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Abstract

Geometric convergence to 0 of the probability that the goal has not been encountered
by the nth generation is established for a class of genetic algorithms. These algorithms
employ a quickly decreasing mutation rate and a crossover which restarts the algorithm
in a controlled way depending on the current population and restricts execution of this
crossover to occasions when progress of the algorithm is too slow. It is shown that
without the crossover studied here, which amounts to a tempered restart of the algorithm,
the asserted geometric convergence need not hold.
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1. Introduction

This paper reports part of a continuing investigation initiated by the authors in [4] and [6]
of the properties of restarted stochastic search algorithms. In the former paper a deterministic
search, such as steepest gradient, is addressed and in the latter paper simulated annealing
is addressed. In both, restarting is initiated when a lack of improvement in the objective is
observed. Here, a similar strategy is investigated in the context of genetic algorithms (GAs).
Just as in the two former cases, geometric convergence toward the goal is established rigorously
and the lack of this property is proven for the ordinary nonrestarted version. In the spirit of the
technique of [7] used in the study of parallelization, the Perron–Frobenius theory of positive
operators is utilized in [4] to prove geometric convergence; in [6], although renewal theory is
employed, a result which extends the usual Perron–Frobenius theory is established and is used
here to establish the rapid convergence of the restarted GA under both constant probability of
application and under random restarting based upon progress of the algorithm towards the goal.

In all these papers, including this one, there is a substantial departure from the classical
question of convergence of the distribution of states to an asymptotic distribution which has
support on the goal states to one involving whether or not the goal state has been observed
up to the present time. Thus, instead of asking whether or not the rules lead to an asymptotic
distribution (of the chain) on goal states, the question is one of the rate of convergence to 0 of
the probability that the goal state has not appeared among the states visited. It is shown here,
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Geometric convergence 961

as in [4] and [6], that the rate of convergence to 0 is geometric even though the mutation rate
is being driven to 0 geometrically fast. Slow convergence of the mutation rate to 0 can result
in jumping away from good solutions prematurely, while rapid convergence to 0 can result,
without an appropriate crossover rule, in getting hung up at local extrema. Here, a crossover
called wrong side of the tracks, yields geometric convergence to 0 as n → ∞ of the probability
that the goal has not been encountered by epoch n. Wrong-side-of-the-tracks crossover means
that a member of the current population mates with some (randomly chosen) member of the
state space, and is called, for obvious reasons, ‘tempered restart’. A general feature of all three
investigations is that the algorithms preferred are those which cycle through good states rapidly
rather than settle down predictably to a prescribed set.

Others (see, for example, [2], [1], and [3]) have hypothesized the deleterious effects of
a constant mutation rate and investigated, in terms of convergence of the populations, the
consequences of sending the rate to 0. Cerf [2] found precise characterizations of the rates at
which mutation can decrease in relation to that at which selection of nonelite members can occur
in order to preserve desirable properties of the asymptotic distributions. Our implementation
of decreasing mutation rates entails a selection mechanism which remains fixed; the influence
of crossover schemes on the rate at which the probability of not having seen a goal state tends
to 0 is investigated.

Although the classical focus of studies on convergence of genetic algorithms has been on
asymptotic distributions over states, hitting times have been considered. Löwe [5], for example,
proved an upper bound on the tail probabilities (the probability that the goal has not yet been
encountered by time t) of the form Kt−c, while in our case the bound is shown to be of the
formKe−ct ,where the generic constantsK and c are positive. Löwe’s bounds on hitting times
were proved for a family of GAs which differ from the ones considered in this paper; there
mutation rates and crossover schemes remain constant over time and selection probabilities
evolve in a manner reminiscent of simulated annealing rather than staying fixed as ours do. The
applicability of Löwe’s bounds depends upon a ‘logarithmic schedule’ of selection probability
change.

Details of our method are provided below, but, informally, it consists of evolving a population
of fixed size using the three mechanisms of random selection, crossover, and mutation. Given
a current population, the next population is the outcome of

1. a multinomial experiment in which the probabilities are determined by the fitness of the
current population (roulette wheel selection),

2. the possible mating of a member of the current population with a member of the population
at large (crossover), and

3. random mutation of the current members by flipping bits in a binary representation of
the population members (mutation).

Of interest is whether or not the history of populations has ever, up to that point, included a
member of the goal state in which an objective function achieves its maximum value. Since the
fitnesses of the population members are calculated at each new generation, the realization of
such an event means that the maximum of the objective has been identified. It is important to
distinguish our use of the word convergence and the common use in the area of GA; convergence
of the tail probability to 0 is studied here, while the word convergence in typical GA parlance
refers to the distribution of the members of the population itself. So rather than asking about the
asymptotic form of the population, whether it is concentrated on goal states or places positive
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probability on goal states, our emphasis is on cycling through states. It is clear that we would
like the algorithm to head for maxima of the objective as quickly as possible and not to get
trapped.

This is a shared goal with the classical analysis typified in the statement from Wikipedia:

A very small mutation rate may lead to genetic drift (which is non-ergodic in nature) or
premature convergence of the genetic algorithm in a local optimum. A mutation rate that
is too high may lead to loss of good solutions. There are theoretical but not yet practical
upper and lower bounds for these parameters that can help guide selection.

It will be shown here that we can send the mutation rate to 0 quickly and still not have premature
convergence, as long as the crossover described above is employed. It is also shown that, without
this crossover, sending the rate to 0 even much more slowly results in premature convergence
with positive probability; thus, the tail probabilities need not even converge to 0, even when
keeping the mutation rate much higher.

2. Notation

The underlying space on which the strictly positive function R is to be maximized is
S = {0, 1}L. We refer to the components, or bits, of i ∈ S by ik, 1 ≤ k ≤ L, and
refer indifferently through the obvious binary expansion to the members of S as integers in
0, . . . , 2L − 1. Let M , the population size, be a positive integer fixed throughout. Denote by
� the collection of probability distributions ξ(·) on S and by �0 the subset thereof for which
Mξ(i) = m(i) ≥ 0 are integers for all i ∈ S. The set �0 is in one-to-one correspondence with
the state space of the GA, the ‘populations’ of the algorithm, and is denoted in [3] as

S′ =
{
m̄ = (m(0),m(1), . . . , m(2L − 1)) :

N−1∑
j=0

m(j) = M, m(j) ≥ 0

}
,

where N = 2L.
For ξ ∈ �, ν ∈ �, and α ∈ [0, 1], consider the operator τα,ν : � → � defined by

τα,νξ(k) = α
∑
i

∑
j

E[I (i, j, k,W)]ξ(i)ν(j)+ (1 − α)ξ(k).

This is the crossover operator and, for the choice ν = ξ , it agrees in essence with that defined
in [3] between their Equations (6) and (7). The random variableW , the crossover point, is uni-
formly distributed on {0, 1, . . . , L} and the expectation overW is of I , the indicator function sat-
isfying I (i, j, k, w) ∈ {0, 1}, being 1 ifw ∈ {1, . . . , L−1} and k = (i1, . . . , iw, jw+1, . . . , jL),
or w = 0 and k = j , or w = L and k = i, and being 0 otherwise.

Also, define, for β ∈ [0, 1], the operator µβ : � → � by

µβξ(i) =
N−1∑
j=0

βH(i,j)(1 − β)L−H(i,j)ξ(j), (1)

where H(i, j) = ∑L
k=1 |ik − jk| is the Hamming distance between i = (i1, i2, . . . , iL) and

j = (j1, j2, . . . , jL) in S. This is the mutation operator on S′ × S′.
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The selection operator ψ : � → � is defined by

ψξ(i) = ξ(i)R(i)∑N−1
j=0 ξ(j)R(j)

.

The operator �β : �×� → [0, 1] defined by

�β(ξ2, ξ1) =
(

M

Mξ2(0),Mξ2(1), . . . ,Mξ2(N − 1)

)N−1∏
j=0

(µβτψξ1(j))
Mξ2(j),

where
(

a
b1,...,bj

) = a!/b1! · · · bj ! is the multinomial coefficient, defines a transition probability
from ξ1 ∈ � to ξ2 ∈ �0, and, hence, also from �0 into itself. Since, for scalars t > 0,
ψ(tξ) = ψξ , there is an equivalent representation in terms of a transition matrix Q(τ)

β on
S′ × S′ whose entries are

q
(τ)
β (m̄2 | m̄1) =

(
M

m2(0),m2(1), . . . , m2(N − 1)

)N−1∏
j=0

(µβτψm1(j))
m2(j),

where m̄j = (mj (0),mj (1), . . . , mj (N − 1)) ∈ S′ and

�β(ξ2, ξ1) = q
(τ)
β ((Mξ2(0), . . . ,Mξ2(N − 1)) | (Mξ1(0),Mξ1(1), . . . ,Mξ1(N − 1))).

The matrix Qβ is square and stochastic with
(
M+N−1

M

)
rows.

3. Fixed probability of crossover

In this section the consequences of sending the mutation rate to 0 geometrically fast are
investigated. It is shown that, by employing a crossover scheme, called the wrong-side-of-
the-tracks crossover (wst crossover), which allows tempered restarting of the GA, that is, a
cross between a member of the current population with a randomly chosen member of S,
the probability that the goal has not been encountered by the nth generation decreases to 0
geometrically quickly, while this need not occur for the usual crossover scheme.

Suppose that it is desired to maximize the functionR on the set S. It is shown that employing
the fixed crossover τα,υ,where ν = υ, the uniform distribution on S, and α ∈ (0, 1) is arbitrary,
the sequence of states (distributions m̄n ∈ S′) of the Markov chain whose transition matrix at the
nth epoch isQβn, where βn = (1 + λ2)−n and λ �= 0, has the property that the probability that
the populations up to epoch n have excluded a point at which R achieves its global maximum
on S decreases to 0 as ηn for some η < 1. Thus, ‘rapid’ identification of the global optimum is
assured even though the mutation probability is decreasing to 0 rapidly. It is shown, furthermore,
that, for any α ∈ (0, 1), this fails for the traditional crossover τα,ξ . Thus, without the crossover,
which includes the possibility of crosses with general elements of the state space S, mutation
rates tending to 0 this rapidly, and even more slowly, result in a positive probability of never
seeing the global maximum of the function.

3.1. Deleted transition matrix

In this section it is assumed without loss of generality that the function R assumes its
maximum value at j = 0 so that R(0) > R(j) for j = 1, . . . , N − 1. Consider the set X
consisting of the points

{x = (m(1),m(2), . . . , m(N − 1)) : m(0) = 0, (m(0),m(1), . . . , m(N − 1)) ∈ S′},
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and, fixing τ, define the deleted transition matrix Pβ onX×X as the submatrix ofQβ restricted
to the states in X by

pβ(x2 | x1) = q
(τ)
β ((0, x2) | (0, x1)).

Note that the qβ are all polynomials in β of degree ML, and write

qβ(n̄ | m̄) =
ML∑
j=0

aj (n̄, m̄)β
j .

The limiting matrix is P = limβ→0 Pβ = P0, and, plainly,

p(x2 | x1) = a0((0, x2), (0, x1))

and
pβ(x2 | x1)− p(x2 | x1) = βa1((0, x2), (0, x1))+O(β2).

3.2. Geometric convergence and wst crossover

We shall employ Lemma A.2 of [6] to prove that shrinking the mutation probability quickly
does not hinder the rapid identification of the goal state as long as wst crossover is used, but
that if we employ ordinary crossover, as described in [3] (for example), there is even a positive
probability that the goal state will never be identified. The result quoted from [6] runs as
follows.

Lemma 1. ([6, Lemma A.2].) If, for some γ > 1,
∑
n≥1 γ

n‖Pn − P ‖ < ∞ and, for some
k ≥ 1, P k has norm δ < 1, then there is a constantK < ∞ and an η ∈ (0, 1) such that, for all
n and m,

‖PmPm+1 · · ·Pm+n−1‖ < Kηn. (2)

We can now prove that by ‘restarting’ the GA, that is, by allowing a crossover of any of
the current members of the elite population with any member of the space S, a mutation rate
tending to 0 geometrically fast does not hinder rapid identification of the extremal value of the
objective function.

Theorem 1. Under the crossover measure τα,υ, α ∈ (0, 1), and the geometrically decreasing
mutation rate βn = (1 + λ2)−n, there is an η < 1 and a constant K < ∞ such that

P

[ n⋂
j=1

{mj(0) = 0}
]

≤ Kηn.

Proof. Since

π ′P1P2 · · ·Pne = P

[ n⋂
j=1

{mj(0) = 0}
]
,

where e is the deleted vector of 1s and π is the deleted vector of initial probabilities, it suffices
to prove the truth of (2). The norm of P is maxx∈X

∑
y∈X p(y | x); the norm of Pβ − P is

maxx∈X
∑
y∈X |pβ(y | x)− p(y | x)| and is clearly no greater than β(A + O(β)) for some

A < ∞. For each x ∈ X,∑y∈X p(y | x) is 1 − πx, where πx is the probability P[m(0) >
0 | (0, x)].
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Clearly, the conditions of the lemma will be satisfied if πx > 0 for each x ∈ X since this is
a finite set. Since

τψ(m̄)(k) = α
∑
i∈S

∑
j∈S

E[I (i, j, k,W)]
N

ψ(m̄)(i)+ (1 − α)ψ(m̄)(k),

P[W = 0] = 1/(L+ 1) > 0, and υ(0) = 1/N > 0, we have, for k = 0 and any m̄,

τψ(m̄)(0) ≥ αN−1(L+ 1)−1.

Thus, for any x ∈ X,µ0τψ((0, x))(0) = πx ≥ αN−1(L+ 1)−1 > 0.

3.3. Nonconvergence for ordinary crossover

If we send the mutation rate to 0 geometrically fast (or even more slowly—see below) and
use crossover τα,ξ , as in [3], then the geometric convergence of the tail probabilities, indeed
the convergence to 0 at all, need not hold. In [3] the mutation probability pm(k), called here
κk, is sent to 0 with the generation count k. They likened this to cooling in a simulated anneal
and showed that their algorithm converges asymptotically to one of the absorbing states of the
chain, a population all of whose members are the same, provided that cooling is slow enough.
A rate guaranteeing this type of convergence is κk = k−ML, where M is the population size
and L is the string size. Let L = 3 and M = 4, and let the algorithm start in the state
m̄ = (M, 0, . . . , 0) ∈ R8. Thus, the entire population consists of the element (0, 0, 0). Then,
under their selection rule (also called roulette wheel selection and the same as ourψ), including
crossover, the same population will result in every generation unless there is a mutation event.
But, in fact, there is a positive probability that this will not occur. The probability that the
algorithm remains in this starting population indefinitely is given by

�k≥1(1 − κk),

and this infinite product is 0 if and only if the infinite sum
∑
k≥1 κk is unbounded. However, if

κk converges to 0, even as slowly as their rate and certainly as fast as geometrically, this infinite
sum is finite.

4. Process initiated crossover

In the last section it was shown that rapid convergence of the mutation rate to 0, and, hence,
increasing protection from taking wrong paths deep into the search, need not hinder a rapid
encounter with the goal. On the other hand, the crossover scheme by which this is accomplished
is applied with constant probability over time, rather than when needed; namely when progress
in the algorithm has slowed or ceased. In this section a scheme is proposed, called r-cross,
which executes a crossover only when necessary, not with constant probability over time, but
depending on the progress of the algorithm. It is shown that even with geometrically decreasing
mutation rates, this new method of initiating a crossover results in rapid encounter of the goal.

4.1. Motivation for r-cross

A Bayesian argument is offered in favor of the rule we shall adopt. Consider a situation in
which we observe independent and identically distributed B(1, p) random variables (Bernoulli
random variables) and in which there is a prior distribution πα,β = Be(α, β) on the success
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probability p, a beta distribution. After the observations x1, x2, . . . , xn, the conditional proba-
bility distribution

ξ(p | x1, . . . , xn) ∝ pα−1(1 − p)β−1
n∏
j=1

pxj (1 − p)1−xj ,

so p | x1, . . . , xn ∼ Be(α + sn, β + n − sn), where sn = ∑n
j=1 xj . In particular, if x = 1

corresponds to ‘a higher value is observed than any seen to date’ and x = 0 corresponds to the
complement, and if no improvement over a span of n trials has been seen (so sn = 0), then
the posterior distribution of p, the probability of a better value on the next trial, is ξn(p) =
Be(α, β + n). Taking α = β = 1, the prior density reflects no knowledge of the underlying
probability p; it is uniform and the posterior density is simply

fn(p) = (n+ 1)(1 − p)nI(0,1)(p).

Thus, for example, the posterior probability assigned to the event that the probability of
seeing anything better is less than 0.01 after not having seen an improvement in 10 trials
is

∫ 0.01
0 f10(p) dp = −(1 − p)11|0.01

0 = 1 − (0.99)11 ≈ 0.104 66. After 50 trials, it would be
approximately 0.4 and after 100 it would be roughly 0.63. In fact, the posterior assessment that
the probability of seeing anything better is no more than c/n after not having seen anything
better in n− 1 trials is, for large n,

1 −
(

1 − c

n

)n
≈ 1 − e−c.

This suggests the following rule for executing a crossover, although, of course, the situation is
more complicated in the case of GA.

Crossover heuristic. Assuming that a large posterior probability, say 0.85, is desired, based
on the event that the probability of seeing anything better is small, say less than 0.01, take
1 − e−c = 0.85. Solve for c, obtaining in this case c = 1.897, and initiate a crossover if
c/n < 0.01; that is, if no improvement has been seen in 1.897/0.01 = 189.7 trials.

Less stringent requirements lead to more frequent crossovers: if a posterior probability
of, say 0.5, is desired, based on the event that the probability of there being a better value
forthcoming is less than, say 0.3, then initiate a crossover if 1 − (1 − 0.3)n+1 < 0.5, or
whenever an improvement has not been seen in one trial.

4.2. State space and transition matrix for r-cross

As above, denote distributions on the set S = {0, 1}L by

m̄ = (m(0),m(1), . . . , m(2L − 1)),

where m(j) are all nonnegative integers,
∑N
j=0m(j) = M, and N = 2L − 1. The space of

distributions on S is denoted S′. Our state space in this section is the set C = (S′)r consisting
of r-vectors c = (m̄1, m̄2, . . . , m̄r ). We think of the subscripts as increasing with time, so the
only transitions between states c1 and c2 with nonzero probabilities are those when the cs are
of the form

c1 = (m̄1, m̄2, . . . , m̄r−1, m̄r ) → (m̄2, m̄3, . . . , m̄r , m̄r+1) = c2,
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so that the last r − 1 distributions of c1 are shifted to the left and a new one is added in the last
position to form c2. To describe the transition probability, introduce the functions �(c) on C
and σ defined on S′. For m̄ ∈ S′, retaining the notation R for the objective function, let

σ(m̄) = max{R(j) : m(j) > 0, 0 ≤ j ≤ N}.
The function � takes values in {0, 1} and is 1 at c = (m̄1, . . . , m̄r ) if and only if

max
2≤j≤r σ (m̄j ) > σ(m̄1).

Thus, � simply indicates whether or not the supports of the measures on that stretch of
r distributions have seen any improvement in the objective function R (assuming that the
maximum of R is sought).

Denoting the crossover to be applied in this section, determined simply by the failure
to improve the objective over the course of r generations, as τ = τα=1, ν=υ, for c1 such
that �(c1) = 1, where c1 = (m̄n+1, . . . , m̄n+r ), the transition probability from c1 to c2 =
(m̄n+2, . . . , m̄n+r , m̄n+r+1) is given by

a(m̄n+1+r | m̄n+r ) = q
(e)
0 (m̄n+1+r | m̄n+r ) =

(
M

m̄n+r+1

)N−1∏
j=0

(ψ(m̄n+r )(j))mn+r+1(j),

since no crossover (τ = e, the identity) is applied in this case and µ0 = e. The transition in
case �(c1) = 0 is

b(m̄n+1+r | m̄n+r ) = q
(τ)
0 (m̄n+1+r | m̄n+r ) =

(
M

m̄n+r+1

)N−1∏
j=0

(τψ(m̄n+r )(j))mn+r+1(j).

Thus, for the case of r-cross, we can write the transition probability on C × C as

T (c2 | c1) = (a(c2,r | c1,r ))
�(c1)(b(c2,r | c1,r ))

1−�(c1),

where cj = (cj,1, cj,2, . . . , cj,r ) if c2,i = c1,i+1 for i = 1, 2, . . . r − 1 and 0 otherwise.

4.3. Deleted transition and geometric convergence for r-cross

Introduce the deleted transition matrix � defined on D ×D, where D = Xr, by

�(d2 | d1) = T (((0, d2,1), . . . , (0, d2,r )) | ((0, d1,1), . . . , (0, d1,r ))).

The chain on C×C with positive mutation rate has aβ(m̄ | n̄) = q
(e)
β (m̄ | n̄) and bβ(m̄ | n̄) =

q
(τ)
β (m̄ | n̄), and we denote by Tβ its transition matrix and by �β the corresponding deleted

transition matrix. For any sequence c = (m̄1, . . . , m̄r ) of states in S′, letZ(c) = 0 ifmj(0) = 0
for every j = 1, . . . , r and Z(c) = 1 otherwise. Letting the chain’s state at generation j be
Cj , the main theorem can now be proved.

Theorem 2. Under r-cross and shrinking the mutation rate according to βn = (1 +λ2)−n, we
have, for some K < ∞ and η < 1,

P

[ n⋂
j=1

{Z(Cj ) = 0}
]

≤ Kηn. (3)
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Proof. With an initial probability vectorπ, a deleted vector π̂ , and the deleted vector of 1s, 1̂,
since

π̂ ′
r∏
i=1

P
(e)
βi

n∏
j=r+1

�βj 1̂ = P

[ n⋂
k=1

{Z(Ck) = 0}
]
,

it suffices to prove, for someγ > 1,positive integer k, and δ < 1, that
∑
j≥1γ

j‖�βj −�‖ <∞
and ‖�k‖ < δ.

First consider
‖�β −�‖ = max

d∈D
∑
d ′∈D

|�β(d ′ | d)−�(d ′ | d)|.

Since, for d1, d2 ∈ D, aβ((0, d2,r ) | (0, d1,r )) is a polynomial in β of degree ML whose
value at β = 0 is a((0, d2,r ) | (0, d1,r )), and similarly for bβ, it follows that, for some
A < ∞, ‖�β −�‖ = β(A+O(β)).

Next, taking k = (N − 1)(r − 1) + 1, it is shown that ‖�k‖ < 1. Since D is a finite set
and ‖�k‖ = maxd∈D

∑
d ′∈D �k(d ′ | d), it suffices to prove that, for each d ∈ D, we have∑

d ′ �k(d ′ | d) < 1. The latter is simply the probability that, under no mutation, starting with
an element d ∈ D, d = ((0, x1), (0, x2), . . . , (0, xr )), xi ∈ X, we pass through successive
generations of the form (0, xr+1), . . . , (0, xNr) to arrive at d ′ = ((0, x(N−1)r+1), . . . , (0, xNr)).
It will be shown that this probability is less than 1.

If �(d) = 0 then there will be a wst crossover to get to the (r + 1)th generation and, since⋃
x∈X{C2,r = (0, x)} = {C2,r (0) = 0}, if we have P[C2,r (0) > 0 | d] > 0 then the claim will

be shown for d such that �(d) = 0, for then it will have been shown that the probability that
one exits D immediately and thereby includes the goal state in the elite set at that stage is
positive, so the probability of remaining in D is less than 1. Now the marginal distribution of
C2,r (0) | d is binomial, B(M, πd), where πd = µ0τψ((0, xr ))(0). As before, a lower bound
on this quantity, because of wst crossover, is N−1(L+ 1)−1 uniformly in xr ∈ X and, hence,
in d ∈ D. This concludes the case �(d) = 0.

For�(d) = 1, there are r−1 cases: the improvement occurs last at index 2, 3, . . . , r , and it
will be shown that in this instance a stretch of length (N − 1)(r − 1)+ 1 beginning at our first
index 1 must encompass either a transition out of the states inD or at least one stretch of length
r over which no improvement in the objective occurs. Indeed, the most favorable circumstance
in generating long stretches of no improvement may be described in terms of the ordered values
R1 < R2 < · · · < RN of the objective function. We could have R1 as our first maximum and
repeated r−1 times, thenR2 repeated r−1 times, so that in any sequence of (N−1)(r−1)+1
states, we must have exited the suboptimal states or must have encountered a stretch of length
at least r over which no improvement was observed. As the former is precluded in this case of
examining the probabilities of transitions among the states D, such a stretch must occur. As
has been seen immediately above, once such a stretch occurs, there is a positive probability of
leaving D. We conclude, therefore, that ‖�(N−1)(r−1)+1‖ < 1.

5. General r-cross

Geometric convergence of tail probabilities also holds for more general schemes for both
mutation and crossover initiated after a fixed number of nonimprovements.

5.1. General crossover

Suppose that there is a family of m mappings F (v), v = 1, . . . , m, from S × S into S.
Denoting, for j ∈ S fixed, by F (v)j the transformation from S into S defined by F (v)j (i) =
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F (v)(i, j), the family {F (v)}mv=1 of transformations will be said to be adequate if, for every
k ∈ S and j ∈ S, we have

m⋃
v=1

(F
(v)
j )−1(k) �= ∅. (4)

Define the associated crossover operator on � by

τξ(k) =
m∑
v=1

∑
i∈S

∑
j∈S

δ(v)ν(i)ξ(j)IAv(k)(i, j), (5)

where Av(k) = {(i, j) ∈ S2 : F (v)(i, j) = k}. Geometric convergence will still hold under
r-cross using this crossover under conditions which also amount to tempered restarting.
Specifics are given in Theorem 3, below, whose proof can be carried out just as in the case
of Theorem 2.

Theorem 3. If the family F (v), v = 1, . . . , m, satisfies (4) then, under r-cross, with τ as
defined in (5) and shrinking the mutation rate according to βn = (1 + λ2)−n, we find, for some
K < ∞ and η < 1, that (3) holds if δ(v) > 0 for v = 1, . . . , m and ν(i) > 0 for every i ∈ S.

Proof. Observe that, owing to (4), for each k, j ∈ S×S, we must have
∑m
v=1 IAv(k)(i, j) > 0

for some i ∈ S. Under the conditions of the theorem, no choice of ξ ∈ � yields τξ(k) = 0;
in fact, these quantities are uniformly bounded below over ξ ∈ � and k ∈ S by a positive
quantity. This bound now plays the same role in the proof as did N−1(L + 1)−1 in the proof
of Theorem 2; otherwise, the proof is the same.

In the case of wst crossover, for example, ν(i) = N−1 > 0 and δ(v) = 1/m, where
m = L+1 and wst crossover satisfies (4) trivially since, for one of the vs, we hadF (v)(i, j) = i

for all i, j . Obviously, many other crossing schemes are covered by Theorem 3.

5.2. General mutation

The essential feature of the mutation operator µβ is that it satisfies

‖µβ − e‖ = β(A+O(β)), (6)

where e is the identity. As long as this feature holds, then, under r-cross, with an adequate
crossover scheme, the convergence of tail probabilities for geometrically decreasing mutation
rates will itself be geometric.

6. Examples

In this section some examples are provided to illustrate the ideas of the previous sections.

Example 1. In this example the success of GAs in maximizing the function f defined in (7),
below, is investigated. The number of bits is L = 10, so that, interpreting i ∈ S as a binary
representation, i = 0, 1, . . . , 1023. The objective function (called R above) is f , given by

f (i) = 100

1 + i7/10

[
1 + cos

(
π(i − 60)

50

)]
, (7)

and has a global maximum at i = 0 and local maxima at i = 60, 160, 260, . . . . The population
size was M = 4 for each of the three GA implementations. The traditional (T) had a
fixed mutation rate λt = λ and crossover only between members of the current population.
Traditional with decreasing mutation rate (TD) retained the same crossover and mutation, but
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Table 1: Generations till termination of T and TD.

T TD
λ

Average Success rate Average Success rate

0.99 3867.09 0.75 4057.63 0.43
0.95 4426.73 0.68 6304.24 0.10
0.90 4305.24 0.61 6721.1 0.04
0.80 4459.07 0.57 7000 0.00
0.70 3193.65 0.88 6860.15 0.02

Table 2: Average generations till termination of RX. Success rate 1 in all cases.

r
λ

2 5 10 20

0.99 468.12 416.45 494.53 424.52
0.95 394.81 421.32 432.03 437.03
0.90 362.85 426.71 434.60 483.53
0.80 426.82 377.08 435.99 449.86
0.70 341.32 427.58 394.11 446.76

40

35

30

25

20

15

10

Fr
eq

ue
nc

y

5

0
750 1500 2250 3000 3750 4500 5250 6000 6750 7500 More

Generations to termination (average     4426.73)

Figure 1: Histogram for ordinary GA and λ = 0.95. Success rate 68%.

the mutation rate λt = λt decreased geometrically with t . Finally, the r-cross (RX) version had
λt = λt and executed crossover only after a prescribed number, r , of failures to improve, and
then implemented wst crossover between randomly selected members of the current population
and S rather than just ordinary crossover. In each case, implementation involved (i) roulette
wheel selection, (ii) crossover selection, and (iii) with probability pm(t), mutate every bit of a
randomly selected offspring.

Consulting Table 1 we find that in both cases the algorithm often failed to find the optimum
within the allotted 7K iterations. In Table 2 can be found averages for r-cross for various r
where its superior performance is clear.

More detail is provided by selected histograms. In Figure 1 we see data for which a 68%
success rate was observed for ordinary GA, namely T, with λt identically 0.95. In Figure 2
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Figure 2: Histogram for r-cross with (a) r = 2 and λ = 0.95, (b) r = 50 and λ = 0.60, and (c) r = 5
and λ = 0.60.

can be found histograms detailing the performance of RX in selected cases. In Table 2 we
see much smaller average iterations till the goal was found. The histograms show in addition
that, typically, the number of iterations was far smaller than the average, a typical situation of
smaller median than mean for these more or less exponentially shaped distributions.

https://doi.org/10.1239/jap/1261670682 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1261670682


972 F. MENDIVIL ET AL.

Example 2, below, in which GA is applied to finding the maximum permanent of a matrix,
provides an instance requiring the more general mutation and crossover schemes discussed in
Section 5. In coding the 14 × 14 0–1 matrix as a length 196 vector of 0s and 1s, we cannot
simply flip bits indiscriminately since we must obtain a 196 vector with exactly 40 1s and
156 0s. The crossover operation described above has similar problems. Thus, alterations must
be made.

Example 2. The effectiveness of GA with tempered restart is compared with that of ordinary
GA in maximizing a permanent. The permanent of a square matrix is obtained by taking all
signs to be positive in the expansion of its determinant. The optimization problem consists
of attempting to find the 14 × 14 0–1 matrix with the maximum permanent, subject to the
constraint that there are exactly 40 1s (and, thus, 156 0s) in the matrix. The authors have
previously investigated in [6] the effectiveness of restarted simulated annealing in finding the
maximum for this problem. Reported herein are the results of experiments comparing the
performance of an ordinary GA with an r-cross GA.

Ordinary GA, with crossover executed only between randomly selected members of the
current population and with a fixed mutation rate, was compared with r-cross for varying
values of the parameters r and the mutation rate λt . For ordinary GA, the rate was fixed at
λt = rate, while, for r-cross, the rate was geometrically decreasing, satisfying λt = (rate)t .
The r-cross had wst crossovers only when the objective had not shown improvement over r
generations; so mating was allowed between members of the current population and a general
element of the state space S. In Tables 3 and 4 can be found the numerical results of running
the algorithms on the permanent problem with a 14 × 14 matrix of 0s and 1s, and containing
exactly 40 1s.

Many alternatives are possible to the mutation operation. The operator of (1) describes the
situation of flipping all bits independently with probability λt , but the one employed in this
example simply selects at random a location in the matrix at which a 1 is located and selects at

Table 3: Average best objective value over five runs for 40K generations, with a population size of 30.

r-cross
Rate Ordinary GA

r = 5 r = 10 r = 50 r = 100 r = 200

0.99 863.20 1254.40 928.00 1108.80 1000.00 1272.00
0.90 972.80 1161.60 1257.60 1048.00 1281.60 1043.20
0.80 643.60 1062.40 1121.60 932.80 1003.20 1040.00
0.70 685.60 1042.80 1259.20 1098.00 1160.00 1430.40

Table 4: Maximum best objective value over the five runs.

r-cross
Rate Ordinary GA

r = 5 r = 10 r = 50 r = 100 r = 200

0.99 1200 1728 1620 1344 1152 1584
0.90 1152 1440 1728 1296 1944 1152
0.80 792 1344 1200 1056 1120 1512
0.70 768 1296 2016 1452 1728 2016
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random (probability 1
4 each since the matrix is two-dimensional) from the locations adjacent

to it in the matrix one which contains a 0 and interchanges the 0 and 1. If there are none,
it selects again, and again until the switch is accomplished. At generation t the mutation is
performed on a randomly selected member of the current population with probability λt .Letting
i ∈ {0, 1}196 be an arbitrary matrix with 40 1s and 156 0s, the probability ρi,j that i is the result
of a mutation from the matrix represented by j clearly does not depend upon any of the other
problem parameters, so

µβξ(i) = β
∑
j

ρi,j ξ(j)+ (1 − β)ξ(i),

and it is seen that (6) is satisfied.
Crossover requires a new scheme since, by the usual scheme, the offspring of two parents

i and j could have an incorrect number of 1s. The crossover used for this example compared
locations and swapped 0s and 1s in such a way as to preserve the number of 1s, 40 in this case,
in the offspring. The important feature is that one of the crossover operations was the identity,
so that the requirements of Theorem 3 were met. Thus, the geometric convergence to 0 was
assured in the tempered restarted GA in this example.

7. Discussion

It has been shown that implementations of genetic algorithms which send the mutation rate
to 0 geometrically fast and execute crossover only after a fixed number of nonimprovements
have the property that the probability that the goal has not been encountered yet tends to 0
geometrically if, in a sort of anti-eugenics way, crossover allows matings between members of
the elite and the original population rather than just between members of the elite population.
By itself, geometric convergence to 0 of this tail probability of not having seen the goal is not
a strong recommendation for the method; after all, simply guessing each time by selecting a
random population has the same property. However, if the crossover mechanism is selected
carefully and appropriately to fit the problem, great gains in the speed of identifying the goal
can be achieved. The idea of the algorithm is simply that in the initial stages of a search for
the maximum we should allow a large probability of moving around freely; since the selection
mechanism will quickly weed out unfit members, the algorithm will proceed to the more
promising directions rapidly. However, keeping a fixed mutation rate will introduce chaff at
a constant rate and unduly burden the selection mechanism. Instead, by sending the mutation
rate to 0, promising directions can be examined more thoroughly without jumping far away
by a mutation, as long as the crossover mechanism is tame; it stays close in terms of function
values in the sense that, for all (i, j) ∈ S×S and most v ∈ {1, . . . , m}, |R(F (v)(i, j))− R(j)|
is small. This should not hold for all v since, having sent the mutation rate to something small,
if the region of examination ceases to offer improvement after a sufficient time, at least one
of the randomly selected crossover F (v) should allow escape from the region. Thus, for an
adequate (see (4)) collection, this can happen with probability determined by the distribution δ.

For example, in the case of maximizing a continuous function R on an interval [0, 1] with
the members of i ∈ S being the binary expansion coefficients (i1, . . . , iL), it ∈ {0, 1}, the
collection

F (v)(i, j) = (j1, j2, . . . , jv, iv+1, . . . , iL) (8)

will, depending on the smoothness of R, satisfy the criterion quite well for v ≥ 2 for the
crossover operator in (5), while the crossover G(v)(i, j) = (i1, . . . , iv, jv+1, . . . , jL) would
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not satisfy this criterion and the resulting algorithm would be expected to perform poorly. The
choice of r in waiting for improvement should allow an examination of the directions from a
given point in the population, assuming that the crossover is tame. For the case of the continuous
function R on the line, r should be small, around 2, while, for the permanent problem, 200
looks more reasonable since the members of S constitute 196 vectors.
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