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SOME RESULTS ON QUASI-UNIFORM SPACES

BY
KAREN S. CARTER AND T. L. HICKS

ABsTRACT. Constructions are made of a T space which does not
have a T; completion and of a quasi-uniform space which is com-
plete, but not strongly complete. An example relating to a comple-
tion due to Popa is given. An alternate definition for Cauchy filter,
called C-filter, is examined and a construction of a C-completion
is given. We discuss quasi-pseudometrics over a Tikhonov semifield
RA, Every topological space is quasi-pseudometrizable over a suit-
able RA. Tt is shown that if a quasi-pseudometric space over RA
is complete, the corresponding quasi-uniform structure is C-
complete. A general method for constructing compatible quasi-
uniform structures is given.

The topological concepts used in this paper are as defined in Gaal [7]. The
basic definitions relating to quasi-uniform spaces are given in Murdeshwar and
Naimpally [9].

DerINITION 1.1. Let X be a nonvoid set. A quasi-uniform structure, %, on X
is a filter on X X X satisfying:

(1) A={(x,x):xeX}cUforeach Ue;

2) if Ue %, then there is a V € % such that Vo V< U.

DerFINITION 1.2. If (X, %) is a quasi-uniform space, we obtain a topology 7,
on X by taking as a base for the neighborhood system at x € X, the collection
A (x)={U[x):U € %} and we say that % generates ¢,. If ¢ is a topology on X
and 7, =/, then ¢ is said to be compatible with %. For each O € ¢, define

S(0) = 0x0 U (X—0)x X.

Pervin [10] showed that {S(0):0 € ¢} is a subbase for a quasi-uniform structure
which is compatible with ¢. We shall denote this structure by # and refer to it as
the Pervin structure. A quasi-uniform structure on a set X is said to be transitive
if there is a base Z for the structure such that B € # implies that B - B=B.

DEFINITION 1.3. Let (X, %) be a quasi-uniform space and let & be a filter on X.
If for each U € % there is an x € X such that U[x] € &, we say that & is %-Cauchy.
We define (X, %) to be complete (strongly complete) if every %-Cauchy filter has
nonempty adherence (limit).

DEerINITION 1.4. (Y, ¥") is a completion of (X, %) if (Y, ¥") is complete and
(X, %) is quasi-uniformly isomorphic to a dense subset of (Y, ¥"). Strong com-
pletion is defined similarly.
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DEerFINITION 1.5. Suppose (X, ¢) is a topological space. If x € O € ¢, a cover of
X about (x, O)is an open cover &/ of X such that thereisan 4 € & withx € A < 0.
Let # be an open cover of X such that for every x € X, (\{B € #:x € B} is open.
Then Z is called a Q-cover of X.

DEeFINITION 1.6. Suppose that (X, £) is a topological space and let € be a
collection of Q-covers of X satisfying the following condition: for each O € ¢
and each x € 0, € contains a cover of X about (x, 0). Define #,={U_,: </ € €}
where U, =U{{x} X 07 :x € X} and OF =N{4,:x € A, € o/}

Fletcher [5] proves that %, is a compatible transitive quasi-uniform structure
called a covering quasi-uniformity. He also proves that a quasi-uniform structure
is transitive if and only if it is a covering quasi-uniformity.

2. Some examples concerning completeness. One would like for separation prop-
erties of the original space to carry over to the completion or strong completion.
Carlson and Hicks [3] give an example of a T, quasi-uniform space which does
not have a T, completion and, therefore, does not have a T, strong completion.
They also give an example of a discrete space which does not have a T strong
completion. As we show below, this same space is also an example of a discrete
space which does not have a T, completion.

ExampLE 2.1. Let N={1,2,3,...}. Define U,={(x,y):x=y or x>n}. The
collection {U,:n € N} is a base for a quasi-uniform structure %. Moreover, the
topology ¢ generated by % is discrete. Let & be the filter on N consisting of alt
subsets of N which have finite complements. & is easily seen to be #-Cauchy.
Next suppose (N*, %*) is a T, completion for (N, %). Now # generates a % *-
Cauchy filter #* on N*. Since (N*, %*) is complete, there is an x* € N* such
that x* e adh & *. We first show that x* ¢ N. If x* € N, there is an open set
O* € ¢* such that O* N N={x*}. Now N—{x*}e F<F* By the above,
O0* N (N—{x*})=@ and, thus, x* ¢ cl(N—{x*}), a contradiction. Next, let
B* be an open set containing x*. There is a U* € %* such that x* € U*[x*] < B*.
Let W* e U* with W* o W* <% *. We claim that W*[x*] N N is infinite. Suppose
A=W*[x*] N N is finite. Then N—A4 € F =& *. And, W*[x*] N (N—A)=o
which implies that x* ¢ cI(N—A4). From this it follows that x* ¢ adh #*, a
contradiction. Thus, we see that if k£ € N, there is an s>k such that s € W*[x*] N
N. Now there is an me N with U, < W* N (NXN) and an s>m such that
s € W*[x*] N N. Therefore, (x*,s)e W* and {s}x N W* and, hence, {x*}x
N W*o W*c U*. Tt follows that Nc U*[x*]<B*; that is, every open set
containing x* contains N. But, then (N*, ¢*) could not be T3.

One question which naturally arises is does there exist a quasi-uniform space
which is complete, but not strongly complete. As the following example shows,
the answer is affirmative.
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ExAMPLE 2.2. Let X be the integers. For n € X, define U,=A U {(x, y):x>n,
y=0 or 1}. Now {U,:n € X} is a base for a quasi-uniform structure % on Xx X
and the topology ¢ generated by % is discrete. Suppose that & is a Cauchy filter.
Now if ne X, U,[x]={0, 1, x} if x>n and U, [x]={x} if x<n. It easily follows
that & must be generated by a finite set and that adh # #¢. Let & be the
collection of all supersets of {0, 1}. Now lim #=¢ and, in fact, & is the only
non-convergent %-Cauchy filter.

Popa [11] gave a construction that yields the following result.

THEOREM. Let (X, %) be a T, quasi-uniform space. Then there exists a strongly
complete quasi-uniform space (X, %A) and a uniformly continuous mapping ¢:X—X
having the following properties:

(a) For every uniformly continuous mapping f: X—Y, Y being a strongly complete
quasi-uniform space, there exists a unique uniformly continuous mapping g:X—Y
such that f=g o ¢.

(b) The pair (X, ¢) is unique up to an isomorphism of quasi-uniform spaces.

Popa calls (X, ”é)“the”completion of (X,%).1In a uniform space setting, one proves
the above theorem and also proves:

(¢) ¢:X—X is an isomorphism of X onto a dense subspace of X.

It seems reasonable to inquire about the status of (c) in this setting. In fact,
most authors would not call X a completion unless X is isomorphic to a dense
subspace of X. The following example show that “Popa’s completion” is not a
good candidate for a completion of a quasi-uniform space.

ExampLE 2.3. The following construction gives a quasi-uniform structure %
for the set N of natural numbers such that:

1. The topology ¢, generated by % is the discrete topology and

2. Popa’s completion (JQT, 02}) of (N, %) is a single point.

Let U,={(x, y):x=y or x>n}, #={U,:n € N}, and let % denote the quasi-
uniform structure generated by the base 4. If x<n, U, [x]={y:(x, y) € U,}={x}.
Thus ¢, is the discrete topology. If # ={N}, &# is %-Cauchy since U,[n]=N.
Let ¢:(N, %)—»(]\AI , é/) be the uniformly continuous mapping constructed by
Popa. ¢(F)={¢(N)} is a base for a %A-Cauchy filter #*={A:$(N)< A} so there
exists z € N such that F* converges to z. It follows that ¢(V) is the only neigh-
borhood of z in the subspace ¢(N). The space is T, s0 ¢(N)={z} and cl $(N)=N

gives N= {z}.

3. On the definition of Cauchy filter. The present definition of Cauchy filter,
proposed by Sieber and Pervin [12], is an extension of the concept of Cauchy
filter for a uniform space and, moreover, convergent filters are clearly Cauchy.
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We would like to have a definition of Cauchy filter which would allow us to con-
struct completions which preserve more of the separation properties than is possible
with the present definition.

DEerINITION 3.1. Let (X, %) be a quasi-uniform space and let & be a filter on X.
We say that & is a C-filter with respect to % if F satisfies either of the following
two conditions:

(i) given U € %, there is an F in & such that FX F< U,

(i) lim F #é.

The concepts of C-complete, C-strong complete, C-completion, and C-strong
completion are defined in the obvious manner.

It is clear that in the uniform space case the concepts of Cauchy filter and
C-filter are precisely the same. One may easily show that if # is a filter satisfying
condition (i) of the definition of C-filter, then adh & =lim & ; and thus, if &
is a C-filter such that adh % #¢, then lim & %£¢. We see, therefore, that the con-
cepts of C-complete and C-strong complete coincide. Although the concepts of
complete and strongly complete do coincide for uniform spaces, we have shown in
example 2.2 that they are not the same for quasi-uniform spaces.

Using the current definition of Cauchy filter, Sieber and Pervin [12] obtain a
generalization of the Niemytzki-Tychonoff theorem. If we use the definition of
C-filter and replace the concept of precompactness by that of total boundedness,
we may similarly derive the following:

THEOREM 3.1. A topological space (X, ¢) is compact if and only if it is C-complete
with respect to every compatible quasi-uniformity.

Proof. The proof of the theorem given by Sieber and Pervin [12] carries over
with minor changes.

We remark that every finite space is C-complete. This follows from the fact that
every finite space has a unique compatible quasi-uniform structure generated by a
single set, as shown by Fletcher [4].

One may show that a C-filter is Cauchy in the usual sense. It then follows that
if (X, %) is complete, then (X, %) is also C-complete. Hence, any completion or
strong completion would also be a C-completion. One might, therefore, hope to be
able to obtain better results with C-completions. The following example shows that
a T, locally connected space may have a T, locally connected C-completion, but
not have a Ty, locally connected strong completion. This illustrates that the concept
of C-filter is an improvement over that of Cauchy filter.

ExaMPLE 3.1. Let X=({1, 2, 3,...}. Define U,=A U {(x, y):x>n and y>x}.
Now {U,:n € X} is a base for a quasi-uniform structure % on X and (X, ¢,) is
discrete. Suppose that & is a C-filter. If lim & =¢, then there is an F € & such
that FX F< U, In this case, # must be the collection of all supersets of a singleton
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set {x}. Therefore, (X, %) is easily seen to be a C-completion of itself. Let & be the
filter generated by the collection {G,:n € X} and G,={n,n+1,...}. Then ¥ is
%-Cauchy, but it does not converge. Therefore, (X, %) is not strongly complete.
Now let (X*, %*) be a T, locally connected strong completion for (X, %). Now
& generates a % *-Cauchy filter ¥*. Since (X*, %*) is strongly complete, there is an
x* € X* such that x* € lim ¥*. Therefore, if U* e U*, U*[x*]=2{n, n+1,...}
for some n € X. We first show x* ¢ X. Suppose that x*=n € X. There is a U*
in %* such that U* N (XX X)="U,,,,. Therefore, U*[n] N X={n}. Since X e ¥ <
%*, we obtain the contradiction {n} € ¥*. Thus, x* € X*—X. Next we show
{x*}=X*—X. Let y* € X*—X with y*s#x*. Since (X*, %*) is T,, there is a
V* € %* such that V*[x*] N V*[y*]=4¢. Since there is a k in X such that V*[x]=
{k,k+1,...}, V*p*I1 nX<{l,...,k—1}. Let meX. Since X is discrete,
there is a Wy € Z* such that Wi[n] N X={n}. Since (X*, Z*) is T,, there is a
Wy € %* such that W3 [n] N Wi[y*]=¢. Letting W*=W; N Wy, we have that
W*[y*] N X=4¢. This implies that X% X*, a contradiction. Therefore X*=X U
{x*} where x* ¢ X. Now it is easily seen that a neighborhood basis at x* is {0,:
n € X} where O,={x*} U {n,n+1,...} and a neighborhood basis at ne X is
{n}. Thus, (X*. %*) is not locally connected.

Carlson and Hicks [3] give a construction of a strong completion for a quasi-
uniform space which possesses a transitive base. The following construction of a
C-completion was motivated by their work, except that we do not require a
transitive base. Whenever the proof is straightforward or the same as in the earlier
construction, we omit details.

Let (X, %) be a quasi-uniform space (not necessarily transitive). Let Q be the
collection of all nonconvergent ultrafilters on X which satisfy condition (i) in the
definition of C-filter. Define an equivalence relation on Q as follows:

If A, #,cQ, then M, N M, if and only if (i) for each Ue % and Fe A4,
with FX F< U, then F € .#,; and, (ii) for each Ue % and F € .#, with FXF< U,
then F € M ,.

Let A={./2 1M € Q}, where A denotes the equivalence class of . under the
relation ~. Let X*=X U A. Let A* denote the diagonal in X*xX*. If Ve,
define S(V)=V U A* U {( .IA, »):y € Vix] for some x e X, where V[x]e .#
for all M M 3.

Lemma 3.1. {S(U):U €U} is a subbase for a quasi-uniform structure U* on X*
and U=U* N (XX X), where we understand U* N (Xx X) to be {U* N XX X:
U* e U*}.

LemMA 3.2. (X*, %*) is C-complete.

Proof. Let & * be a C-filter with respect to % *. If adh & *#¢, we are through.
Suppose that adh & *=¢ and let .#* be an ultrafilter containing % *. Now .4 *
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does not converge and X € A *. Then A ={n* N X:n* € M *}is a C-ultrafilter on
X satisfying condition (i) of the definition. It is easily seen that .# does not con-

verge. Now we must have that .#* converges to M € A, a contradiction.

LEMMA 3.3 X is dense in X'*.

Proof. Let £ eA and U*e* Then U*2 () {S(V,):1<i<n}, where
V,e¥, 1<i<n. Let Me M. Now, there is an M € .# such that MXM<V;
for all 1<i<n. Therefore, if V= N{V;:1Li<n} and x € M, then x € V[x] € A4
for all A € M. Hence x € U*[e//?].

THEOREM 3.2. (X*, U*) is a C-completion for (X, U).
Proof. A consequence of lemmas 3.1, 3.2, and 3.3.

THEOREM 3.3. Suppose that (X, ¢,,) is a T, topological space and % is the Pervin
structure. Then (X*, ¢,,) is T.

Proof. Suppose that x* and y* are elements of X*. If both x* and y* are mem-
bers of either X or A, the result is obvious. Now suppose that x* € X and y*=

M e A Let M € M. Since M does not converge to x*, there is an open set O such
that x*€ O and O ¢ /. Let V=(0%x0) U (X—0)X X, U=(X—{x*})x (X—
{x*}) U {x*}x X and W=U N V. Now x* ¢ S(W)[.#] and A ¢ S(W)[x*].

DerINITION 3.2. A quasi-uniform space (X, %) is R; if and only if given x € X
and U e %, there is a symmetric ¥V € % such that Vo V[x]< U[x].

THEOREM 3.4. Let (X, %) be a T, and R, quasi-uniform space. Then (X*, %*) is
Tl-

Example 2.1 may be used to show that a discrete space need not have a T}
C-completion. This shows that C-completeness is not a vast improvement over the
standard concept of completeness. Theorem 4.5 of the next section supports the
argument that it is an improvement.

4. Quasi-pseudometrics over R®. Let A denote a non-empty set. R* will denote
the set of all functions from A into the set R of real numbers. Thus R* is the product
of m copies of Rwhere m is the cardinal number of A. Give R* the product topology
If f, g € R®, f<g means f(a)<g(a) for every a € A. Addition and multiplication
in R are defined pointwise. R is called a Tikhonov semi-field.

DEFINITION 4.1. d: X x X—>R* is called a quasi-pseudometric (q.p. metric) on X
over R® provided:

(1) d(x, y)>0 and d(x, x)=0 for every x, y € X.

2) d(x, y)<d(x, 2)+d(z, y) for every x, y, z € X.
If d also satisfies d(x, y)=0 implies x=y, d is a quasi-metric over R* and if in
addition d(x, y)=d(y, x) for every x, y € X, d is a metric over RA.
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For a discussion of metric spaces over R* and the theory of Topological Semi-
Fields see [1] and its references. Given R*, .4°(0) will denote the set of neighbor-
hoods of 0 in R®. Let

Ul,={feR*a <f(g) <b}.
We recall that {U, ,:a, b € R, q € A} is a subbase for the product topology and,
if Ue A°(0), there exists ¢; € A, €>0, i=1,2,...,nsuch that U2 N}, U% ..

THEOREM 4.1. Suppose (X,d) is a q.p. metric space over R®. For x € X and
Ue 4(0),
Qx, U) = {ye X:d(x, y)e U}.
Then N (x)={Q(x, U):U € A (0)} is the set of neighborhoods in a topology ¢,,
called the natural topology for X.

Proof. Clearly, x € Q(x, U) and Q(x, U) N Q(x, V)=Qx, UN V). If M2
Q(x, U), put V= U U {d(x, y):y € M}. Then M=Q(x, V).

To complete the proof, we must show that given Q(x, U), there exists ¥ € 47(0)
such that Q(x, V)= Q(x, U) and y € Q(x, V) implies Q(x, U) € A (y). The result
follows if we can prove it for UZ, ,. In this case, let ¥=U",, ,/» and note that if
y €Q(x, V), then Q(y, V)= Q(x, U).

THEOREM 4.2. Let (X, d) be a q.p. metric space over RA. If Ue 4(0),

S(U) = {(x,y)e Xx X:d(x, y)e U}.
Then Z={S(U):U € A"(0)} is a base for a quasi-uniform structure % and {,=¢,.

Proof. d(x, x)=0¢€ U implies S(U)=2{(x, x):x € X}. S(U;) N S({U,)=S(U; N
U,). Given S(U), there exists g, € A and >0 such that

n n
U2NU%, Let V=N U%p,p
i=1

i=1
Since S(UZ,/2,e/2) © S(Uly12,02) S S(UL,0), S(V)o S(V)=U. Also, S(U)[x]={y:
(x,y) e S(U)}={y:d(x,y) € U}=Q(x, U). Thus # is a base for a structure %
such that £, =¢,.

REMARK 4.1. If we set
Q'(x,U) = {ye X:d(y, x) € U}
we get another topology 4; for X. This is just the natural topology for the q.p.
metric d’ over R® where d’(x, y)=d(y, x). If d is a pseudometric over R®, d=d’
and the quasi-uniform structure in theorem 4.2 is a uniform structure.

REMARK 4.2. d is a q.p. metric on X over R®. Then (1) 4, is T, if and only if
x#y implies d(x, y)#0 or d(y, x)#0, and (2) ¢; is T, if and only if d(x, y)=0
implies x=y. Thus ¢, is T} if and only if d is a quasi-metric over R*,
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THEOREM 4.3. Suppose % is a quasi-uniform structure with a base % such that
B o B=B for every Be #. If Be %, let pp(x,y)=0 if (x,y) € B and pp(x, y)=1
if (x,y) ¢ B. For e>0and Be &,

Upg.s = {(X, .V):PB(x’ y) < 8}’
Then pg is an ordinary q.p. metric and {U, .:B € %, >0} is a base for %.

Proof. Clearly, pp(x, x)=0 and pp(x, y)20. Is pg(x, y)<pp(x, 2)+pp(z, y)?
Yes, since pp(x, z)=pp(z, y)=0 implies (x, z), (z, y) € B which gives (x,y) € Bo
B=B or pg(x, y)=0. Note that U, ,=XxXif ¢>1 and equals B if e<1.

REMARK 4.3. Quasi-uniform structures that have a base & such that B B=B
for every B € # are called transitive structures and they have been characterized
by Fletcher [5]. The Pervin structure is transitive. The pg’s in theorem 4.3 are
quasi-uniformly upper semi-continuous with respect to the structure % X%
Thus a transitive quasi-uniform structure is determined by a nice family of ordinary
q.p. metrics. If % is a uniform structure and % has a base & such that for every
Be %, B=B'=Bo B, then the family {pp:B € %} will give back the structure
and each pp is uniformly continuous with respect to % X %.

In [1], it is shown that a topological space is metrizable over some Tikhonov
semi-field if and only if it is 7, and uniformizable (completely regular). The fol-
lowing theorem was proved independently by Boltjanskii [2]; however, the proof
given below is different.

THEOREM 4.4. Every topological space (X, ¢) is q.p. metrizable over some Tikhonov
semi-field R®. Every T, topology is quasi-metrizable over some R™.

Proof. If 7% is the Pervin structure, /=/,, and % has a base & such that Bo B=B
for each B € #. Consider the family {pp: B € #} of ordinary q.p. metrics defined in
theorem 4.3. Let A=% and define d:Xx X—R* as follows: If (x, y)EXXX,
d(x, y)(B)=pp(x,y). Now d(x,y)(B)=pg(x,y)>0 for every Be# implies
d(x, y)20. (x, x) € B for every B € # gives d(x, x)=0. Also,

d(x, y)(B) = pp(x,») < pp(x, 2)+pp(2, y) = d(x, 2)(B)+d(z, y)(B).
Thus d is a q.p. metric over R“. By theorem 4.1, d gives rise to a quasi-uniform

structure ¥~ such that ¢;=¢_.. We show that Z=7" and then we have /;,=¢, =
Ly=At.

€={S(V):VeAN(0)} is a base for ¥~ where S(V)={(x, y):d(x,y)€ V} and
A={U, .:Be€Z,e>0}is a base for %. Note that UPB,2=S(U_€.,) and it follows
that #=7".

If £ is Ty, the q.p. metric d generates a T, topology and d is a quasi-metric by
remark 4.2.
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(X,d) is a q.p. metric space over RA. Sets of the form Uqi,--.q.)=
{fe R*: —e<f(g;)<e for 1<i<n}, £>0, make up a base for the neighborhoods of
0 in R, where 0(g)=0, for all g € A. Let A denote the collection of sets of the
above form. If A is ordered by inverse inclusion, A is a directed set. Let {X: 0 € A}
be a net in X.

DEFINITION 4.2. We say that {X,:0 € A} converges to y € X if and only if for
any U e 4°(0), there exists OV € A such that 0>0UY implies d(x,, y) € U and
d(y, x,) € U.

DEFINITION 4.3. {x,:0 € A} is a Cauchy net if and only if for any U € A7 (D),
there exists an OY € A such that 0,, 02>0U implies d(xol, %) €U and
d(x,,, Xo,) € U.

DERINITION 4.4. (X, d) is complete if and only if every Cauchy net {x,:0 € A}
converges.

(X, d) quasi-pseudometrizes (X, %) if and only if {S(U): U € A} is a base for %,
where S(U)={(x, y) € Xx X:d(x, y) € U}. The proof of theorem 4.4 shows that
for every quasi-uniform structure % for X, there exists a q.p. metric d over some
R? such that (X, d) quasi-pseudometrizes (X, %).

THEOREM 4.5. Suppose that (X, d) quasi-pseudometrizes (X,#). Then (X, d)
complete implies that (X, %) is C-complete.

Proof. Let # be a C-filter in (X, %). If & converges, we are done. Suppose that
& does not converge. Let 0=U,/(q, . . . ,q,) € A. By the definition of C-filter,
there is an F° e % such that FOx F°< S(0). Let x, € F° Then {x,:0 €A} is a
Cauchy net with respect to (X, d). Since {x,:0 € A} is Cauchy and (X, d) is com-
plete, {x,:0 € A} converges to some point a € A. We claim that A x(a)=F.
Now a base for the neighborhood system ./ x(@) is given by the collection
{Q(a, 0):0 € A} where Q(a, 0)={y € X:d(a, y) € O}. Suppose that U,(q;, ...,
q,) € A. We wish to show that Q(a, U,(qs, . . . ,¢,)) € ¥ and hence that /" x(a)<
&. By definition of convergence, there is O € A such that 0>0 implies that
d(a, x,) € Uyo(q1, - - - »q,) and d(x,, @) € Uye(qy, - . . , g,). It is easily seen that
we can choose O to be of the form O=U,(qy, - - - squ> Gui1> - - - »Gm) Where
r<ef4. Let U=Uo(q1, -+« 5Gn> - -+ »qm) and z € FY. Now, d(a, z)(g)<d(a, xy)
(g)+d(xy, 2)(g,). Also (xy,z) € FYxFYc S(U) and hence d(xy, 2)(g)<rl2<
&/4 for 1<i<n. Since U> O, by definition of convergence we obtain that d(a, xy)€
U241, - --,9,) and hence d(a, Xyy)(g,)<e2 for 1<i<n. Thus d(a, z)(g)<
g/2+¢/4<e.

5. Unsolved problems and related results. One of the more interesting questions
concerning quasi-uniform structures which remains unanswered is whether or not
every topological space has a compatible strongly complete quasi-uniform struc-
ture. Fletcher [4] showed that a finite space possesses a unique compatible
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quasi-uniformity generated by a single transitive subset of X' x X. This structure is
easily seen to be strongly complete. For infinite 7, spaces we obtain the following
result.

THEOREM 5.1. Let (X, £) be an infinite T, topological space; let T be the fine
transitive quasi-uniform structure; and, let G ={A < X: X— A is finite}. Then (X, #.T")
is strongly complete provided every F J -Cauchy filter containing & converges.

Proof. Let & be a non-convergent filter on X. If & contains ¢, & is not
F T -Cauchy. Suppose # does not contain &. Then there exists {x, € X:1<
i<n} such that X—{x,;:1<i<n} ¢ #. It follows that X—{x;} ¢ # for some
1<j<n. And since X is T}, X—{x,} is open. Also, since lim # =¢, there exists an
open set O such that x; € O and O ¢ #. Suppose that y € X. Let 0,=0—{x;}=
0N (X—{x;})ify € 0—{x;}; 0,=X—{x;}if y € X—0; and 0, =0. Let U(F)=
{(x, y):y € O,}. Clearly U(¥) contains the diagonal. If (x, y) € U(¥)and (y,z) €
U(#), then (x, z) € U(F). Thus, the set U(F) generates a transitive quasi-uniform
structure % (%) and the resulting topology will be weaker than ¢. It easily seen
that the least upper bound ¥ of {Z} U {#%(%)} is a compatible transitive quasi-
uniform structure and that & is not ¥ -Cauchy. Thus & is not &% Z -Cauchy.

DeriNiTION 5.1. If (X, %) is a quasi-uniform space, #'={U:Ue%} is a
quasi-uniform structure and % and %' are called conjugate quasi-uniform
structures.

THEOREM 5.2. Suppose that % is a transitive quasi-uniform structure for X. Then
there is a base % for U such that;

(i) & is transitive;

(ii) if B€ %, then B[x] € £, for each x € X;
(iii) if B %, then B[x] € £,-1 for each x € X; and
(iv) if Be %, then B[x]° € ¢,, for each x € X.

Proof. It is a well-known fact that any transitive base will suffice for (i), (ii), or
(iii). Since % is transitive, it is a covering quasi-uniformity [6]. Therefore, there is
a collection of Q-covers &7 such that {U,:% € &/} is a subbase, &, for % ; where
Uy=U{{x}x 4%:x € X} and 45=N{C e C:x € C} € 4,,. Lety € X. We claim that
Ug'[y]° € 4, Let z € UZ'[yl°. Then z ¢ U, [y] implies that (y, z) ¢ U;* which in
turn implies that (z, y) ¢ U,. Hence y ¢ A%. We wish to show z € 4% € U,'[y]-.
Suppose that ¢ € AY. Then A< A implies that y ¢ AY. Therefore (y, 1) ¢ Uy,
Thus, ¢ ¢ U;l[y]" which implies that 7 € Ug'[y]. It follows that A%< U(}l[y]c or
U;'y) e 44 Now, let % be the base generated by <. Then & is transitive and
Be % implies that B=N{U,:1<i<n}. If x€ X, then B—l[x]°=U{U;3[x]°:
1<i<n} €4,

COROLLARY. Let (X, %) be a tramsitive quasi-uniform structure. Suppose that
441 18 the discrete topology. Then ¢, is T.
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Fletcher and Lindgren [6] give an example of a quasi-uniform space which has
neither a symmetric nor a transitive base. As we show below, theorem 5.2 gives
another proof that this space does not have a transitive base.

ExampLE 5.1. Let X be the reals. Define U,={(x,y):y—x<(1/2")}=
{(x, ):y<(1/2"1)+x} where 1<n< . {U,:1<n< 0} is a base for a quasi-
uniform structure, %, on X. £, consists of all sets of the form (— oo, a) where
acX. A base for % is {U,":1<n< o} where U;1={(y, x):y—(1/2" Y <x}.
Then t,-, consists of all sets of the form (b, c0) where b € X. This means [a,00)=
(— 0, a)° ¢ £4-1. Clearly, then % cannot be transitive.

An interesting problem is that of determining when the fine structure is the
same as the fine transitive structure. Fletcher [6] has derived a general method for
constructing any compatible transitive quasi-uniform structure for a topological
space.

There is a simple method for construcing the fine transitive quasi-uniform
structure. As a subbase we simply take the collection {US XX X:U[x] € A (x)
for all xe X, and Uo. U=U}. One might then ask whether the set S (A)=
{UcXxX:U[x] € A/ (x) for all x € X} is a subbase for the fine quasi-uniform
structure. If (X, ¢) is a topological space with X finite, #(A) is easily seen to
generate the fine quasi-uniform structure. Fletcher [4] has shown that such a space
has a unique compatible quasi-uniform structure generated by a single transitive
set W. As the following example shows, #(A) does not, in general, form a subbase
for the quasi-uniform structure.

EXAMPLE 5.2. Let (X, £) be the real numbers with the co-finite topology. Let
N be the natural numbers and let U=[(X—N)xX] U [{1}xX] U [U{i+1}x
X-{1,2,...,i}:1<Li<ow0}]. If x e X—N, then U[x]=X € A (x) and if n € N,
then Uln]=X—{1,2,...,n—1} € A/ (n). Clearly, then U2A and U[x] € 4 (x)
for each x € X. Lindgren [8] has shown that (X, ¢)is uniquely quasi-uniformizable.
We will show that U is not a member of the Pervin structure &, and, therefore,
not a member of the fine structure. Suppose U € Z. Then there are nonempty
open sets Oy, ..., 0, such that U=2N{0;x0; U (X—0,)x X:1<Li<n}. From
this it follows that U=2[N{0;:1<Ki<n}]xX[N{0;:1<LiLn}]. Now, N{0;:1<L
i<n} is open in X and, therefore, has finite complement. Suppose ne N N
[N{0,;:1<Li<n}]. If, also, n—1 € N{0;:1<i<n}, then the point (n, n—1) must
be in [N{0;:1<i<n}]*x [N{0;:1<i<n}] and, hence in U, a contradiction.
Therefore, n e N N [N{0;:1<i<n}] implies that n—1 ¢ N N [N{0;:1<Li<Ln}].
Since there must be infinitely many elements in N N [{0;:1<i<n}], there must
also be infinitely many elements in N N [X—N{0,:1<i<n}]. But, this is a
contradiction.

Let (X, ¢) be a topological space. Suppose there is a partially ordered set L
such that for each x € X, there is a base {N(x, «):« € L} for the neighborhood

4
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system at x. Suppose further that the following conditions are satisfied:

(i) If B is not a maximal element of L, there is an «>f such that for any given
N(x, «) and y € N(x, «), we have N(y, )= N(x, f); and

(ii) If B is a maximal element of L, then N(y, f)< N(x, p) for y € N(x, p).

We form a subbase for a compatible quasi-uniform structure %;, as follows:
Let U,=U{{x} X N(x, «):x € X} where « € L. As we show below the collection
Fr={U,:a € L} is the subbase. Clearly A< U, for each « in L and clearly the
system will be compatible. Let U; € 7. We wish to find U, € &, such that
U, o U, < Uy. First suppose that § is not a maximal element of L. Choose « as in
@). If (x,y)e U, o U,, there is a z € X such that (x, z) € U, and (z, y) € U,. Then
z € U,[x]€ N(x, «) and y € U,[z]< N(z, «). By (i), N(z, «) = N(x, #) which implies
that y € N(x, ). This in turn implies that (x, y) € U and, hence U, o U, = Uj.
Next, suppose f is a maximal element. Then, we claim U, o Uy Uy. If (x,y) €
Up o Ug, then there is a z € X such that (x,z) € Uy and (z,y) € Us. Hence z €
N(x, f)and y € N(z, B). By (ii) N(z, f)< N(x, B). Therefore, y € N(x, #)=Up[x] or
(x,y) € Up. Thus Ug o Ug< Up.

Next, let &7 be a collection of Q-covers of a topological space (X, ¢) such that
if x € O € ¢, then there is a € € o for which A< 0, where A¥=N{4,:x€ 4, € %}.
In our general method, let L=./ and partially order & by inclusion; that is,
€<Zifand onlyif <2, but € #2. Let N(x, €)=A% foreachx € Xand € € .
Then {N(x, €):% € &/} is an open base for the neighborhood system at x. To see
that (i) and (ii) are satisfied, suppose that 2 >%. If y € N(x, 2), it is easily seen
that N(y, 2)< N(x, 2)< N(x, ¥). We remark that the subbase obtained by our
general method is the same as that of the covering quasi-uniformity. Hence our
general method can beused toconstruct any compatible transitive quasi-uniformity.

As we show below the general method applies to quasi-uniform structures which
are not transitive also. Consider, again, example 5.1. Following the general method
given at the beginning of this section, let L be the positive integers. For each
neL and x € X, let N(x, n)={y:y—x<(1/2"1)}. It is easily seen that {N(x, n):
n € L} is a base for the neighborhood system of x and that (i) and (ii) are satisfied.
It is also easily seen that %, is the same as the quasi-uniform structure of example
5.1, which was a non-transitive structure.
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