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Introduction

En un lugar de La Mancha, de cuyo nombre no quiero acordarme . . .

— Miguel de Cervantes Saavedra, Don Quixote

Modern portfolio theory started with Harry Markowitz’s 1952 seminal paper “Portfolio
Selection” (Markowitz, 1952), for which he would later receive the Nobel Prize in Economic
Sciences1 in 1990. He put forth the idea that risk-averse investors should optimize their
portfolio based on a combination of two objectives: expected return and risk. Until today, that
idea has remained central to portfolio optimization. In practice, however, the vanilla Markowitz
portfolio formulation does not perform as anticipated. Consequently, most practitioners either
combine it with various heuristics or refrain from using it altogether.

Over the past 70 years, researchers and practitioners have reconsidered the Markowitz portfolio
formulation, leading to numerous variations, enhancements, and alternatives. These include
robust optimization methods, alternative risk measures, regularization through sparsity,
improved covariance matrix estimators via random matrix theory, robust estimators for heavy
tails, factor models, mean models, volatility clustering models, risk parity formulations, and
more.

This book explores practical financial data modeling and portfolio optimization, covering a
wide range of variations and extensions. It systematically starts with mathematical formulations
and proceeds to develop practical numerical algorithms, supplemented with code examples to
enhance understanding.

• The financial data modeling considered herein moves away from the unrealistic Gaussian
assumption and delves into more realistic models based on heavy-tailed distributions. It
encompasses an array of topics, ranging from basic time series models, making extensive
use of Kalman filtering methods, to state-of-the-art techniques for estimating financial
graphs.

• The portfolio formulations covered in this book span a wide range, from the original
1952 Markowitz’s mean–variance portfolio and 1966 maximum Sharpe ratio portfolio, to
more sophisticated formulations such as Kelly-based portfolios, utility-based portfolios,
high-order portfolios, downside risk portfolios, semi-variance portfolios, CVaR portfolios,

1 To be exact, what is usually referred to as the Nobel Prize in Economic Sciences is actually the Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
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2 Introduction

drawdown portfolios, risk parity portfolios, graph-based portfolios, index tracking portfolios,
robust portfolios, bootstrapped portfolios, bagged portfolios, pairs trading portfolios,
statistical arbitrage portfolios, and deep learning portfolios, among others.

The primary focus and central theme of this book is on practical algorithms for portfolio
formulations that can be effortlessly executed on a standard computer.

1.1 What is Portfolio Optimization?
Suppose you observe a random variable 𝑋 with mean 𝜇 = IE[𝑋] and variance 𝜎2 =

IE[(𝑋 − 𝜇)2]; for example, a normal (or Gaussian) random variable 𝑋 ∼ N(𝜇, 𝜎2). The
mean 𝜇 is the value you expect to obtain, whereas the variance 𝜎2 gives the variability or
randomness around that value. The ratio 𝜇/𝜎 gives a measure of the deterministic-to-random
balance. In finance, 𝑋 may represent the return of an investment and the ratio 𝜇/𝜎 is called
Sharpe ratio. In signal processing, it is more common to use the signal-to-noise ratio (SNR)
measured in units of power and defined as 𝜇2/𝜎2.

Now suppose that for each time 𝑡, a different (independent) value of the random variable is
observed (called a random process or random time series): 𝑋𝑡 ∼ N(𝜇, 𝜎2). In finance, these
represent the returns of the investment, and the cumulative return is the accumulation of the
previous returns, which reflects the accumulated wealth of the investment. Figure 1.1 shows a
realization of such return random variables as well as the cumulative returns.

Figure 1.1 Illustration of random returns and cumulative returns.

The evolution of the cumulative returns or wealth over time, albeit random, is strongly
determined by the value of the Sharpe ratio, 𝜇/𝜎, as illustrated in Figure 1.2 for high and low
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values. If the Sharpe ratio is high, the cumulative return will have some fluctuations but with
a consistent growth. On the other hand, if the ratio is low, the fluctuations become larger and
one may even end up losing everything, leading to bankruptcy.

Figure 1.2 Illustration of cumulative returns with different values of Sharpe ratio.

What can an investor do to improve the cumulative return? While the random nature of the
investment assets themselves cannot be changed, there are at least two dimensions that can be
potentially exploited: the temporal dimension and the asset dimension.

• Temporal dimension: It may be the case that the distribution of the random return 𝑋𝑡
changes with time, leading to time-varying 𝜇𝑡 and 𝜎2

𝑡 . In that case, a smart investor will
adapt the size of the investment to the current value of 𝜇𝑡/𝜎𝑡 . In order to do that, one needs
to develop an appropriate time series model, that is, a data model at time 𝑡 given the past
observations. This is called data modeling and it is explored in Part I of this book.

• Asset dimension: In general, an investor has a choice of 𝑁 potential assets in which to
invest, with returns 𝑋𝑖 for 𝑖 = 1, . . . , 𝑁. Suppose they are all independent and identically
distributed (i.i.d.): 𝑋𝑖 ∼ N(𝜇, 𝜎2). It follows from basic probability that the average of
such returns, 1

𝑁

∑𝑁
𝑖=1 𝑋𝑖, preserves the mean 𝜇 but enjoys a reduced variance of 𝜎2/𝑁. In

finance, this average is achieved by distributing the capital equally over the 𝑁 assets (the
popular 1/𝑁 portfolio precisely implements this). In practice, however, the 1/𝑁 factor
in the reduction of the variance cannot be achieved because the random returns 𝑋𝑖 are
correlated among the assets, that is, the assumption of uncorrelation does not hold. Over
the decades, academics and practitioners have proposed a multitude of ways to properly
allocate the capital, as opposed to the baseline 1/𝑁 allocation, in order to try to circumvent
the inherent correlation of the assets and minimize the risk or variance. This is called
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portfolio optimization (also known as portfolio allocation or portfolio design) and it is
covered in detail in Part II of this book.

1.2 The Big Picture
The two main components for portfolio design are data modeling and portfolio optimization.
Figure 1.3 illustrates these two building blocks for the case of mean–variance portfolios
(i.e., based on the mean vector 𝝁 and covariance matrix 𝚺) to produce the optimal portfolio
weights 𝒘.

Figure 1.3 Block diagram of data modeling and portfolio optimization.

Part I of this book examines the data modeling component in Figure 1.3. The main purpose
of this block is to characterize the statistical distribution of future returns, primarily in terms
of the first- and second-order moments, 𝝁 and 𝚺, which will be utilized by the portfolio
optimization block later on.

Part II fully explores a wide variety of formulations for the portfolio optimization component
in Figure 1.3. These portfolio formulations can be classified according to different criteria
leading to a diverse taxonomy of portfolios as follows.

• Taxonomy according to the data used:

– second-order portfolios: portfolios based on the mean and the variance, such as Markowitz
mean–variance portfolio, maximum Sharpe ratio portfolio, index tracking portfolios,
and volatility-based risk parity portfolios;

– high-order portfolios: portfolios based directly on high-order moments as well as
approximations of utility-based portfolios; and

– raw-data portfolios: these include portfolios that require the raw data, such as downside
risk portfolios, semi-variance portfolios, conditional variance-at-risk (CVaR) portfolios,
drawdown portfolios, graph-based portfolios, and deep learning portfolios.

• Taxonomy according to the view on the efficient-market hypothesis:2

– active portfolios: most of the portfolio formulations that attempt to beat the market; and
– passive portfolios: index tracking portfolios which simply track the market, avoiding

frequent portfolio rebalancing.

• Taxonomy according to the myopic nature of the portfolio formulation:

– single period portfolios: most of the formulations considered here are based on a single
step into the future; and

2 The efficient-market hypothesis states that asset prices reflect all information and, therefore, it should be
impossible to outperform the overall market through expert stock selection or market timing.
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– multi-period portfolios: more involved formulations that consider several steps into the
future so that the long-term effect of current actions is better taken into account; this
is not covered in this book, see (Boyd et al., 2017) for a monograph on multi-period
portfolio optimization.

1.3 Outline of the Book
This book is organized into two main parts, comprising a total of 16 chapters, along with two
appendices at the end. The content of each of the chapters is outlined next.

Part I. Financial Data: This part focuses on financial data modeling, which is a necessary
component before the portfolio design.

• Chapter 2 discusses stylized facts in financial data. These unique characteristics differentiate
financial data from other types of data. Some of these characteristics include lack of
stationarity, volatility clustering, heavy-tailed distributions, and strong asset correlation.
This chapter provides a concise and visual overview of these stylized facts to help readers
better understand and analyze financial data.

• Chapter 3 focuses on i.i.d. modeling in financial data. Although the i.i.d. model is a
simplistic approximation, it is still widely used in practice. However, challenges arise due
to non-Gaussian distributions and noise, which are often ignored in financial literature.
To address these challenges, robust and heavy-tailed estimators for the mean vector and
the covariance matrix are necessary, and this chapter provides detailed explanations for
these estimators. Furthermore, incorporating prior information through techniques such
as shrinkage, factor modeling, and Black–Litterman fusion can significantly improve the
accuracy of estimates. Due to the breadth of topics covered in this chapter, the length is
rather long, but it provides readers with a comprehensive understanding of i.i.d. modeling
for financial data.

• Chapter 4 explores the application of time series models to financial data to capture
temporal dependencies for both mean modeling and variance modeling. While mean
models provide debatable improvement over the i.i.d. approach, variance models, including
GARCH-related models and stochastic volatility models, have been shown to be effective
in capturing the volatility of financial data (the latter showing improved results but at a
higher computational cost). This chapter presents a unified modeling approach through
state-space modeling with special emphasis on the use of the efficient Kalman filter, which
notably allows the approximation of stochastic volatility models with low computational
cost.

• Chapter 5 focuses on financial graphs and their applications in financial data analysis.
While graphical modeling of financial data originated in 1999, many methods have since
been proposed. Among these methods, sparse Gaussian models are suitable for providing
basic insights, low-rank formulations can be used to cluster assets, and heavy-tailed models
are appropriate for accounting for non-Gaussian data. Graph-based techniques can provide
valuable visual and analytical tools for financial data analysis. This chapter provides an
overview of cutting-edge techniques for graph modeling of financial assets, allowing readers
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to gain a deeper understanding of the applications and benefits of financial graphs in data
analysis.

Part II. Portfolio Optimization: This part contains a wide range of chapters covering various
portfolio formulations with corresponding algorithms and examples.

• Chapter 6 provides a comprehensive introduction to portfolio basics. The chapter covers
fundamental topics such as portfolio notation, cumulative return calculation, transaction
costs, portfolio rebalancing, practical constraints, measures of performance, simple heuristic
portfolios, and basic risk-based portfolios. While the chapter covers the basics, it also
includes an interesting nugget on the interpretation of the heuristic quintile portfolio, widely
used by practitioners, as a formally derived robust portfolio. This chapter serves as an
excellent starting point for readers new to portfolio management, providing them with the
foundational knowledge necessary to understand and build portfolios.

• Chapter 7 delves into the topic of modern portfolio theory, which is the main focus of the
majority of textbooks on portfolio design. In this book, this chapter serves as a starting point
for exploring a wide range of different portfolio formulations. The chapter begins with an
introduction to the basic mean–variance portfolio and then moves on to the often-ignored
maximum Sharpe ratio portfolio, for which several practical numerical algorithms are
presented in detail (such as bisection, Dinkelbach, and Schaible transform-based methods).
The Kelly portfolio and utility-based portfolios are also introduced. The chapter concludes
with a discussion of a recently proposed universal algorithm that can be utilized to solve
portfolios based on any trade-off between the mean and variance. Overall, this chapter
provides readers with a comprehensive understanding of modern portfolio theory and its
practical applications.

• Chapter 8 focuses on portfolio backtesting, which is essential in strategy evaluation. Many
biases, such as overfitting, can invalidate backtesting results, making it a challenging task.
As a consequence, published backtests should not be trusted blindly. This chapter delves
into the common pitfalls and dangers of backtesting, which are often ignored in textbooks,
and puts forward the approach of multiple randomized backtests to help mitigate risks. The
chapter also discusses the benefits of stress testing with resampled data to complement
the backtesting results. By providing readers with a comprehensive understanding of the
challenges of backtesting and suggesting practical solutions to overcome them, this chapter
serves as an essential guide for portfolio assessment.

• Chapter 9 explores high-order portfolios, which introduce high-order moments in the
mean–variance formulation. This idea dates back to the beginning of modern portfolio
theory, but until recently it was impractical due to difficulties in parameter estimation,
excessive memory requirements, and the complexity of optimization methods for a realistic
number of assets. This chapter covers all the basics of high-order portfolios and introduces
recent advances that make this approach practical.

• Chapter 10 considers portfolios with alternative measures of risk. While variance is the
most commonly used measure of risk in portfolio optimization, many advanced risk
measures, such as downside risk, semi-variance, CVaR, and drawdown, can also be
incorporated. These measures can be formulated in convex form, allowing for the use of
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efficient algorithms. This chapter provides an overview of these sophisticated alternatives
to Markowitz’s seminal mean–variance formulation.

• Chapter 11 presents risk parity portfolios, which aim to diversify risk allocation beyond
equal capital allocation. These portfolios were proposed by practitioners and rely on
using granular asset risk contributions rather than overall portfolio risk. This chapter
presents risk parity portfolios progressively, starting from a naive diagonal formulation
and progressing to sophisticated convex and nonconvex formulations. It also covers a wide
range of numerical algorithms, including newly proposed techniques.

• Chapter 12 gives an overview of graph-based portfolios, which utilize graphical representa-
tions of asset relationships learned from data to improve the portfolio design. Graph-based
portfolios enable hierarchical clustering and novel formulations that account for asset
interconnectivity, enhancing portfolio construction. This chapter provides a comprehensive
overview of all existing graph-based portfolios, presenting a unified view of the different
approaches.

• Chapter 13 covers index tracking portfolios, which are designed to mimic an index under the
assumption that the market is efficient and cannot be beaten. Sparse index tracking further
improves this approach by using few assets, posing a sparse regression problem. This
chapter provides a state-of-the-art overview of the existing methodologies and introduces
new formulations for index tracking portfolios. It also includes a cutting-edge algorithm
that automatically selects the right level of sparsity, making index tracking more efficient
and effective.

• Chapter 14 gives an overview of robust portfolios, which aim to address the inevitable
parameter estimation errors that can lead to meaningless or catastrophic results if ignored.
While optimal portfolio solutions may seem ideal in theory, practical implementation
requires techniques like robust optimization and resampling methods. This chapter covers
these standard techniques, providing readers with a comprehensive understanding of robust
portfolios and how to optimize them.

• Chapter 15 explores pairs trading or statistical arbitrage portfolios, which are market-
neutral strategies designed to be orthogonal to the market trend. These strategies trade
on the oscillations among different assets, making them a popular technique in advanced
portfolio management. This chapter provides an overview of the basics of pairs trading and
statistical arbitrage, as well as exploring the more sophisticated use of Kalman filtering.

• Chapter 16 presents the concept of deep learning portfolios, which utilize deep learning
techniques to analyze financial time series data and optimize portfolios. While deep learning
has revolutionized fields like natural language processing and computer vision, its potential
in finance remains uncertain due to challenges such as limited availability of nonstationary
data and the weakness of the signal buried in noise. This chapter provides a standalone
account of deep learning and the current efforts in the financial arena, acknowledging the
risk of becoming quickly obsolete but still providing a good starting point.

Appendices A and B. Preliminaries on Optimization: This final part provides an overview
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of basic concepts in optimization theory (Appendix A) and a concise account of practical
algorithms (Appendix B) used throughout the book.

1.4 Comparison with Existing Books
The financial literature on data modeling and portfolio design is extensive and diverse. This
book aims to provide a unique perspective on these topics, and it is instructive to compare it
with some of the existing textbooks.

• Financial data modeling: Many excellent textbooks cover financial data modeling, such
as Campbell et al. (1997), Meucci (2005), Tsay (2010), Ruppert and Matteson (2015),
Lütkepohl (2007), Tsay (2013), Fabozzi et al. (2007), Fabozzi et al. (2010), and Feng
and Palomar (2016). In this book, Chapters 3 and 4 provide a succinct overview of i.i.d.
models and models with temporal structure, respectively. Particular emphasis is placed on
heavy-tailed models and estimators (as opposed to the more traditional methods based on
the Gaussian assumption), stochastic volatility models (usually not receiving their deserved
attention), and the use of state-space models with Kalman filtering as a unified approach
with efficient algorithms.

• Modern portfolio theory: Traditional books that focus primarily on portfolio foundations
and mean–variance portfolios include Grinold and Kahn (2000), Meucci (2005), Cornuejols
and Tütüncü (2006), Fabozzi et al. (2007), Prigent (2007), Michaud and Michaud (2008),
Bacon (2008), and Fabozzi et al. (2010). In this book, Chapters 6 and 7 cover this material
with an optimization perspective, including utility-based portfolios, a recent derivation
of the otherwise heuristic quintile portfolio as a robust solution, and particularly delving
in detail into the nonconvex formulation of the maximum Sharpe ratio portfolio. It also
provides a recently proposed universal algorithm for all these portfolios based on different
trade-offs of the mean and variance.

• Risk parity portfolios: Roncalli’s book (Roncalli, 2013) provides a detailed mathematical
treatment (see also Feng and Palomar (2016)), while Qian’s book (Qian, 2016) covers the
fundamentals. In this book, Chapter 11 covers risk parity portfolios from an optimization
perspective, progressively covering the naive solution, the vanilla convex formulations, and
the more practical and general nonconvex formulations, with emphasis on the numerical
algorithms.

• Backtesting: López de Prado’s book (López de Prado, 2018) covers backtesting and its
dangers in great detail from the perspective of machine learning, while Pardo (2008)
focuses on the walk-forward backtest. In this book, Chapter 8 explores the many dangers of
backtesting and the different forms of executing backtesting based on market data, as well
as synthetic data, with abundant figures.

• Index tracking: The topic of index tracking is treated in detail in Prigent (2007) and Benidis
et al. (2018), with shorter treatments in Cornuejols and Tütüncü (2006) and Feng and
Palomar (2016). In this book, Chapter 13 provides a concise yet broad state-of-the-art
exposure, offering new formulations and a cutting-edge algorithm that automatically selects
the right level of sparsity.
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• Robust portfolios: Robust optimization is widely explored within the context of portfolio
design, with standard references including Fabozzi et al. (2007) and Cornuejols and Tütüncü
(2006) (see also Feng and Palomar (2016)). In this book, Chapter 14 gives a concise
presentation of these techniques for obtaining robust portfolios with illustrative numerical
experiments.

• Pairs trading: The standard reference to this topic is Vidyamurthy (2004); see also Feng
and Palomar (2016). In this book, Chapter 15 provides full coverage of the basics and
presents a more sophisticated use of the Kalman filter for better adaptability over time.

• High-frequency trading: High-frequency data and trading based on the limit order book
require a completely different treatment than what is covered in this book. Some key
references include Abergel et al. (2016), Lehalle and Laruelle (2018), Bouchaud et al.
(2018), and Kissell (2020).

• Machine learning in finance: Recent textbooks that give a broad account of the use of
machine learning in financial systems include López de Prado (2018) and Dixon et al.
(2020). In this book, Chapter 16 briefly discusses machine learning and deep learning
techniques in the context of portfolio design.

1.5 Reading Guidelines
This book has been written under the premise that each chapter can be read independently.
For example, a reader who is already familiar with portfolio optimization can jump directly to
Chapter 16 on deep learning portfolios or to Chapter 15 on pairs trading.

Some suggested ways to read the book include the following approaches:

• A “reader in a rush” can go directly to Chapter 6 for portfolio basics and Chapter 7 for
modern portfolio theory, perhaps also taking a quick look at Chapter 2 on stylized facts
of financial data, and then jump to any other chapter, for example Chapter 14 on robust
portfolios or Chapter 9 on high-order portfolios.

• A “reader with a bit more time,” apart from the basic Chapters 2, 6, and 7, could also read
Chapter 3 on i.i.d. data modeling and Chapter 8 on portfolio backtesting to get a better
grasp of the fundamentals.

• For full coverage of all the different portfolio designs, a reader can go over any chapter in
Part II; that is, apart from the fundamental Chapters 6–8, one can explore (in any particular
order):

– high-order portfolios (Chapter 9);
– portfolios with alternative risk measures (Chapter 10);
– risk parity portfolios (Chapter 11);
– graph-based portfolios (Chapter 12);
– index tracking portfolios (Chapter 13);
– robust portfolios (Chapter 14);
– pairs trading or statistical arbitrage portfolios (Chapter 15); and
– deep learning portfolios (Chapter 16).

https://doi.org/10.1017/9781009428095.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009428095.002


10 Introduction

• To complete the financial data modeling, one should go over all the chapters in Part I: apart
from Chapters 2 and 3; Chapter 4 covers time series modeling, and Chapter 5 explores the
more recent topic of graph modeling of financial assets.

• In order to gain a more solid understanding of the portfolio optimization formulations and
algorithms, a reader may want to go over Appendices A and B, that is, the basics of convex
optimization theory in Appendix A and optimization algorithms in Appendix B.

1.6 Notation
Notation differs depending on the research area and on the personal taste of the author. This
book mainly follows the notation widely accepted in the statistics, signal processing, and
operations research communities.

To differentiate the dimensionality of quantities we employ lowercase for scalars, boldface
lowercase for (column) vectors, and boldface uppercase for matrices, for example, 𝑥, 𝒙, and
𝑿, respectively. The 𝑖th entry of vector 𝒙 is denoted by 𝑥𝑖 and the (𝑖, 𝑗)th element of matrix
𝑿 by 𝑋𝑖, 𝑗 . The elementwise product (also termed the Hadamard product) and elementwise
division are denoted by ⊙ and ⊘, respectively, e.g., 𝒙 ⊙ 𝒚 and 𝒙 ⊘ 𝒚 (𝒙/𝒚 abusing notation);
similarly, the Kronecker product is denoted by ⊗. The transpose of a vector 𝒙 or a matrix 𝑿
are denoted by 𝒙T and 𝑿T, respectively. The inverse, trace, and determinant of matrix 𝑿 are
denoted by 𝑿−1, Tr(𝑿), and |𝑿 | (or det(𝑿)), respectively. The norm of a vector is written as
∥𝒙∥, which can be further specified as the ℓ2-norm ∥𝒙∥2 (also termed the Euclidean norm),
the ℓ1-norm ∥𝒙∥1, and the ℓ∞-norm ∥𝒙∥∞. The operator (𝒙)+ denotes the projection onto
the nonnegative orthant, that is, (𝒙)+ ≜ max(0, 𝒙). We denote by 𝑰 the identity matrix of
appropriate dimensions.

For random variables, Pr[·] denotes probability, and the operators IE[·], Std[·], Var[·],
and Cov[·] denote expected value, standard deviation, variance, and covariance matrix,
respectively.

The set of real numbers is denoted by R (nonnegative real numbers by R+ and positive real
numbers by R++). The set of 𝑚 × 𝑛 matrices is denoted by R𝑚×𝑛, the set of symmetric 𝑛 × 𝑛
matrices by S𝑛, and the set of positive semidefinite 𝑛 × 𝑛 matrices by S𝑛+. By 𝒂 ≥ 𝒃 we denote
elementwise inequality (i.e., 𝑎𝑖 ≥ 𝑏𝑖). The matrix inequalities 𝑨 ⪰ 𝑩 and 𝑨 ≻ 𝑩 denote that
𝑨 − 𝑩 is positive semidefinite and positive definite, respectively. The indicator function is
denoted by 1{·} or 𝐼 (·).

Table 1.1 lists the most common abbreviations used throughout the book, and Table 1.2
provides some key financial mathematical symbols.

Table 1.1 Common abbreviations used in the book.

Abbreviation Meaning

AI Artificial intelligence
AR Autoregressive
ARCH Autoregressive conditional heteroskedasticity
ARIMA Autoregressive integrated moving average
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Table 1.1 Common abbreviations used in the book. (continued)

Abbreviation Meaning

ARMA Autoregressive moving average
B&H portfolio Buy and hold portfolio
BCD Block coordinate descent
CAPM Capital asset pricing model
CCC Constant conditional correlation
CP Conic problem/program
CVaR Conditional value-at-risk
DCC Dynamic conditional correlation
DD Drawdown
DL Deep learning
DR Downside risk
ES Expected shortfall
EWMA Exponentially weighted moving average
EWP Equally weighted portfolio (a.k.a. 1/𝑁 portfolio)
FP Fractional problem/program
FX Foreign exchange
GARCH Generalized autoregressive conditional heteroskedasticity
GICS Global Industry Classification Standard
GMRP Global maximum return portfolio
GMVP Global minimum variance portfolio
GP Geometric problem/program
HRP Hierarchical risk parity
i.i.d. independent and identically distributed
IPM Interior-point method
IVarP Inverse variance portfolio
IVolP Inverse volatility portfolio
LFP Linear fractional problem/program
LP Linear problem/program
LPM Lower partial moment
LS Least squares
MA Moving average
MDecP Maximum decorrelation portfolio
MDivP Most diversified portfolio
ML Maximum likelihood or machine learning (depending on context)
MM Majorization–minimization
MSRP Maximum Sharpe ratio portfolio
MVolP Mean–volatility portfolio
MVP Mean–variance portfolio
MVSK Mean–variance–skewness–kurtosis
NAV Net asset value
P&L Profit and loss
QCQP Quadratically–constrained quadratic problem/program
QP Quadratic problem/program
QuintP Quintile portfolio
RPP Risk parity portfolio
S&P 500 Standard & Poor’s 500
SCA Successive convex approximation
SDP Semidefinite problem/program
SOCP Second-order cone problem/program
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Table 1.1 Common abbreviations used in the book. (continued)

Abbreviation Meaning

SR Sharpe ratio
SV Stochastic volatility
TE Tracking error
VaR Value-at-risk
VARMA Vector autoregressive moving average
VECM Vector error correction model

Table 1.2 Mathematical notation used in the book.

Term Meaning

𝒘 Normalized portfolio weight vector
𝒘cap Portfolio capital allocation vector (e.g., in units of US dollar)
𝒘units Portfolio unit allocation vector (e.g., in units of shares for stocks)
𝒑𝑡 Price vector of assets at time 𝑡
𝒚𝑡 Log-price vector of assets at time 𝑡
𝒓𝑡 (𝒙𝑡 ) Return vector of assets at time 𝑡 (linear or log-returns, depending on context)
𝒓lin
𝑡 Linear returns vector of assets at time 𝑡
𝒓
log
𝑡 Log-returns vector of assets at time 𝑡
𝝁𝑡 Vector of expected value of returns 𝒓𝑡
𝚺𝑡 Covariance matrix of returns 𝒓𝑡
𝑁 Number of financial assets in the considered universe
𝑇 Number of temporal observations 𝑡 = 1, . . . , 𝑇
N(𝝁,𝚺) Normal or Gaussian multivariate distribution with mean 𝝁 and covariance 𝚺

1.7 Website for the Book
The book is supplemented with a variety of additional materials, including slides, sample
code, exercises with solutions, and videos. These supplementary resources can be accessed
on the companion website at:

portfoliooptimizationbook.com

1.8 Code Examples
This book is supplemented with a large number of code examples in R and Python that can
reproduce all the figures in the book. These supplementary resources are available on the
companion website for the book.

Generally speaking, the resolution of all the portfolio optimization formulations covered in
the book can be approached in a variety of ways, namely:

• Use a software package or library specifically designed to optimize portfolios under a
wide variety of formulations and constraints. Examples include the popular R package
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fPortfolio (Wuertz et al., 2023) and the Python packages Riskfolio-Lib (Cajas, 2023)
and PyPortfolioOpt (Martin, 2021).

• Utilize a modeling framework like CVX, which automatically calls upon a solver behind
the scenes, available for programming languages including Python, R, and Julia (Fu et al.,
2020, 2022; Grant & Boyd, 2008, 2014).

• Directly invoke an appropriate solver.

• Develop ad hoc efficient algorithms for specific formulations, as done in the packages
developed by the ConvexFi group.3
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