to require the estimators to be compatible with interchanging background
and foreground as follows:

V̂1(X) = V̂1(R
2 \ X), (2.1)

V̂0(X) = −V̂0(R
2 \ X). (2.2)

The reason for the first condition is that interchanging foreground and background does not
change the boundary. The second condition is natural because the Euler characteristic satisfies

V0(X) = −V0(R2 \ X)

for both topologically regular compact polyconvex sets (see [11]) and compact 2-manifolds
with boundary (where A denotes the closure of A ⊆ R2).

3. The 2D Boolean model

Throughout this paper, a Boolean model � will mean a stationary isotropic Boolean model
in the plane with compact convex grains and intensity γ . That is,

� =
⋃
i

(xi + Ki),

where {x1, x2, . . . } is a stationary Poisson process in R2 with intensity γ and K1, K2, . . . is
a sequence of independent and identically distributed random compact convex sets in R2 with
rotation invariant distribution Q satisfying EVi(K) < ∞ for i = 0, 1, 2. See, for example,
[14] for more details.

The specific intrinsic volumes of a Boolean model are defined by

Vi(�) = lim
r→∞

EVi(� ∩ rW)

V2(rW)
, (3.1)

where W is any compact convex set with nonempty interior; see [14, Theorem 9.2.1].
Now assume that we observe � on a lattice aL in a compact convex window W with

nonempty interior. By the isotropy assumption, we may as well assume the lattice to be the
standard lattice aZ2. Thus, we observe the set � ∩ aZ2 ∩ W .

Let Cz = z + aC be a lattice cell with z ∈ aZ2. Write

Vi,z = Vi(Cz ∩ �) − Vi(∂
+Cz ∩ �),

where ∂+Cz = z + a([0, 1] × {1} ∪ {1} × [0, 1]) is the upper-right boundary. Then [14,
Theorem 9.2.1] implies that EVi,z = a2Vi(�). A summation over all lattice cells contained in
W yields

Vi(�) =
∑

z∈aZ2∩(W
aČ)

EVi,z

V2(Cz)N0
=

∑
z∈aZ2∩(W
aČ)

EVi,z

a2N0
, (3.2)

where Č = {−x | x ∈ C}, W 
 aČ = {x ∈ R2 | x + aC ⊆ W }, and N0 is the total number of
points in aZ2 ∩ (W 
 aČ).

As in Section 2, we estimate each contribution EVi,z by a weight of the form aiw
(i)
j depending

on the configuration type ηj . Then (3.2) yields an estimator of the form

V̂i(�) = ai−2
6∑

j=1

w
(i)
j

Nj

N0
, (3.3)
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where w
(i)
j ∈ R are arbitrary weights and the number of configurations Nj are given by

Nj =
∑

z∈aZ2∩(W
aČ)

1(�−z)∩ξ15∈ηj
. (3.4)

Ideally, V̂i would define an unbiased estimator, i.e. EV̂i(�) = Vi(�). Generally, this is not
possible with finite resolution, i.e. when a > 0. Instead, we shall obtain conditions for this to
hold asymptotically when the lattice distance tends to zero:

lim
a→0

EV̂i(�) = Vi(�).

The mean value of V̂i(�) is

EV̂i(�) = ai−2
6∑

j=1

w
(i)
j E

(
Nj

N0

)
= ai−2

6∑
j=1

w
(i)
j P(� ∩ aC0 ∈ ηj ), (3.5)

by (3.4) and stationarity of �.
For each ξl , there are formulas of the form

P(� ∩ aC0 = ξl) =
15∑

k=0

blkP(ξk ⊆ R2 \ �), (3.6)

for suitable integers blk; see also [12]. As � is stationary and isotropic, P(� ∩ aC0 = ξl) and
P(ξk ⊆ R2 \�) depend only on ξl and ξk up to rigid motions. Let ξki

and ξlj be representatives
for ηi and ηj , respectively. Then (3.6) reduces to

P(� ∩ aC0 = ξlj ) =
6∑

i=1

b′
ijP(ξki

⊆ R2 \ �), (3.7)

where the integer b′
ij is the ij th entry of the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 −4
0 0 1 0 −2 4
0 0 0 1 −1 2
0 1 −2 −2 3 −4
1 −1 1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The right-hand side of (3.7) is now well known, since

P(ξk ⊆ R2 \ �) = e−γ EV2(ξk⊕K), (3.8)

where K is a random compact convex set of distribution Q and ⊕ denotes Minkowski addition;
see [14]. Thus, we must compute EV2(ξk ⊕ K).

If Fk = conv(ξk) denotes the convex hull of ξk , an application of the rotational mean value
formula, see [14, Theorem 6.1.1], shows that

EV2(Fk ⊕ K) = EV2(K) + 2

π
V1(Fk)EV1(K) + V2(Fk), (3.9)

since the grain distribution is isotropic. It remains to compute the error

EV2(Fk ⊕ K) − EV2(ξk ⊕ K). (3.10)
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4. Boolean models with random balls as grains

We first restrict ourselves to Boolean models where the grains are almost surely (a.s.) balls
B(r) of random radius r . For technical reasons, we shall assume throughout this section that
there is an ε > 0 such that r ≥ ε a.s.

In [6, Proposition 1], an expression for the error (3.10) was given. Applied to our situation,
this becomes a power series in a/r:

V2(Fk ⊕ B(r)) − V2(ξk ⊕ B(r)) = 2a2
∞∑

n=1

(2n − 3)!!
(2n)!! V

(2n+1)
1 (a−1ξk)

(
a

r

)2n−1

, (4.1)

whenever a/r is sufficiently small. Since a−1ξk is independent of a, the V
(2n+1)
1 (a−1ξk) are

constants. These are called intrinsic power volumes in [6] and are given by

V
(m)
1 (ξk) = 1

m2m−1

∑
F∈F1(Fk)

γ (Fk, F )V1(F )m,

where F1(Fk) is the set of 1-dimensional faces of Fk and γ (Fk, F ) is the outer angle which in
R2 is just (dim(Fk))

−1. See [6] for the definition of the double factorial.
The condition r ≥ ε a.s. ensures that, whenever a is sufficiently small, (4.1) holds a.s.

Combining this with (3.9), we obtain a power series expansion

EV2(ξk ⊕ B(r)) = EV2(B(r)) + a
2

π
V1(a

−1Fk)EV1(B(r)) + a2V2(a
−1Fk)

− a3V
(3)
1 (a−1ξk)E(r−1) + O(a5).

Computing the constants Vi(a
−1Fk) and V

(3)
1 (a−1ξk) directly and inserting in the Taylor

expansion for the exponential function in (3.8), shows that P(ξk ⊆ R2 \ �) is given by a
power series

c1 +
(

c2 + ac3
γ

π
EV1(B(r)) + a2

(
c4γ + c5

(
γ

π
EV1(B(r))

)2)

+ a3
(

c6γ E(r−1) + c7
γ 2

π
EV1(B(r)) + c8

(
γ

π
EV1(B(r))

)3))
e−γ EV2(B(r)) + O(a4),

(4.2)

for a sufficiently small and constants c1, . . . , c8 depending on k. If ξkj
is a representative for

ηj , define A to be the matrix with entries amj and the constant cm occurring in the formula for
P(ξkj

⊆ R2 \ �) for j = 1, . . . , 6. A direct computation shows that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 1 1 1
0 0 −2 −2

√
2 −(2 + √

2) −4
0 0 0 0 − 1

2 −1
0 0 2 4 3 + 2

√
2 8

0 0 1
12

√
2/6 (

√
2 + 1)/12 1

6
0 0 0 0 (2 + √

2)/2 4
0 0 − 4

3 −8
√

2/3 −(10 + 7
√

2)/3 − 32
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Inserting this in (3.7), we obtain expressions for P(� ∩ aC0 = ξlj ) of the form (4.2) with

constants cm given by the j th column of AB. Then, by (3.5), a2−iEV̂i(�) is also of the form
(4.2) with a vector of constants c(i) = (c

(i)
1 , . . . , c

(i)
8 ) given by

(c(i))� = ABD(w(i))�,

where w(i) = (w
(i)
1 , . . . , w

(i)
6 ) is the vector of weights and D is the diagonal matrix with j th

diagonal entry the number dj of elements in ηj . Writing this out, we get

c
(i)
1 = w

(i)
6 ,

c
(i)
2 = w

(i)
1 − w

(i)
6 ,

c
(i)
3 = 4(−w

(i)
1 + (2 − √

2)w
(i)
2 + (−2 + 2

√
2)w

(i)
3 + (2 − √

2)w
(i)
5 − w

(i)
6 ),

c
(i)
4 = −w

(i)
1 + 2w

(i)
2 − 2w

(i)
5 + w

(i)
6 ,

c
(i)
5 = 4(2w

(i)
1 + (−5 + 2

√
2)w

(i)
2 + (4 − 4

√
2)w

(i)
3 + (3 − 2

√
2)w

(i)
4

+ (−7 + 6
√

2)w
(i)
5 + (3 − 2

√
2)w

(i)
6 ), (4.3)

c
(i)
6 = 1

6 (w
(i)
1 + (2

√
2 − 2)w

(i)
2 + (2 − 4

√
2)w

(i)
3 + (2

√
2 − 2)w

(i)
5 + w

(i)
6 ),

c
(i)
7 = 2(2w

(i)
1 + (−6 + √

2)w
(i)
2 + (4 − 2

√
2)w

(i)
3 + (2 − √

2)w
(i)
4

+ (−2 + 3
√

2)w
(i)
5 − √

2w
(i)
6 ),

c
(i)
8 = 4

3 (−8w
(i)
1 + (22 − 7

√
2)w

(i)
2 + (−16 + 14

√
2)w

(i)
3 + (−6 + 3

√
2)w

(i)
4

+ (10 − 13
√

2)w
(i)
5 + (−2 + 3

√
2)w

(i)
6 ).

Note that c
(i)
8 = −16c

(i)
6 − 2c

(i)
7 .

In [14, Theorem 9.1.4], the following formulas for the specific intrinsic volumes, valid for
the type of Boolean models we consider, are shown:

V 2(�) = 1 − e−γ EV2(K), (4.4)

V 1(�) = γ EV1(K)e−γ EV2(K), (4.5)

V 0(�) =
(

γ − 1

π
(γ EV1(K)2)

)
e−γ EV2(K). (4.6)

These are truncated expressions of the form (4.2) with fixed constants cm, so the bias of EV̂i(�)

can be found by comparing coefficients.
First consider V 2(�). From (4.2) we see that

lim
a→0

EV̂2(�) = c
(2)
1 + c

(2)
2 e−γ EV2(B(r)),

so by (4.4) we get an asymptotically unbiased estimator for V 2(�) exactly if c
(2)
1 = 1 and

c
(2)
2 = −1. Using (4.3), we have the following result.

Proposition 4.1. The estimator V̂2(�) is asymptotically unbiased if and only if the weights
satisfy w

(2)
1 = 0 and w

(2)
6 = 1.

It is well known that V̂2(�) is unbiased, even in finite resolution, with the choice w(2) =
(0, 1

4 , 1
2 , 1

2 , 3
4 , 1), which is the estimator that counts the number of lattice points in X; see e.g.

[10, Section 4.1.1].
Next we compare EV̂1(�), with (4.5) and obtain the following result.
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Theorem 4.1. The limit lima→0 EV̂1(�) exists if and only if

w
(1)
1 = w

(1)
6 = 0. (4.7)

In this case,

lim
a→0

EV̂1(�) = 1

π
c
(1)
3 V1(�).

In particular, EV̂1(�) is asymptotically unbiased if and only if the weights satisfy

c
(1)
3 = 4((2 − √

2)w
(1)
2 + (−2 + 2

√
2)w

(1)
3 + (2 − √

2)w
(1)
5 ) = π. (4.8)

The bias is

a

(
c
(1)
4 γ + c

(1)
5

(
γ

π
EV1(B(r))

)2)
e−γ EV2(B(r)) + O(a2),

so the estimator converges as O(a2) exactly if the weights satisfy:

w
(1)
2 − w

(1)
5 = 0, (4.9)

(−5 + 2
√

2)w
(1)
2 + (4 − 4

√
2)w

(1)
3 + (3 − 2

√
2)w

(1)
4 + (−7 + 6

√
2)w

(1)
5 = 0. (4.10)

If these equations are satisfied, the bias is

a2
(

c
(1)
6 γ E(r−1) + c

(1)
7

γ 2

π
EV1(B(r)) + c

(1)
8

(
γ

π
EV1(B(r))

)3)
+ O(a3). (4.11)

The first condition (4.7) is intuitive, since lattice cells of type η1 and η6 will typically not
contain any boundary points. Equation (4.9) is also natural since it is exactly the condition
(2.2), saying that interchanging foreground and background should not change the estimate.
Equation (4.8) is not so obvious. The coefficient in front of w

(1)
j in 1

8c
(1)
3 is the asymptotic

probability that a lattice square containing a piece of the boundary is of type ηj . Equation (4.10)
does not seem to have a simple geometric interpretation. While (4.8) and (4.9) generalize to
the design-based setting, see Section 7 and 8, (4.10) seems to be special for the Boolean model
and the underlying distribution.

Equations (4.7), (4.8), (4.9), and (4.10) do not determine the weights uniquely. There is still
one degree of freedom in the choice. However, this is not enough to remove the a2 term in
(4.11), since the system of linear equations the weights must satisfy becomes overdetermined.
The following proposition gives the best possible choice of weights.

Proposition 4.2. The complete solution to the system of linear equations (4.7), (4.8), (4.9), and
(4.10) is

w(1) = π

16
(0, 1 + √

2,
√

2, 12 + 8
√

2, 1 + √
2, 0) + w(0, 1, −√

2, −4 − 4
√

2, 1, 0),

where w ∈ R is arbitrary.

In general, the best choice of w depends on the intensity γ and the grain distribution Q.
Note that negative weights are allowed, even though this does not have an intuitive geometric
interpretation.

Finally, for the Euler characteristic, comparing EV̂0(�) with (4.6) yields the following result.
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Theorem 4.2. The limit lima→0 EV̂0(�) exists if and only if

w
(0)
1 = w

(0)
6 = 0, (4.12)

(2 − √
2)w

(0)
2 + (−2 + 2

√
2)w

(0)
3 + (2 − √

2)w
(0)
5 = 0. (4.13)

In this case,

lim
a→0

EV̂0(�) =
(

c
(0)
4 γ + c

(0)
5

(
γ

π
EV1(B(r))

)2)
e−γ EV2(B(r)),

so V̂0 is asymptotically unbiased if and only if the following two equations are satisfied:

2w
(0)
2 − 2w

(0)
5 = 1, (4.14)

(−5 + 2
√

2)w
(0)
2 + (4 − 4

√
2)w

(0)
3 + (3 − 2

√
2)w

(0)
4 + (−7 + 6

√
2)w

(0)
5 = −π

4
. (4.15)

If these equations are satisfied, the bias is

a

(
c
(0)
6 γ E(r−1) + c

(0)
7

γ 2

π
EV1(B(r)) + c

(0)
8

(
γ

π
EV1(B(r))

)3)
+ O(a2). (4.16)

The best possible weights are given by the following result.

Proposition 4.3. The general solution to the linear equations (4.12), (4.13), (4.14), and (4.15)
is

w(0) =
(

0,
1

2
, − 1

2
√

2
,

(
3

4
+ 1√

2

)
(2 − π), 0, 0

)
+ w(0, 1, −√

2, −4 − 4
√

2, 1, 0),

with w ∈ R arbitrary.

Also here there is one degree of freedom in the choice of weights, which is not enough to
annihilate the leading term of (4.16).

Again, (4.12), (4.13), and (4.14) are geometric in the sense that they also show up in the
design-based setting, while (4.15) seems to be special for the Boolean model.

Note that V̂0 does not satisfy (2.2), not even asymptotically. For weights satisfying (4.12),
we have

V̂0(�) = w
(0)
2 N2(�) + w

(0)
3 N3(�) + w

(0)
4 N4(�) + w

(0)
5 N5(�),

V̂0(R
2 \ �) = w

(0)
2 N5(�) + w

(0)
3 N3(�) + w

(0)
4 N4(�) + w

(0)
5 N2(�).

Under condition (2.2), we would thus have

2V 0(�) = lim
a→0

(EV̂0(�) − EV̂0(R
2 \ �))

= lim
a→0

a−2(w
(0)
2 − w

(0)
5 )E(N2 − N5)

= (w
(0)
2 − w

(0)
5 )

(
4γ + 4(2 − 4

√
2)

(
γ

π
EV1(B(r))

)2)
e−γ EV2(B(r)),

which no choice of weights can satisfy by (4.6).
Equations (4.10) and (4.15) become more important compared to (4.9) and (4.14) when r

and γ are large. These are the only equations involving the configuration η4, which can occur
only where two different balls are close.
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5. General Boolean models

The case where the grains are random balls generalizes to Boolean models and where the
isotropic grain distribution satisfies the following extra condition: there is an ε > 0 such that,
for almost all grains K , B(ε) slides freely inside K , i.e.

for all x ∈ ∂K : x − εn(x) + B(ε) ⊆ K. (5.1)

Here n(x) denotes the (necessarily unique) outward pointing unit normal vector at x. Condi-
tion (5.1) is a generalization of the assumption r ≥ ε a.s. in Section 4.

First we need a version of (4.1) for grains satisfying (5.1). In the following, [x, y] denotes
the closed line segment between x, y ∈ R2.

Lemma 5.1. Let S be a finite set with diameter diam S ≤ 2ε. Let K be a convex set
satisfying (5.1). Then

V2(conv S ⊕ K) − V2(S ⊕ K) ≤ V2(conv S ⊕ B(ε)) − V2(S ⊕ B(ε)).

Proof. After a translation, we may assume that B(ε) ⊆ K . Hence,

conv S ⊆ S ⊕ B(ε) ⊆ S ⊕ K.

Let Fi, i ∈ I , be the faces of conv S with outward pointing normal vectors ui . Then we obtain

(conv S⊕K)\(S⊕K) = (conv S⊕K)∩(conv S)c\(S⊕K) =
⋃
i∈I

(Fi ⊕K+
ui

)\(S⊕K), (5.2)

where K+
u = {z ∈ K | 〈z, u〉 ≥ 0}. To show the inclusion ⊆ in the second equality, suppose

that s ∈ conv S and c ∈ K with s + c /∈ conv S. Then there is a maximal λ ∈ [0, 1) such
that s + λc = f, where f ∈ ∂ conv S. But if f ∈ Fi \ S, then 〈c, ui〉 ≥ 0 and, hence,
s + c = f + (1 − λ)c belongs to Fi ⊕ K+

ui
. If f ∈ S, then s + c ∈ S ⊕ C.

Let Fi be given and write u = ui . After a translation we may assume that Fi = [0, x] with
x ∈ B(2ε). Let

y ∈ ([0, x] ⊕ K+
u ) \ (S ⊕ K).

Let ly = y + span{x} be the line parallel to [0, x] containing y. Since K+
u is convex and

y − λx ∈ K+
u for some λ ∈ (0, 1), ly ∩ K+

u is a nonempty line segment [c1, c2]. Then we have

y ∈ ly ∩ ([0, x] ⊕ K+
u ) = [c1, x + c2],

y /∈ ly ∩ ({0, x} ⊕ K+
u ) = [c1, c2] ∪ [c1 + x, c2 + x]. (5.3)

Choose z ∈ K+
u such that n(z) = u and let w = z − εu ∈ K+

u be the center of the touching
ball guaranteed by (5.1).

By convexity, [0, w] ⊕ B(ε) ⊆ C, so ly ∩ [0, w] �= ∅ would imply that

|c1 − c2| ≥ 2ε ≥ |x|,
contradicting (5.3). Thus, 〈w, u〉 ≤ 〈y, u〉 ≤ 〈z, u〉; hence,

∅ �= ly ∩ [w, z] ⊆ ly ∩ (w + B(ε)+u ) ⊆ [c1, c2],
showing that

y ∈ ([0, x] ⊕ (w + B(ε)+u )) \ (S ⊕ K) ⊆ ([0, x] ⊕ (w + B(ε)+u )) \ (S ⊕ (w + B(ε))).
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Now we may compute

V2((conv S ⊕ K) \ (S ⊕ K)) ≤
∑
i∈I

V2((Fi ⊕ K+
ui

) \ (S ⊕ K))

≤
∑
i∈I

V2((Fi ⊕ B(ε)+ui
) \ (S ⊕ B(ε)))

= V2((conv S ⊕ B(ε)) \ (S ⊕ B(ε))),

where the last equality uses the fact that, when K = B(ε), the union in (5.2) is disjoint, since

(Fi ⊕ B(ε)+ui
) \ (S ⊕ B(ε)) ⊆ Fi ⊕ [0, εui].

Now let ξl be a configuration and write Fl = conv(ξl). Then Lemma 5.1 implies the
following result.

Corollary 5.1. Let � be a Boolean model such that, for some ε > 0, the grains satisfy (5.1)
a.s. For

√
2a < ε and l = 0, . . . , 15,

EV2(Fl ⊕ K) − EV2(ξl ⊕ K) ≤ a3ε−1V
(3)
1 (a−1ξl) + O(a5).

This allows us to compute P(ξl ⊆ R2 \�) using (3.8) and (3.9), but only up to second order,
i.e.

P(ξl ⊆ R2 \ �) = exp

(
−γ (EV2(K) + a

2

π
V1(Fl)EV1(K) + a2V2(Fl) + O(a3))

)
(5.4)

= c1 + e−γ EV2(K)

(
c2 + ac3

γ

π
EV1(K) + a2

(
c4γ + c5

(
γ

π
EV1(K)

)2))

+ O(a3),

with the same constants cm as in Section 4, since these depend only on Vi(a
−1Fl).

Furthermore, the specific intrinsic volumes were given by (4.4)–(4.6), so, by exactly the
same arguments as in Section 4, we obtain the following result.

Theorem 5.1. Theorems 4.1 and 4.2, except for (4.11) and (4.16), also hold for an isotropic
Boolean model with grains satisfying (5.1) a.s.

Remark 5.1. The term O(a3) in (5.4) is of the form

a3
(

c7
γ 2

π
EV1(K) + c8

(
γ

π
EV1(K)

)3)
+ γφ(a) + O(a4),

where c7 and c8 are as in (4.2) and 0 ≤ φ(a) ≤ c6ε
−1a3 with c6 as in (4.2).

6. Generalization to standard random sets

As an easy consequence of the well-known results obtained in [8], the first-order results for
Boolean models generalize further to isotropic standard random sets. A standard random set Z

is a stationary random closed set, such that the realizations are almost all locally polyconvex
and Z satisfies the integrability condition

E2N(Z∩B(1)) < ∞,

where N(Z ∩ B(1)) is the minimal number n such that Z ∩ B(1) is a union of n convex sets;
see also [14, Definition 9.2.1].
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The specific intrinsic volumes of a standard random set are defined as in (3.1) and we estimate
V 1 by

V̂1(Z) = a−1
6∑

j=1

w
(1)
j

Nj

N0
,

as in (3.3), where Nj are as in (3.4). Since lower-dimensional parts of Z are usually invisible
in the digitization, we assume that Z is a.s. topologically regular.

Theorem 6.1. LetZ be an isotropic standard random set in the plane, which is a.s. topologically
regular. Then lima→0 EV̂1(Z) exists if and only if w

(1)
1 = w

(1)
6 . In this case,

lim
a→0

EV̂1(Z) = 1

π
c
(1)
3 V1(Z),

with c
(1)
3 as in (4.3). In particular, V̂1(Z) is asymptotically unbiased exactly if (4.8) holds.

Proof. As in the case of the Boolean model,

EV̂1(Z) = a−1
6∑

j=1

w
(1)
j P(Z ∩ aC0 ∈ ηj ).

First, let ξl, l �= 0, 15, be a configuration with Bl, Wl �= ∅. Define the support function of a
set A by h(A, n) = sup{〈x, n〉 | x ∈ A}, for n ∈ S1 and where 〈·, ·〉 is the standard Euclidean
inner product. The following formula is shown in [8, Theorem 4]:

lim
a→0

a−1P(Bl ⊆ Z, Wl ⊆ Zc) =
∫

S1
(−h(Bl ⊕ W̌l), n)+L̄(dn).

Here x+ = max{x, 0} and L̄ is the mean normal measure on S1, i.e.

L̄(A) = lim
r→∞

ES1(Z ∩ B(r); A)

V2(B(r))
, A ∈ B(S1),

where S1(K; ·) is the first area measure defined for K polyconvex (see [13, Chapter 4]). In
particular, the total measure L̄(S1) is 2V 1(Z).

By the isotropy of Z, L̄ is rotation invariant, so Tonelli’s theorem yields

lim
a→0

a−1P(Bl ⊆ Z, Wl ⊆ Zc) =
∫

S1
(−h(Bl ⊕ W̌l, n))+L̄(dn)

= 1

2π

∫ 2π

0

∫
S1

(−h(Bl ⊕ W̌l, R−vn))+L̄(dn) dv

= 1

2π

∫
S1

∫ 2π

0
(−h(Bl ⊕ W̌l, uv))

+ dv dL̄,

where uv = (cos v, sin v). The inner integral depends only on the equivalence class ηj

containing ξl . Thus, we need to compute it for only one representative ξlj of each ηj , i.e.

(−h(B1 ⊕ W̌1, uv))
+ = (−h(B7 ⊕ W̌7, uv))

+ = max{| cos v|, | sin v|} 1v∈[0,π/2],
(−h(B3 ⊕ W̌3, uv))

+ = (max{| cos v|, | sin v|} − min{| cos v|, | sin v|}) 1v∈[π/4,3π/4],
(−h(B6 ⊕ W̌6, uv))

+ = 0.
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A direct computation now shows that

lim
a→0

a

5∑
j=2

w
(1)
j ENj =

5∑
j=2

w
(1)
j dj

1

2π

∫
S1

∫ 2π

0
(−h(Blj ⊕ W̌lj , uv))

+ dv dL̄ = 1

π
c
(1)
3 V 1(Z).

Finally, it is well known that

lim
a→0

P(Z ∩ aC0 ∈ η6) = V 2(Z), lim
a→0

P(Z ∩ aC0 ∈ η1) = 1 −V 2(Z),

so we must choose w
(1)
1 = w

(1)
6 = 0 in order for lima→0 EV̂1(Z) to exist for all Z.

7. Boundary length in the design-based setting

Instead of considering random sets observed on a fixed lattice, we now turn to the design-
based setting where we sample a deterministic compact set X ⊆ R2 with a stationary isotropic
random lattice, by which we mean that L is the random set L(c, v) = Rv(Z

2 + c), where
v ∈ [0, 2π ] and c ∈ C are mutually independent uniform random variables.

We first consider estimators for the boundary length 2V1, as this is a fairly easy consequence
of [7, Theorem 5]. Based on the random set X ∩ aL, we consider an estimator of the form

V̂1(X) = a

6∑
j=1

w
(1)
j Nj (X ∩ aL),

as described in Section 2 and study the asymptotic behaviour of EV̂1(X).
We first need some conditions on X. A compact set X ⊆ R2 is called gentle, see [7], if the

following two conditions hold.

(i) H1(N (∂X)) < ∞.

(ii) For H1-almost all x ∈ ∂X, there exist two balls Bi and Bo with nonempty interior, both
containing x, and such that Bi ⊆ X and int(Bo) ⊆ R2 \ X.

Here and in the following Hd denotes the d-dimensional Hausdorff measure and N (∂X) is the
reduced normal bundle

N (∂X) = {(x, n) ∈ ∂X × S1 | there exists t > 0 : for all y ∈ ∂X : |tn| < |tn + x − y|}.
Theorem 7.1. Let X ⊆ R2 be a compact gentle set and L a stationary isotropic random lattice.
Then lima→0 EV̂1(X) exists if and only if w

(1)
6 = w

(1)
1 = 0. In this case,

lim
a→0

EV̂1(X) = 1

π
c
(1)
3 V1(X),

with c
(1)
3 as in (4.3). In particular, V̂1(X) is asymptotically unbiased if and only if w(1)

satisfies (4.8).

In Section 8 we shall see that under stronger conditions on X, the convergence is actually
O(a) and the weights can be chosen so that it is even O(a2).

Theorem 5 of [7] is shown only for a uniformly translated lattice, whereas we assume isotropy
as well. Thus, we need the following lemma.
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Lemma 7.1. For any compact gentle set X there is an ε > 0 such that, for any square lattice
L with unit grid distance,

Nj(X ∩ aL) ≤ a−1(1 + 4
√

2V1(X))

for all a < ε and j = 2, . . . , 5.

Proof. If (z + aRvC0) ∩ ∂X is a configuration of type j �= 1, 6, for some z ∈ aL, then
(z + aRvC) ∩ ∂X �= ∅; hence, z + aRvC ⊆ ∂X ⊕ B(

√
2a). Thus,

Nj(X ∩ aL) ≤ a−2V2(∂X ⊕ B(
√

2a)).

Now, [7, Theorem 1] with P = B(
√

2a) and Q = B(ar) shows that

lim
a→0

a−1V2(X ⊕ B(
√

2a) \ X 
 B(ar)) = (
√

2 + r)2V1(∂X).

Letting r = √
2 ± ε for ε → 0 yields

lim
a→0

a−1V2(∂X ⊕ B(
√

2a)) = 4
√

2V1(X).

In particular, a−1V2(∂X ⊕ B(
√

2a)) − 4
√

2V1(X) ≤ 1, for all a sufficiently small.

Proof of Theorem 7.1. Since X is compact, N1 is infinite, so w
(1)
1 must equal zero in order

for the estimator to be well defined. Moreover, lima→0 a2N6 = V2(X). Thus, aN6 diverges
when a → 0, while all other aNj remain bounded by Lemma 7.1. Hence, w(1)

6 = 0 is necessary
for lima→0 EV̂1(X) to exist.

By Lemma 7.1, aNl(X ∩ aL(v, c)) is uniformly bounded, so, using the Lebesgue theorem
of dominated convergence, we obtain

lim
a→0

aENl(X ∩ aL(v, c)) = lim
a→0

a
1

2π

∫ 2π

0

∫
C

Nl(X ∩ aL(v, c)) dc dv

= 1

2π

∫ 2π

0
lim
a→0

a

∫
C

Nl(X ∩ aL(v, c)) dc dv

= 1

2π

∫
S1

∫ 2π

0
(−h(Rv(Bl) ⊕ Rv(W̌l), n))+ dvS1(X; dn)

= 1

2π

∫
S1

∫ 2π

0
(−h(Bl ⊕ W̌l, R−vn))+ dvS1(X; dn),

where the third equality is [7, Theorem 5]. The remaining computations are as in the proof of
Theorem 6.1, since S1(X; S1) = 2V1(X).

Note how the isotropy of the lattice was crucial in the proof. This corresponds to the isotropy
requirement for the Boolean model.

8. Euler characteristic in the design-based setting

We remain in the design-based setting of Section 7 and consider the estimation of the Euler
characteristic and the higher-order behaviour of boundary length estimators. For this, we need
some stronger boundary conditions on X. For instance, Jürgen Kampf has shown in a yet
unpublished paper (see [5]) that without the isotropy of the lattice, there are no local estimators
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for V0 that are asymptotically unbiased for all polyconvex sets. On the other hand, it is well
known that there exists a local algorithm for V0, which is asymptotically unbiased on the class
of so-called r-regular sets; see, for example, the discussion in [15]. We shall assume throughout
this section that X is a compact full-dimensional C2 manifold, which is slightly stronger than
r-regularity.

The estimator for the Euler characteristic was defined in Section 2 as

V̂0(X) =
6∑

j=1

w
(0)
j Nj (X ∩ aL).

Note that V̂1(X) = aV̂0(X) if w
(1)
j = w

(0)
j . To treat both estimators, we sometimes just write

w
(i)
j for the weights. As noted in Section 7, we must choose w

(i)
1 = 0 in order for V̂i to be

well defined and w
(i)
6 = 0 to make a1−iEV̂i(X) asymptotically convergent. Hence, we assume

w
(i)
1 = w

(i)
6 = 0 throughout this section.

We now present our main result.

Theorem 8.1. Assume that X ⊆ R2 is a compact 2-dimensional C2 submanifold with
boundary. Then

lim
a→0

(
EV̂0(X) − a−1 lim

a→0
aEV̂0(X)

)
= c

(0)
4 V0(X),

with c
(0)
4 as in (4.3). Thus, lima→0 EV̂0(X) exists if and only if the weights satisfy (4.13) and

V̂0(X) is asymptotically unbiased if and only if (4.14) holds. In this case, EV̂0(X) satisfies (2.2)
asymptotically.

Moreover, EV̂1(X) converges as O(a), and if (4.9) is satisfied, even as o(a). In this case,
V̂1(X) satisfies (2.1).

Theorem 8.1 generalizes (4.9) and (4.14) to the design-based setting. However, (4.10) and
(4.15) do not appear. These involve the configuration η4, which cannot occur when the boundary
is C2 and a is sufficiently small.

For the proof, we must compute

5∑
j=2

w
(i)
j ENj =

5∑
j=2

w
(i)
j

1

2π

∫ 2π

0

∫
C

Nj (X ∩ aL(c, v)) dc dv.

We follow the same approach as in [7]. The idea is that

Nj(X ∩ aL(c, v)) =
∑

l : ξl∈ηj

∑
z∈aL(c,v)

1{z+aRv(Bl)⊆X} 1{z+aRv(Wl)⊆R2\X} .

Integrating over all c ∈ C, we obtain∫
C

Nj (X ∩ aL(c, v)) dc = a−2
∑

l : ξl∈ηj

∫
R2

fl(z, v)H2(dz), (8.1)

where fl denotes the indicator function

fl(z, v) = 1{z+aRv(Bl)⊆X} 1{z+aRv(Wl)⊆R2\X} . (8.2)

By the assumptions on X, there is a unique outward pointing normal vector n(x) at x. Since
∂X is an embedded C2 submanifold, the tubular neighbourhood theorem ensures that there is
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an ε > 0 such that all points in ∂X ⊕ B(ε) have a unique closest point in ∂X. For
√

2a < ε,
the support of fl is contained in ∂X ⊕ B(ε).

As in the proof of [7, Theorem 1], we apply [4, Theorem 2.1] to compute (8.1). In the case
of C2 manifolds, this reduces to the Weyl tube formula,∫

R2
fl(z, v)H2(dz)

=
∫

∂X

∫ ε

−ε

tfl(x + tn, v)k(x) dtH1(dx) +
∫

∂X

∫ ε

−ε

fl(x + tn, v) dtH1(dx), (8.3)

where k(x) is the signed curvature at x.
The main part of the proof of Theorem 8.1 is contained in Lemmas 8.3 and 8.4, below,

handling each of the two integrals in (8.3). Before proving these, we show two technical
lemmas. The first is a standard differential geometric description of ∂X.

In the following, τ(x) denotes the unit tangent vector at x, chosen so that {τ(x), n(x)} are
positively oriented.

Lemma 8.1. Let X ⊆ R2 be a C2 submanifold with boundary. For some δ < 0, there is
a well-defined C1 function l : [−2δ, 2δ] × ∂X → R, such that l(r, x) is the signed length
of the line segment parallel to n(x) from x + rτ (x) to ∂X. The sign is chosen such that
x + rτ (x) + l(r, x)n(x) ∈ ∂X.

The function r−2l(br, x) is bounded for (b, r, x) ∈ [−2, 2] × [−δ, δ] \ {0} × ∂X and

lim
r→0

r−2l(br, x) = − 1
2b2k(x).

Proof. By the assumptions on X, there are finitely many isometric C2 parametrizations
of the form α : (a − 2μ, b + 2μ) → ∂X such that the sets α([a, b]) cover ∂X. For any t ∈
(a−2μ, b+2μ), we write n(t) = n(α(t)) for short. There are unique functions l, r : (−μ, μ)×
(a − μ, b + μ) → R such that, for any (s, t) ∈ (−μ, μ) × (a − μ, b + μ),

α(s + t) − α(t) = r(s, t)α′(t) + l(s, t)n(t),

where

r(s, t) = 〈α(s + t) − α(t), α′(t)〉, l(s, t) = 〈α(s + t) − α(t), n(t)〉.
In particular, note that both functions are C1 and, as functions of s, they are even C2. In an
open neighbourhood of [a, b] × 0, (∂/∂s)r(s, t) > 0. By the inverse function theorem applied
to (r(s, t), t), there is a δ such that the inverse s(r, t) is defined and is C1 on (−3δ, 3δ)×[a, b].
In fact, r �→ s(r, t) is C2 as it is the inverse of s �→ r(s, t). Then l(s(r, t), t) is the distance
from α(t) + rα′(t) to α(s(r, t) + t). If 3δ < ε, this is the boundary point on the line parallel
to n(t) closest to α(t) + rα′(t).

By the mean value theorem,

l(s(br, t), t)

r
= b

∂

∂s
l(s, t)

∣∣∣∣
s=s(br0,t)

∂

∂r
s(r, t)

∣∣∣∣
r=br0

,

l(s(br, t), t)

r2 = b2 r0

r

∂2

∂s2 l(s, t)

∣∣∣∣
s=s(br1,t)

∂

∂r
s(r, t)

∣∣∣∣
r=br0

∂

∂r
s(r, t)

∣∣∣∣
r=br1

,

(8.4)

for some 0 ≤ |r1| ≤ |r0| ≤ |r|. The continuity of (∂/∂s)l, (∂2/∂s2)l, and (∂/∂r)s on
[−2δ, 2δ] × [a, b] implies that (8.4) is bounded on [−2, 2] × [−δ, δ] \ {0} × [a, b].
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Finally, since l(s(0, t), t) = 0 and (∂/∂s)l(s, t)|s=0 = 0, we obtain

lim
r→0

l(s(br, t), t)

r
= ∂

∂r
l(s(br, x))

∣∣∣∣
r=0

= 0,

lim
r→0

l(s(br, t), t)

r2 = 1

2

∂2

∂r2 l(s(br, x))

∣∣∣∣
r=0

= 1

2
b2〈α′′(t), n(t)〉 = −1

2
b2k(α(t)),

proving the last claim.

Before proving the next lemmas, we introduce some notation. Let v ∈ [0, 2π ] and x ∈ ∂X.
Let v0, . . . , v3 be the elements of Rv(C0) ordered such that si ≥ si+1, where si = 〈vi, n(x)〉.
Let bi = 〈vi, τ (x)〉. Note that the ordering of the vi depends only on R−vn ∈ S1, and that S1 is
divided into eight arcs of length π/4 on each of which the ordering of the Rv(C0) is constant as
a function of R−vn ∈ S1. The si and bi can be computed explicitly as a function of R−vn ∈ S1.
Though used in the explicit calculations below, these values have been omitted.

Define
ti = −asi + l(bia, x).

The ti are constructed such that, for t ∈ [−ε, ε],
x + tn(x) + avi ∈ X if and only if t ≤ ti . (8.5)

Let t ′i be a reordering of the ti such that t ′i ≤ t ′i+1 and let v′
i be the corresponding ordering

of the vi . This ordering depends on both x, v, and a. Since ti may not equal t ′i , we need the
following lemma, ensuring that this does not happen too often.

Lemma 8.2. There is a constant M such that, for all x ∈ ∂X and a sufficiently small,

a−1H1(v ∈ [0, 2π ] | there exists i : vi �= v′
i ) ≤ M.

Furthermore, there is a constant M ′ such that

|ti − t ′i | ≤ 4 sup{|l(ba, x)| | (b, x) ∈ [−√
2,

√
2] × ∂X} ≤ M ′a2.

Proof. Let v ∈ [0, 2π ] and x ∈ ∂X is given. If vi �= v′
i then, in particular, there is a j1 < j2

with tj1 > tj2 . But then

0 ≤ tj1 − tj2 = a(sj2 − sj1) + l(bj1a, x) − l(bj2a, x); (8.6)

hence,
0 ≤ a(sj1 − sj2) ≤ l(bj1a, x) − l(bj2a, x) ≤ Ca2,

for some uniform constant C, according to Lemma 8.1.
But then

0 ≤ cos(θ(x, v)) ≤ 〈(vj1 − vj2), n(x)〉 ≤ Ca,

where θ(x, v) is the angle from n(x) to vj1 − vj2 . Thus, θ(x, v) = θ(x, 0) + v must lie in
cos−1([0, Ca]). But

H1(v ∈ [0, 2π ] | θ(x, v) ∈ cos−1([0, Ca])) = H1(cos−1([0, Ca]) ∩ [0, 2π ]) ≤ C′a,

and there are only six possible combinations of j1 and j2, so

a−1H1(v ∈ [0, 2π ] | there exists i : vi �= v′
i ) ≤ a−16H1(cos−1([0, Ca]) ∩ [0, 2π ]) ≤ 6C′.
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Suppose that ti < t ′i = tj . If j < i, the last claim of the lemma follows from Lemma 8.1
and (8.6) as a(sj2 − sj1) is negative. If i < j , there must be a k < i with tj < tk . Then

|ti − t ′i | ≤ |ti − tk| + |tk − tj | ≤ 4 sup{|l(ba, x)| | (b, x) ∈ [−√
2,

√
2] × ∂X},

by a double application of (8.6). The case ti > t ′i can be treated in a similar way.

We are now ready to state and prove our two main lemmas.

Lemma 8.3. With fl as in (8.2),

lim
a→0

a−2
∑

l : ξl∈ηj

1

2π

∫ 2π

0

∫
∂X

∫ ε

−ε

tfl(x + tn, v)k(x) dtH1(dx) dv =

⎧⎪⎨
⎪⎩

V0(X), j = 2,

0, j = 3, 4,

−V0(X), j = 5.

Proof. For x ∈ ∂X fixed, let

Ij (x, v) =
∑

l : ξl∈ηj

∫ ε

−ε

tfl(x + tn, v) dt.

For
√

2a < ε, configurations of type η4 can never occur, so (x + tn + aRv(C0)) ∩ X corre-
sponds to a configuration of type η1 for t < t ′3, η2 for t ∈ (t ′2, t ′3],η3 for t ∈ (t ′1, t ′2],η5 for t ∈
(t ′0, t ′1], and η6 for t ≤ t ′0, according to (8.5).

As an example, consider the configuration type η5. Then we get

I5 =
∫ t ′1

t ′0
t dt = 1

2 (t ′21 − t ′20 ).

By Fubini’s theorem we must compute

lim
a→0

a−2
∫

∂X

∫ 2π

0
I5 dvk dH1 = lim

a→0
a−2

∫
∂X

∫ 2π

0

1
2 (t ′21 − t ′20 ) dvk dH1.

By Lemma 8.2, lima→0 H1(v ∈ [0, 2π ] | ti �= t ′i ) = 0 uniformly. Moreover, it follows from
Lemma 8.1 that

a−2t2
i = s2

i − 2sia
−1l(bia, x) + a−2l(bia, x)2

is uniformly bounded. Hence, we may replace t ′2i by t2
i in the integral by the Lebesgue theorem

of dominated convergence. This also applies to give

lim
a→0

a−2
∫

∂X

∫ 2π

0
I5 dvk dH1 =

∫
∂X

∫ 2π

0
lim
a→0

a−2 1
2 (t2

1 − t2
0 ) dvk dH1

=
∫

∂X

∫ 2π

0

1
2 (s2

1 − s2
0 ) dvk dH1.

The last step used Lemma 8.1.
Substituting u = R−vn and inserting the values of si(u), a direct computation shows

lim
a→0

a−2
∫

∂X

∫ 2π

0
I5(x, v) dvk(x)H1(dx) =

∫
∂X

∫
S1

1
2 (s2

1 (u) − s2
0 (u)) duk dH1

= −2πV0(X).

The remaining configuration types η2 and η3 are treated similarly.
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Lemma 8.4. For w
(i)
j ∈ R and c

(i)
3 as in (4.3), the limit

lim
a→0

a−2 1

2π

( 5∑
j=2

w
(i)
j

∫
∂X

∫ 2π

0

∫ ε

−ε

∑
l : ξl∈ηj

fl(x + tn, v) dt dvH1(dx) − 2ac
(i)
3 V1(X)

)

exists and is equal to (w
(i)
2 − w

(i)
5 )V0(X).

Proof. Let x ∈ ∂X be given and define

Ij (x, v) =
∑

l : ξl∈ηj

∫ ε

−ε

fl(x + tn, v) dt.

By the same reasoning as in the proof of Lemma 8.3,

I2 = t ′3 − t ′2, I3 = t ′2 − t ′1, I5 = t ′1 − t ′0.

As an example, consider η5. We shall compute

lim
a→0

a−2
∫

∂X

∫ 2π

0
(I5 + a(s1 − s0)) dv dH1

= lim
a→0

∫
∂X

∫ 2π

0
(a−2(t ′1 − t ′0) + a−1(s1 − s0)) dv dH1. (8.7)

Since a−2|ti − t ′i | ≤ M ′ and H1(ti �= t ′i ) < Ma, by Lemma 8.2 for some uniform constants
M and M ′, we may replace ti by t ′i in (8.7).

By another application of Lemma 8.1, a−2ti + a−1si = a−2l(bia, x) is uniformly bounded.
This allows us to apply Lebesgue’s theorem to (8.7). In the case of η5, this yields

lim
a→0

∫
∂X

∫ 2π

0
(a−2I5 + a−1(s1 − s0)) dv dH1

=
∫

∂X

∫ 2π

0
lim
a→0

(a−2(t ′1 − t ′0) + a−1(s1 − s0)) dv dH1

=
∫

∂X

∫ 2π

0
lim
a→0

a−2(l(ab1, x) − l(ab0, x)) dvH1(dx)

=
∫

∂X

∫ 2π

0

−k

2
(b2

1 − b2
0) dv dH1,

where the last step also follows from Lemma 8.1.
Doing the same for the remaining configurations, a computation shows that

−
∫

∂X

∫ 2π

0

k

2
(w

(i)
2 (b2

3 − b2
2) + w

(i)
3 (b2

2 − b2
1) + w

(i)
5 (b2

1 − b2
0)) dv dH1

= lim
a→0

a−2
∫

∂X

∫ 2π

0

( 5∑
j=2

w
(i)
j Ij − a(w

(i)
2 (s2 − s3) + w

(i)
3 (s1 − s2)

+ w
(i)
5 (s0 − s1))

)
dv dH1 (8.8)

= lim
a→0

a−2
( 5∑

j=2

w
(i)
j

∫
∂X

∫ 2π

0
Ij dv dH1 − 2ac

(i)
3 V1(X)

)
.
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On the other hand, another computation shows that (8.8) is equal to

−
∫

∂X

k(x)

2
(−2w

(i)
2 + 2w

(i)
5 )H1(dx) = 2πV0(X)(w

(i)
2 − w

(i)
5 ),

from which the claim follows.

Proof of Theorem 8.1. From Lemmas 8.3 and 8.4, it follows that the limit

lim
a→0

(
a−iEV̂i(X) − a−1 1

π
c
(i)
3 V1(X)

)

= lim
a→0

a−2
( 5∑

j=2

w
(i)
j

∑
l : ξl∈ηj

1

2π

∫ 2π

0

(∫
∂X

∫ ε

−ε

tfl(x + tn, v)k(x) dtH1(dx)

+
∫

∂X

∫ ε

−ε

fl(x + tn, v) dtH1(dx)

)
dv

− a
1

π
c
(i)
3 V1(X)

)
(8.9)

exists and is equal to c
(i)
4 V0(X).

In the limit, the condition (2.2) is

lim
a→0

EV̂0(X) = lim
a→0

(w
(0)
2 EN2(X) + w

(0)
3 EN3(X) + w

(0)
5 EN5(X)) = V0(X),

lim
a→0

EV̂0(R
2 \ X) = lim

a→0
(w

(0)
2 EN5(X) + w

(0)
3 EN3(X) + w

(0)
5 EN2(X)) = −V0(X).

This is equivalent to
lim
a→0

(w
(0)
2 EN2 + w

(0)
3 EN3 + w

(0)
5 EN5) = V0(X),

lim
a→0

(w
(0)
2 − w

(0)
5 )(EN2 − EN5) = 2V0(X).

From (8.9) with w
(0)
2 = 1, w

(0)
3 = w

(0)
4 = 0, and w

(0)
5 = −1, it follows that

lim
a→0

(EN2 − EN5) = 4V0(X).

Thus, (4.14) ensures that (2.2) holds asymptotically.

When ∂X is actually a C3 manifold, we can get slightly better asymptotic results, as we
show in the following theorem.

Theorem 8.2. Let X ⊆ R2 be a C3 full-dimensional submanifold. Assume that the weights
defining V̂1(X) satisfy (4.8) and (4.9) and the weights defining V̂0(X) satisfy (4.13) and (4.14).
Then EV̂1(X) and EV̂0(X) converge as O(a2) and O(a), respectively.

Proof. It is enough to check that a−i−1(EV̂i(X) − lima→0 EV̂i(X)) is bounded. Going
through the proofs of Lemmas 8.3 and 8.4, we see that it is enough to show that

a−3(t ′2i+1 − t ′2i ) − a−1(s2
i+1 − s2

i ) (8.10)

and

a−1
∫ 2π

0

(
a−2(t ′i+1 − t ′i ) − a−1(si − si+1) + k

2
(b2

i+1 − b2
i )

)
dv (8.11)

are uniformly bounded.
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The triangle inequality yields

|a−3t ′2i − a−1s2
i | ≤ |a−3t2

i − a−1s2
i | + a−3|t ′2i − t2

i |.
The terms

|a−3t2
i − a−1s2

i | = | − 2sia
−2l(bia, x) + a−3l(bia, x)2|

are uniformly bounded by Lemma 8.1. Furthermore,

|t ′2i − t2
i |

a3 = |t ′i + ti |
a

|t ′i − ti |
a2

is bounded by Lemma 8.2. This takes care of (8.10).
Similarly,

∣∣∣∣a−3t ′i + a−2si + a−1 k

2
b2
i

∣∣∣∣ ≤
∣∣∣∣a−3ti + a−2si + a−1 k

2
b2
i

∣∣∣∣ + a−3|ti − t ′i |.

Again, by Lemma 8.2, a−2|ti − t ′i | is uniformly bounded by some C; hence,

∫ 2π

0
a−3|ti − t ′i | dv ≤

∫ 2π

0
a−1C 1{ti �=t ′i } dv

is also uniformly bounded by Lemma 8.2. Finally,

a−3ti + a−2si + a−1 k

2
b2
i = a−3l(bia, x) + a−1 k

2
b2
i .

But, by a refinement of Lemma 8.1, r �→ l(r, x) is C3 when ∂X is a C3 manifold and

l(br, x)

r3 + b2k(x)

2r

is bounded for (b, r, x) ∈ [−√
2,

√
2] × [−δ, δ] \ {0} × ∂X. This takes care of (8.11).

9. Classical choices of weights

Recall that, for a stationary isotropic Boolean model � with grain distribution satisfying (5.1)
a.s., we found in Theorem 4.1 that

lim
a→0

EV̂1(�) = 1

π
c
(1)
3 V 1(�).

If c
(1)
3 = π , the bias for small values of a is approximately

EV̂1(�) −V 1(�) ≈ a

(
c
(1)
4 γ + c

(1)
5

(
γ

π
EV1(C)

)2

e−γ EV2(C)

)
,

with c
(1)
m as in (4.3).

In the literature, various local algorithms are used for estimating the boundary length of a
planar set. With the formulas above we can compute their asymptotic bias and thus compare
their accuracy.
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Ohser and Mücklich [10] described an estimator for V 1(�) based on a discretized version
of the Cauchy projection formula. In the rotation invariant setting, the estimator corresponds
to (3.3) with weights

w(1) =
(

0,
π

16

(
1 +

√
2

2

)
,

π

16
(1 + √

2),
π

8
,

π

16

(
1 +

√
2

2

)
, 0

)
.

Inserting these weights in the equations shows that this estimator satisfies (4.8) and is thus
asymptotically unbiased. The weights also satisfy (4.9) but not (4.10). For small values of a,
the error is approximately

−a
1 + √

2

2

γ 2

π
EV1(C)2e−γ EV2(C) ≈ −1.207a

γ 2

π
EV1(C)2e−γ EV2(C).

One of the oldest algorithms for estimating the boundary length is suggested by Bieri and Nef
[1]. The idea is to approximate the underlying object by a union of squares of side length a,
centered at the foreground pixels, and use the boundary length of the approximation as an
estimate. This corresponds to a local estimator with weights

w(1) = (
0, 1

2 , 1
2 , 1, 1

2 , 0
)
.

However, it is well known that, for a compact object X, this is the boundary length of the smallest
box containing X; hence, it is a very coarse estimate. The asymptotic mean is (4/π)V 1(X).
Of course, we can correct for the factor 4/π and consider the weights

w(1) =
(

0,
π

8
,
π

8
,
π

4
,
π

8
, 0

)
(9.1)

instead. These weights can be justified by the Cauchy formula in [10] using θ1 = π/2. It is
also the unique unbiased estimator where all weights are equal, except that configurations of
type η4 are counted with double weight. These weights satisfy (4.8) and (4.9) but not (4.10).
The bias for small a is approximately

−a
γ 2

π
EV1(C)2e−γ EV2(C).

The approach of Dorst and Smeulders [2] is to reconstruct the underlying set by an
8-adjacency system and compute the length of the boundary of the reconstructed set, letting
vertical and horizontal segments contribute with one weight, and diagonal segments with another
weight. The resulting estimators are of the forms

w(1) =
(

0, 0,
θ

2
,
√

2θ,

√
2θ

2
, 0

)
, w(1) = (0, 0, α, 2β, β, 0). (9.2)

These algorithms are tested only on straight lines in [2] and therefore it was not necessary to
assign a value w

(1)
4 . The weights chosen here are such that a diagonal segment coming from a

configuration of type η4 is counted twice.
Dorst and Smeulders [2] list some of the constants frequently used in the literature. The

case θ = 1 goes back to Freeman [3]. This yields a biased estimator. But even if the constants
are chosen such that the estimator is asymptotically unbiased, all weights of this form have the
disadvantage of not satisfying (4.9), which is the most desirable of the two equations (4.9) and
(4.10), as it also appears in the design-based setting.
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The boundary is also sometimes approximated using a 4- or 6-adjacency graph. However,
the same problem with (4.9) arises.

Another classical approach is the marching squares algorithm. This is based on a recon-
struction of both foreground and background. The boundary is then approximated by a digital
curve lying between these, see e.g. [9, Figure 4.29]. The corresponding weights are

w(1) =
(

0,

√
2

4
,

1

2
,

√
2

2
,

√
2

4
, 0

)
.

This estimator is not asymptotically unbiased either. In fact, the asymptotic mean is

(2
√

2 − 2)
4

π
V 1(�) ≈ 1.0548V 1(�).

Correcting for this factor, we obtain an asymptotically unbiased estimator satisfying (4.13) with
approximate bias for small values of a, i.e.

a

√
2 − 6

4

γ 2

π
EV1(C)2e−γ EV2(C) ≈ −1.146a

γ 2

π
EV1(C)2e−γ EV2(C).

Similarly, we can compare the classical estimators for V0. Ohser and Mücklich [10]
suggested an estimator based on the approximation of � by a 6-neighbourhood graph. This
results in weights

w(0) = (
0, 1

4 , 0, 0, − 1
4 , 0

)
. (9.3)

These satisfy (4.13) and (4.14), but not (4.15). Hence, it does not define an asymptotically
unbiased estimator for Boolean models, but it does in the design-based setting of Section 8.
For Boolean models, the asymptotic bias is

lim
a→0

EV̂0 −V 0 =
(

2 − 4
√

2

π
+ 1

)
γ 2

π
EV1(C)2e−γ EV2(C) ≈ −0.164

γ 2

π
EV1(C)2e−γ EV2(C).

The estimator for the Euler characteristic suggested in [1] corresponds to the weights

w(0) = (
0, 1

4 , 0, − 1
2 , − 1

4 , 0
)
.

The bias of this estimator is

lim
a→0

EV̂0 −V 0 =
(−4

π
+ 1

)
γ 2

π
EV1(C)2e−γ EV2(C) ≈ −0.273 γ 2

π
EV1(C)2e−γ EV2(C),

which is slightly worse.
The conclusion is that for Boolean models, the best of the estimators forV 1 andV 0 listed here

are (9.1) and (9.3), respectively. However, the weights in Propositions 4.2 and 4.3, respectively,
give better estimators.

In the design-based setting, all of the classical algorithms listed here, except (9.2), are equally
good when assessed by means of the results of the present paper.
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